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Abstract

This paper discusses whether differences in the data structure of observational and

experimental studies should lead to different strategies for variable selection.

On the one hand, it is argued that outliers in the predictor variables have to be treated

differently in the two kinds of studies. In experimental studies this results in philosophical

problems with the applicability of cross validation. On the other hand, it is shown, however,

that a well designed experiment might lead to a factor structure very appropriate for cross

validation, namely a certain balance in the observations together with orthogonality of the

factors. This might be the reason why in practice cross validation has proven to be a valuable

tool for variable selection also in experimental studies. In contrast, however, it is shown that

variables selection based on cross validation is not appropriate for saturated orthogonal

designs.

After this fundamental argumentation, we illustrate by a number of examples that the same

methods for variable selection can be successfully applied in observational as well as

experimental studies.
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1. Introduction

Variables selection methods are examples for the use of cross validation in observational as

well as in experimental studies (see, e.g. SAS-Stat User’s Guide, PROC REG and PROC

RSREG). This paper describes both ways of application, and compares them. In section 2 we

introduce variables selection by means of ‘greedy’ stepwise forward selection (cp. Weihs

(1993) and Weihs and Jessenberger (1999)). Section 3 discusses the use of cross validation in

experimental studies from a theoretical viewpoint and gives conditions favorable and

unfavorable for variable selection by means of cross validation. In sections 4 and 5 for

observational studies as well as for experimental studies, we will present examples for the

application of variable selection with cross validation.

2. Greedy variables selection

In order to identify those factors which mainly influence a target variable in a linear model

y = Xβ + ε, one can build the linear model for the target by, e.g., successively including the

influential factors. This is done by identifying first that factor with the biggest effect on the

target, then the factor with the biggest additional effect, etc. until no ‘essential’ improvement

of model fit can be observed.

Such a method is called forward selection or stepwise regression with forward selection if

the ‘least squares criterion’ is used to judge the effect size. If a factor once chosen is always

kept in the model, the method is called ‘greedy’ forward selection.

Even if there are less observations n than possibly influential factors K, then stepwise

regression allows to study whether the target can be modeled adequately with B < n−1 factors.

Essential for the functionality of such a method is the choice of an appropriate measure for

(the actually reached) model adequacy, here expressed by the predictive power. One

possibility for measuring predictive power is cross validation. A special version of cross

validation is leave one out, where each observation of the sample is left out once individually,

n regressions with n−1 observations each are carried out, and each of the left out observations

is predicted, based on the coefficients estimated by the remaining observations. This way, for
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each observation one gets an oblique prediction. The differences of these to the true

observations are used to define the predictive power.

Predictive power based on leave one out

Assuming that the current model of the target Y has K influential factors, the

predictive power corresponding to a target Y is defined as
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and the  i,cvi i y y : ˆˆ −= , i = 1, ..., n, are the prediction errors, yi is the ith

observation of the target, ( )ix:y T
ii,cv

ˆˆ = is the prediction of the ith observation of

the target, xi
T is the ith row of the design matrix, and ( )iβ̂ the estimated

coefficients vector based on all observations except the ith.

In what follows R2cv will be used as the performance measure in greedy forward selection.

Stepwise regression with greedy forward selection

In stepwise regression with greedy forward selection first that factor is chosen

out of the possibly influential factors, which maximizes R2cv in a model with

(possibly an) increment and one factor only. Then another factor is chosen, the

addition of which to the model increases R2cv most, etc. until R2cv does not

improve anymore.

Before the application of this method we discuss its mathematical background.

3. Cross validation

3.1 Cross validation in observational studies

The philosophical background of cross validation (in the authors’ opinion) works as follows:
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Assume we have n (K+L)-dimensional vectors of observations (xi, yi), i = 1, ..., n. We assume

that these are a random sample of independent identically distributed (K+L)-dimensional

variables with unknown joint distribution PX,Y.

Assume that for an (n+1)st observation we have as yet only observed the part xn+1 and we want

to use this to make a good prediction for yn+1. We assume that (xn+1,yn+1) also has the

distribution PX,Y. The prediction 1ˆ +ny will be some function f of the observed xn+1,

1ˆ +ny = f(xn+1), and the so-called prediction rule f will be determined by regressing y on x in

the set (x1,y1), ..., (xn,yn).

To see how well this prediction works, we could use several independent observations (xn+r,

yn+r), r = 1, ..., m, where we would calculate the prediction rny +ˆ and compare this to yn+r

(train-and-test method). The mean deviance ∑
=

++ −
m

r
rnrnm yy

1

21 ˆ gives an estimate of

E(
2

ŶY − ), the performance of the prediction. In practice, however, if we had these

additional observations, we would like to include them in the learning sample, to get a better

prediction rule f.

Cross validation with the leave one out technique provides another unbiased estimate of

E(
2

ŶY − ), which does not need the extra-observations. We omit one observation (xs,ys) from

the sample (x1,y1), ..., (xn,yn), then we calculate the prediction formula from the remaining n-1

observations and we use this formula to calculate a prediction cvsy ,ˆ for the one observation

that has been omitted. Then 
2

,ˆ cvss yy − is an estimate of E(
2

ŶY − ). Repeating this for every

s, we get the cross validated estimate ∑
=
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,
1 ˆ , which is equal to RSScv / n considered

in section 2 in the case of one target Y only.

If we want to compare several models for prediction, then we might want to select the one

for which ∑
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as a predictor of E(
2

ŶY − ). To see this, assume there are several models, all of which have
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basically the same predictive power, such that ∑
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distribution for each of the predictors. Consequently, since we select the one model with the

minimal ∑
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ŶY − ). Therefore, ∑
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,
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good means to select an appropriate model, but it then gives a too optimistic view of the

performance of the model which is actually chosen.

3.2 Cross validation and designed experiments

The situation is very different, however, if a designed experiment is carried out. With a

designed experiment, the set {x1, ..., xn} is deliberately chosen. Therefore, the (xi, yi) are not

identically distributed. Additionally, the new observation (xn+1, yn+1) is not just another

observation with the same distribution, but the point xn+1 for which we want to predict y is a

fixed point of interest. In most cases it is a point where we did not observe during the

experiment.

Example 1 (Simulation):

We take an artificial example to show, how cross-validation can be misleading for a designed

experiment. Assume that we have observed a one-dimensional x at points x1 = 0.1, x2 = 0.2, x3

= 0.3, x4 = 0.4, x5 = 0.5, x6 = 0.6, x7 = 10. Further assume that the conditional distribution of a

one-dimensional y given x is the normal distribution with expectation 10+x and variance 1.

If the data were derived from an observational study, then there is a good argument that the

observation 7 might be an outlier. If the data were derived from an experiment, then we have

designed x7 to be different from the other xi. Therefore there is no reason why this observation

should be less reliable than the others.

Assuming the model described above, we simulated 10,000 data sets with the given xi,

i=1,...,7, and corresponding yi. There are two simple models which we might use for

prediction. The first model does not take account of the x,

(M1) y = µ + ε ,

whereas the second model uses x,

(M2) y = µ + β x + ε .

We know from the way how we have simulated the data that (M2) is the correct model. If the

data were observations from a true experiment or a true observational study, then we would
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not know which is the right model. We would have to decide from the data which model

appears more adequate.

We compare two methods for deciding between the models. The first method is cross

validation. For each of (M1) and (M2) we calculate ∑
=

−
n

s
cvssn yy

1

2
,

1 )ˆ( . We select the model for

which this quantity is smaller. The second method is significance testing. From the data, we

test whether β is significantly different from 0. If it is, then we use model (M2) for prediction,

if not, we use (M1).

For each of the 10,000 simulated data sets, we performed both methods to decide between the

two models. We chose x* = 0.3 as the point at which we wanted to predict. Then we

calculated the predictions from both models, and compared how well the prediction fitted to

10+x*, the conditional expectation of y at x*.

We found that among the 10,000 data sets, in all cases ß was significant, while cross-

validation correctly decided for the regression-model (M2) only in 3,497 of the 10,000

experiments. So there were 3,497 cases where significance testing and cross-validation

decided for the same model. In the remaining 6,503 cases, there were 213 when the simpler

model (M1) chosen by cross validation gave better prediction, while there were 6,290 cases

when model (M2) chosen by significance testing gave better predictions in x*.

Things were even more extreme if for the same 10,000 simulated data sets we chose to predict

at x* = 5. Then the prediction from the regression model (M2) was better in all 10,000 cases.

Therefore, significance testing chose the better model in 6,503 cases, while cross-validation

never chose a model which led to a better prediction than the one chosen by significance

testing.

The results in Example 1 need some comments. It is clear that the poor performance of the

cross validation is due to the fact that there is just one single xi which is far away from the

others. With an observational study, we would usually not have just one observation for

which the x-value is far away from the others. If we had, then we might decide that

observation 7 is an outlier and not use this observation for prediction at all. Therefore, the

prediction from model (M1) would fit much better to observations 1 to 6 (and give much

better prediction for x*=0.3). With an observational study which observes xi’s in the range

between 0 and 1, we would usually not want to make predictions for x* = 5.
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The example seems to show that cross validation is not appropriate for designed experiments.

This, however, is only part of the story. Had the experiment been properly designed then cross

validation would not produce such results.

To get an impression of how cross validation performs with designed experiments, some

theoretical considerations will be helpful. Assume that we have a matrix [ ]TnxxxX ,...,, 21= ,

that is T
ix is the ith row of X, and we have a vector x*=[x*1,...,x*n]

T such that for the target

vector y of observations from our experiment it holds

ε+γ+β= *xXy

where β is a (K+1)-dimensional vector and γ a constant, while ε is a random vector, such that

E(ε) = 0 and Cov(ε) = σ² In. We consider RSScv when the model

ε+β= Xy

is assumed, i.e. when the factor associated with γ is neglected in the model.

We start with some definitions. Let TT
n XXXXIX 1)()( −⊥ −=ω , i

TT
ii xXXxd 1)(1 −−= the

ith diagonal element of )(X⊥ω , and ),...,diag( 1 nddD = . Let yXXXXy TT 1)(ˆ −= , the least

squares estimate for y from the assumed model, and T
cvncvcv yyy ]ˆ,...,ˆ[ˆ ,,1= the vector of

predictions of y from leave one out cross validation.

With these definitions we have (see e.g. Cook and Weisberg, 1982, p. 33) that

)ˆ(ˆ 1 yyDyy cv −=− − .

As yXyy )(ˆ ⊥=− ω and as ε+γ+β= *xXy , it follows that

εω+γω=− ⊥−⊥− )(*)(ˆ 11 XDxXDyy cv .

Therefore,



8

)*)(()()*E()ˆ()ˆE()E( 2 γ+εωωγ+ε=−−= ⊥−⊥ xXDXxyyyyRSS T
cv

T
cvcv .

Due to the fact that E(ε) = 0, we get

*))()(*²)()(E()E( 22 xXDXxXDXRSS TT
cv

⊥−⊥⊥−⊥ ωωγ+εωωε= . (1)

The first term in (1) can be transformed to

( ))E()()(tr))()(E( 22 TT XDXXDX εεωω=εωωε ⊥−⊥⊥−⊥

( ) ( ) ∑
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22 1
²²)(tr²)()(tr σσωσωω ,

because di is the ith diagonal element of )(X⊥ω and because D-2 = diag( 22
1 /1,...,/1 ndd ).

In the situation that γ = 0, i.e. when the fitted model is appropriate, then it is desirable that

E(RSScv) is as small as possible. Using that∑ −−== ⊥ 1)(tr KnXdi ω , we get

1

²

1
/1

11 −−
=

−−
≥ ∑∑

== Kn

n

Kn

n
d

n

i

n

i
i

with equality holding if all di are equal. Hence, in the special instance that γ = 0 and that all di

are equal, we have

1

²
²)E(

−−
=

Kn

n
RSScv σ .

In this case, we can see an advantage of RSScv compared to RSS, the usual sum of squares for

errors: since n² / (n - K -1) is increasing in K, we have E(RSScv) increasing if some additional

irrelevant parameters are added to the fitted model.

In the case γ ≠ 0, we consider the second term in (1). Defining [ ] )(*,...,1 Xxaa T
n

⊥= ω , we get
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∑
=

⊥−⊥ =
n
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ii

T daxXDXx
1

222 /²*)()(*² γωωγ .

Note that ∑ ≤= ⊥ ***)(*2 xxxXxa TT
i ω , with equality if x*TX = 0. In the case that γ ≠ 0, we

want E( RSScv ) to be as large as possible. If all di are equal, we can achieve this for x*TX = 0,

i.e. if x* is orthogonal to the factors in the fitted model.

So, if all di are equal, it is true that

**
)1(

²
²

1

²
²*)(*

)1(

²
²
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²
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xx
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with equality if x* is orthogonal to the factors in the fitted model.

If we compare this to the corresponding formula for the case that x* is included in the fitted

model

2

²
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then we see that )E()
~

E( cvcv RSSSSR ≤ if
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Some algebra shows that this is equivalent to

**
1

1
²

2

1
² xx

KnKn
T

−−
≤

−−
γσ .

So the performance of the refined model with x* included in comparison to the simpler model

depends on the size of **² xx Tγ compared to σ ².

However, it should be noted that this holds only if
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a) for both models all di are equal, and

b) x* is orthogonal to the columns of X, i.e. to the factors contained in the simpler model.

Note that condition a) formulates a sort of balance in the observations since it demands that

all observations xi
T have the same norm corresponding to some Mahalanobis distance.

The poor performance of cross validation in Example 1 can be explained easily: in the finer

model the di were highly dissimilar. In fact, d7 = 0.002, while di = 0.2 for the other

observations. In contrast, all di would have been equal for the linear regression model, if half

of the xi had been +a or -a each, for some appropriate number a. The second term of (1) then

is maximised if a is as large as possible (for constant effect γ). Interestingly, this is the D-

optimal linear regression design (see, e.g. Pukelsheim, 1993, p. 57).

There are famous designs for which conditions a) and b) are fulfilled. The fractional factorial

designs build a class of designs with the desired structure. With a fractional factorial design

for every submodel with K ≤ n-2 factors or interactions we have XTX=n IK+1. It follows that

nKxXXx i
TT

i /)1()( 1 +=− , independent of i, because each xi consists of K+1 elements which

are either +1 or -1. Additionally, we have for each additional factor or interaction that x* is

orthogonal to every column of X. If we restrict attention to main effects only, then the same

properties are fulfilled for Plackett-Burman-Designs.

For variable selection properties a) and b) have a very important impact. They imply that the

second term of formula (1) is proportional to γ²⋅x*Tx*, where γ is the effect of the factor not

included in the fitted model. Therefore, the size of RSScv is reduced the most if the factor with

the largest **|| xx Tγ is included in the model. If then, as in fractional factorial and

Plackett-Burman designs, all x*Tx* are equal, this is the factor with largest |γ|. Therefore, for

such designs greedy variables selection can be based on the absolute value of the estimates of

the unknown coefficients corresponding to the possibly influential factors. Hence, it is not

necessary to determine R2
cv for all possible factors individually to identify the next factor to

be included in the model. Instead, this factor can be fixed just by inspection of the coefficients

determined by estimating the model where all factors are included. R2
cv is only used as a stop

criterion, i.e. to determine the model size.
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Unfortunately, inspection of the stopping rule shows that conditions a) and b) also imply that

for saturated orthogonal designs like Plackett-Burman designs greedy variables selection is

always choosing the maximum model. This can be seen as follows.

Let us assume n > K+2 for the moment. Then, from condition a) it follows for a model with K

factors that

)ˆ(
1

)ˆ(ˆ 1 yy
Kn

n
yyDyy cv −

−−
=−=− − .

Therefore,

KcvK RSS
Kn

n
RSS

1, −−
= ,

where RSSK,cv and RSSK stand for the residual sum of squares after K factors have been

included in the model. The stopping rule would stop variables selection iff crossvalidated R2

is smaller after the (K+1)th step than after the Kth step, i.e. iff inclusion of one more variable

would decrease performance. This can be shown to generate a contradiction as follows.

2
,

2
,1 cvKcvK RR <+

is equivalent to

cvKcvK RSSRSS ,,1 >+

in the case of all di equal because of the above relationship of RSScv and RSS is equivalent to

KK RSS
n-K-

n-K-
RSS

1

2
1 >+ .

If SSCK+1 := γ2
K+1 SSK+1 is defined as the contribution of factor (K+1) to the overall sum of

squares of the target, then for orthogonal factors these contributions are summing up to the

overall sum of squares, and thus
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KKKK RSSSSCRSSRSS
1-K-n

2-K-n
11 >−= ++

which is obviously equivalent to

1)1( +−−> KK SSCKnRSS .

This leads, however, to a contradiction for a saturated orthogonal design. In such a design

there are exactly (n-K-1) factors remaining as candidates for inclusion in the model with

contributions at most that high as for the factor to be chosen in step (K+1) since this is factor

with maximum RSScv and thus RSS of the factors remained for selection. Moreover, ultimately

RSS will be zero because of the orthogonality of the factors, and therefore RSSK has to be

equal to the sum of the contributions of all remaining (n-K-1) factors. This is obviously not

possible if the last inequality is valid.

The only case to be discussed is when K = n-2 , i.e. K+1 = n-1 and thus only one factor is

remaining. In this case, RSSK+1 and thus RSSK+1,cv has to be zero, and thus R2
cv takes its

maximum value, and also this factor is chosen, if it generates a nonzero contribution. Thus, in

saturated orthogonal designs the stopping rule is only eliminating factors with zero

contribution.

In what follows examples of variables selection in observational and experimental studies are

discussed, in particular with respect to conditions a) and b).

4. Observational Studies

In the following section we give two examples of applications of the variables selection

method from section 2 which illustrate two very different conditions for the application of

such a method in observational studies. In both examples, the method is applied to principal

components since they are typical intermediate outcomes of observational studies.

4.1 Interpretation of Principal Components

In principal component analysis, variables selection can be applied to simplify and interpret

the principal components by means of adequately representing the components by the
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minimum number of original variables. This yields illuminating and surprising results (cp.

Weihs and Jessenberger, 1999).

Indeed, principal components Zk, k= 1, ..., K, are weighted sums Xgk of the (mean centered)

original variables. The question is now, can we easily judge the importance of an original

variable directly by means of the size of the corresponding weights in gk, called loadings, or

do we actually have to apply something like the complicated variables selection method

above?

The first idea is to order the original variables directly by the size of their loadings to judge

their importance for the corresponding principal component. Unfortunately, this can only be

justified if the involved values of the observed variables are similar in size and if these

variables are uncorrelated. Indeed, the ith observation xij of the jth variable influences the ith

observation of the kth principal component only via its so-called contribution

jkjij gxx ⋅− )( , wherexj is the mean of the observations of the jth variable, and gjk is the

loading of the jth variable on the kth principal component. Moreover, even a large contribution

cannot be taken as an indicator that the corresponding principal component cannot be

‘represented’ without the corresponding observed variable because of the correlation of the

observed variables. Indeed, it may be possible to approximate the principal component

adequately without a variable with a large contribution since variables highly correlated with

that variable can replace it nearly completely. Note the relationship to the conditions for the

simplified variables selection technique indicated in the end of section 3.2. In that section the

same size of the observations and the orthogonality of the variables were also identified to be

sufficient conditions to base variables selection only on effect sizes, i.e. on loadings in the

present section.

Thus, a method deciding directly by means of the loadings about the importance of an original

variable for the representation of a principal component is not in sight. However, the variables

selection method in section 2 could be applied, e.g., to the scores of one principal component

as the target in order to identify a simple model based on the observed variables which

guarantees good prediction of scores. It will be illustrated by the next example, however, that

with such a method the influence of highly correlated variables on the target can also not
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really be separated, but that the number of relevant original variables identified by variables

selection can be much smaller than expected from loadings inspection.

Example 2 (Characteristic wavelengths, cp. Lawton and Sylvester, 1971): For five

produced batches of a dyestuff, a characteristic absorption spectrum was measured at the

wavelengths 410 nm to 700 nm in steps of 10 nm. Thus, the data set consists of five

observations of 30 variables. In this special example, the observed variables can be

graphically illustrated very easily since the wavelengths have a natural ordering. Indeed, the

five dyestuff batches can be displayed in a diagram with wavelength at the x-axis and

absorption at the y-axis (s. Figure 1). Each dyestuff batch then corresponds to one absorption

curve called spectrum.

In order to characterize the differences between the five batches in a simple way with

minimum loss of information, the first two principal components (PC1 and PC2) of the 30

wavelengths were calculated based on the empirical covariance matrix of the observed 30

variables, which represent 96% of the variation in the data. These characteristics are weighted

sums of all the wavelengths (s. Table 1). Here, the absolute value of the weights (i.e. of the

loadings) is maximum for 590 nm with PC1 and for 550 nm with PC2 so that these

wavelengths can be seen as the first candidates to be responsible for the variation in the data,

i.e. between the batches. In other words, one might suspect that the five batches are most

different in these wavelengths.

400 500 600 700
Wavelength

20

40

60

80

100

Absorption

1

5
4

2

3

Figure 1: Absorption spectra
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Table 1: Loadings of the first two principal components in the dyestuff example

wavelength    PC1    PC2 wavelength   PC1   PC2
410 0.0167 0.0111 560 0.1242 0.4087
420 0.0588 −0.0467 570 0.2863 0.3056

430 0.0976 −0.1800 580 0.3898 0.1918
440 0.1086 −0.1457 590 0.4358 0.0449

450 0.0872 −0.1006 600 0.4323 0.0152

460 0.0680 −0.0821 610 0.3774 −0.0330
470 0.0530 −0.0670 620 0.2900 −0.1702
480 0.0490 −0.0541 630 0.2203 −0.1332
490 0.0373 −0.0716 640 0.1632 −0.1332
500 0.0201 −0.0451 650 0.1121 −0.1046
510 −0.0049 0.0208 660 0.0799 −0.0836
520 −0.0270 0.1168 670 0.0443 −0.0486
530 −0.0513 0.2351 680 0.0261 −0.0413
540 −0.0477 0.3760 690 0.0138 −0.0309
550 −0.0194 0.5602 700 −0.0002 −0.0112

And indeed, in Figure 1 one may confirm that the wavelengths 550 nm and 590 nm are

important for the distinction of the batches. In particular, the batches appear to be most

distinctly different in wavelengths around 600 nm, and in wavelength 550 nm the

observations of the batches happen to have a different order than around 600 nm.

Now, stepwise regression with greedy forward selection is applied. Astonishing enough, this

method leads to the conclusion that both the first two principal components can be nearly

perfectly represented by only one wavelength each (s. Table 2), which could not be expected

by the size of the loadings.

Table 2: Interpretation of principal components

PC1 PC2
wavelength 590 nm 550 nm
R2cv 1.0 0.85

Note that besides wavelength 590 nm also wavelenghts 600 nm and 610 nm produced R2cv

near to 1.0. This result may be interpreted as that the influence of highly correlated

variables on the target cannot really be separated with the proposed variables selection

method. But in any case, the two wavelengths 590 nm and 550 nm appear to be sufficient to

characterize the differences between the five batches. This is supported by the similarity of

the projections of the five batches in figures 2 and 3.
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Figure 2: Scores of first 2 principal components Figure 3: Main frequencies

Finally note that predictive power is tentatively overestimated by the reported R2
cv with the

described model selection method since R2
cv was used heavily for model selection as well as

for the estimation of predictive power (cp. section 3.1).

4.2 Principal Components Regression

In principal components regression, the conditions for applying variables selection methods

are somewhat different. The idea is to select those principal components with the strongest

linear influence on some target variable. Principal components as influential factors have the

big advantage that their effect is not changing when other principal components are added to

or eliminated from the model since principal components are uncorrelated, and thus

orthogonal to each other. Since the originally observed variables are generally correlated,

such a statement is not true for models with a target in dependence of the originally observed

variables. Thus, the conditions for variables selection methods are much better in principal

components regression than in interpretation of principal components above. Indeed, the

selection method appears to be much simpler.

Principal components regression

Let X be the mean centered maximum rank data matrix of K observed variables,

let y be the mean centered data vector of a target variable, and Z the scores matrix

of the principal components based on the data X.

The model of principal component regression has then the form: Y = Zβ + ε,

where β is the vector of unknown coefficients, and ε the vector of model errors.

Then, since Z has maximum column rank, the least squares estimate of β has the

form: ( )
1)(n

yZ
yZZZ 1

−
′Λ=′′=

−
−

1

β̂ , where Λ is a diagonal matrix with

PC1

PC2

590 nm

550 nm
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σβ is independent of k, where zk

is the kth column of Z, i.e. the scores of the kth principal component. Thus, the

coefficient of the kth principal component actually does not depend on the other

principal components. And moreover, standardizing the principal components zk

by their standard deviation, i.e. introducing )r(âv/~
kkk Zzz = , leads to estimated

coefficients with constant variance.

Note that the contribution of a standardized principal component to a target is thus determined

by an estimated coefficient with constant variance. Therefore, in order to select the

component with the biggest contribution, we can concentrate on the absolute value of these

‘standardized’ coefficients. Using R2
cv as the predictive power criterion for variables

selection, this leads to the following method for the construction of a prediction model for

the target Y based on observed influential factors X
1
, ..., X

K
by means of principal components.

Variables selection in principal components regression

Carry out a full principal component analysis on X, i.e. generate all K principal

components. Then, the coefficient of each principal component in a model for a certain

target variable Y can be estimated individually, i.e. ignoring the other principal

components. Therefore, variables selection just selects the components one by one by

the size of the absolute value of their coefficients times the corresponding empirical

standard deviations of the components as long as cross validated predictive power R2
cv

is increasing.

Note that this method does not generally select the same factors as cross validation. Indeed, if

all di were equal, the 2nd term of formula (1) in section 3.2 would be proportional to

22 )1(~~
kk

T
kk nzz γ−=γ for each k where γk is the effect of the kth principal component not

included in the fitted model since all components are orthogonal to each other. Therefore, the

size of RSScv would be increased most if the component with the largest |γκ| was included in

the model. However, the di cannot be guaranteed to be equal for principal components. This

can be easily seen by analysing the case of a model with only one principal component

included. Thus, the proposed shortcut variables selection technique for principal components

regression might not give the same results as the greedy technique in section 2.
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Thus, in the following example the full greedy variables selection technique is compared to

the above proposed shortcut when applied to principal components as possible influential

factors.

Example 3 (Production of a dyestuff, cp. Weihs and Jessenberger, 1999). In this example,

based on 93 observations of 18 chemical analytical properties two measures of the hue of a

dyestuff on fiber are to be predicted. The hue was measured under daylight (HUEREM) and

under artificial light (HUEREMAL). Principal components analysis was applied to the

correlation matrix. Stepwise variables selection based on predictive power then selects the 1st

(PC1) and the 6th principal component (PC6) as the most influential on both the targets. Thus,

for, e.g., (the mean centered) HUEREMAL the following models are selected:

HUEREMAL = β1 PC1 + ε and

HUEREMAL = β1 PC1 + β2 PC6 + ε.

The same is also true for the proposed shortcut method. For HUEREMAL only these two

principal components are selected. For more than two components R2
cv decreases. For

HUEREM, however, a third principal component increases predictive power, namely PC8

with greedy variables selection and PC3 with the shortcut. Naturally, PC3 gives a lower R2
cv

than PC8, but has a bigger standardized regression coefficient. Table 3 shows predictive

power and goodness of fit for the corresponding models for the two targets.

Table 3: Goodness of fit and predictive power

HUEREM HUEREMAL

cv PC1 +PC6 +PC8 PC1  +PC6

R2
cv

0.36 0.47 0.52 0.68  0.74

R2 0.40 0.53 0.56 0.70  0.76

shortcut PC1 +PC6 +PC3 PC1  +PC6

R2
cv

0.36 0.47 0.49 0.68  0.74

R2 0.40 0.53 0.56 0.70  0.76

5. Experimental Studies

In this section we will discuss two kinds of experimental studies, namely screening and

optimization experiments, and contrast the application of variables selection in such studies to

the applications in observational studies described above.



19

5.1 Screening

In screening, linear models are used with coded influential factors.

Screening model

A screening model is of the form:

( )∑
=

+ ++=
K

j
iijci Niixy

ij
1

2
11 ,0..~, σεεββ ,

where yi is the result of the target y in the ith trial, xcij the coded level of the jth

factor in the ith trial, β1 the increment, βj+1 the half effect of the jth factor on y, εi

the error in the ith trial and σ2 the error variance. In matrix form one can write:

εβ += Xy , where 















= AX

1

1

M

is the design matrix including the plan matrix A with the column representation

A = (xc1 ... xcK), where xcj = (xc1j ... xcnj)
T.

I.e. X is a matrix with all ones in the 1st column and the columns of the matrix A.

β := (β1 β2...βK+1)T is the vector of the unknown model coefficients and

ε := (ε1 ... εn)T is the error vector.

The n rows of the plan matrix A correspond to the n trials, the K columns to the

controlled factors. Each factor takes only two levels which are coded −1 and +1.

Such a plan matrix defines a screening plan iff the coded factors all have mean 0

and are pairwise orthogonal, i.e. xcj
Txck = 0, j ≠ k.

Note that in a screening plan A each column consists of exactly as many −1 as +1 in order to

guarantee mean 0 for each factor, and that from these two properties it follows that XTX = n⋅I.

Note that such screening plans are D-optimal (see, e.g. Cheng, 1980).

From the definition of screening designs it can be easily seen that all such designs fulfill the

conditions a) and b) in section 3.2 so that they are very well suited for leave one out cross
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validation. Moreover, the shortcut version of greedy variables selection based on the size of

factor effects can be used as motivated in that section.

The structure of the design guarantees that the least squares estimates of the unknown

coefficients have a simple form, that the effects can be determined independently, and that all

estimated effects have the same estimated variance.

Computation of the least squares estimates

Since X′X = n.I, it is true that: ( )$β = ′ ′ = ′−
X X X y

1

n
X y

1 and

( ) .)ˆ(ˆ
2

2 IvoC
n

XX 1 σ=′σ=β −

The aim of screening is factor reduction. Thus, again, the question is how to distinguish

between relevant and irrelevant factors. This, naturally, is a task for a variables selection

method. In screening experiments, conditions for stepwise regression with greedy forward

selection turn out to be extremely favorable. Indeed, from the definition of screening designs

it can be easily seen that all such designs, i.e. all fractional factorial designs and Plackett-

Burman designs, fulfill both the conditions a) and b) in section 3.2 so that in screening the

shortcut version of greedy variables selection based on the size of factor effects can be used as

motivated in that section.

Therefore, on the one hand the screening situation is comparable to principal components

regression as the different factors are uncorrelated and their effects can thus be determined

independently, i.e. without considering the other factors. This means that a target cannot be

adequately modeled without a factor with a big effect since the other factors cannot replace its

effect. In contrast to principal components regression, however, in screening the designed

factor levels additionally have a well known and simple form which leads to an observational

balance in the sense of condition a) in section 3.2 and to the fact that the estimated regression

coefficients are equal to half the effects of the involved factors on the target measured by the

difference of the target means on the high level (= +1) and the low level (= -1) of the factor.

Altogether, in screening the size of the estimated regression coefficient itself is an indicator

for the influence of the factor on the target, and in screening the shortcut variables selection

method proposed in section 3.2 has the following form.
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Greedy variables selection in screening experiments

In screening experiments, stepwise regression with greedy forward selection

first selects the factor with the largest effect, then the factor with second largest

effect, etc. until the predictive power is no more increasing.

In the following example it is demonstrated that this procedure might be a poor variable

selector in the case of saturated orthogonal designs like Plackett-Burman designs as indicated

at the end of section 3.2.

Example 4 (Wastewater purification plant, cp. Weihs and Jessenberger, 1999): The aim of

this experiment is the reduction of the suspended solids in wastewater by means of a

purification plant. The target thus is the reduction rate (%) which should be maximized. As

possible influential factors were identified: ph value (P), salt amount (S), concentration (C),

aeration intensity (I), entrance point (E), aeration duration (D) and plant no. (N). The design

matrix X was chosen to have the form as in Table 4. Thus, X′X = 8.I!

For the screening plan in Table 4 the following reduction percentages were observed in the

above ordering of the trials: 11, 29, 43, 8, 20, 4, 5, 16. The screening model for the target

‘reduction’ in the coded factors without elimination of irrelevant factors is of the form:

tioncredu ˆ = 17 + 2.Pc − 5.Sc − 2.5.Cc − 0.Dc − 2.5.Ec + 10.Ic + 4.Nc.

Table 4: Plackett-Burman design

P S C D E I N
1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 +1 −1 +1 +1 +1
1 +1 −1 −1 +1 −1 +1 +1
1 +1 +1 −1 −1 +1 −1 +1
1 +1 +1 +1 −1 −1 +1 −1
1 −1 +1 +1 +1 −1 −1 +1
1 +1 −1 +1 +1 +1 −1 −1
1 −1 +1 −1 +1 +1 +1 −1

Table 5 shows the performance measures R2 and R2cv for the factors chosen by stepwise

regression with greedy forward selection. In contrast, significance testing at the 5% level and

the half normal plot (cp. figure 4) only identify the factor Ic with the biggest effect as

significant.
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Table 5: Goodness of fit and predictive power with stepwise regression

added factor R2 R2cv
Ic aer. Intensity 0.63 0.51
Sc Salt amount 0.79 0.67
Nc plant No. 0.90 0.79
Cc Concentration 0.93 0.83
Ec Entrance point 0.97 0.90
Pc Ph value 1.00 1.00

Figure 4: Half normal plot of effects on reduction (as generated by STAVEX, 1995)

5.2 Optimization

Near to an optimum, e.g. inside an ‘inverted cup’ region, the target cannot be represented

adequately by a linear model in the influential factors alone, one needs a quadratic model in

the factors, at least. As an optimization model we, thus, use a quadratic model in those factors

which were selected to be relevant for the target in earlier stages of experimentation. Note that

in what follows we restrict attention to quantitative influential factors.

Optimization model

In an optimization model, the target is modeled as a linear model in the coded

factors, in their two-factor interactions, and in their squares:
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where yi is the result of the target in the ith trial, xcij the coded level of the jth

factor in the ith trial, µ the intercept (overall mean), βj the coefficient of the jth

factor, βj,k the coefficient of the interaction of the jth with the kth factor, βk,k the

coefficient of the squared kth factor, εi the error in the ith trial and σ2 the error

variance.

A plan matrix defines an optimization plan iff all the involved coded factors take

at least three different levels.

Note that for optimization models it is neither assumed that the coded factors only take values

−1 and +1 and have mean 0, nor that for the design matrix X it is true that X′X = n.I.

Therefore, the least squares estimates of the model coefficients are not interpretable as (half)

effects of the factors, interactions or squared factors. The only condition a plan matrix has to

fulfill is that all the involved factors take at least three different levels, because otherwise the

effect of the squared factors is not estimable.

For the selection of optimization plans it is particularly important that the target is observed in

sufficiently many points in the region of interest in order to be able to estimate the

coefficients of the quadratic model reliably. Since the optimum will probably lie in a point of

the region of interest in which no trial was carried out, the model has to be valid in the whole

region. In order to avoid overfitting, we propose variables selection also for optimization

models of the above kind. Since the aim of optimization modeling is a good prediction of the

target in the optimum, at least, we propose to use predictive power, i.e. R2cv, as the selection

criterion.

The results of section 3.2 indicate that for variables selection it is important to choose the

experimental design in such a way that for each model to be compared the di are as equal as

possible. Unfortunately, in optimization neither this condition a) nor the orthogonality of the

factors in condition b) will be fulfilled in general. Thus the conditions for variables selection

with cross validation are comparable to those of our starting example in section 4.1 where we

were looking for an interpretation of principal components.

We begin with an example of a design with a particularly poor performance. Assume we have

three factors, and we want to run an efficient design in 15 runs. Then we might want to use a



24

rotatable design, where the factors are set as in table 6. An interesting feature is that for this

design d9 = 0 for all models that contain all three quadratic effects. Therefore, the model

choice with the help of cross validation does not work properly for this design: No matter how

big the effects of the squared factors may be, cross validation will never select a model with

all three of them.

Table 6: A rotatable design in three factors and 15 runs

Run Factor 1=A Factor 2=B Factor 3=C
1 1 1 1
2 1 1 -1
3 1 -1 1
4 1 -1 -1
5 -1 1 1
6 -1 1 -1
7 -1 -1 1
8 -1 -1 -1
9 0 0 0

10 √3 0 0

11 -√3 0 0

12 0 √3 0

13 0 -√3 0

14 0 0 √3
15 0 0 -√3

This would be different, if the run in the center point (run 9) is doubled, though. In the

following example, another design with 15 runs is chosen. Here, the di are not so different and

therefore the model search with RSScv works reasonably well.

Example 5 (Optimization of the Styrol process, cp. Weihs and Jessenberger, 1999). In order

to optimize the factor levels for the production of Styrol, an inscribed central composite

design was used. This design was chosen in order to be able to use results from an earlier

screening experiment so that the augmented design does not exceed the original experimental

region. Table 7 shows the used design and the corresponding results of Styrol yield. The first

eight trials were, in another ordering, already carried out in screening. The reported trial no.

corresponds to the screening ordering. The columns headed ‘coded’ show the coding of the

column to their left.

The full quadratic model is of the form:
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 STYROL =    β1 + β2⋅T0_EBc + β3⋅M0_EBc + β4⋅DIAMETc

+ β1,1⋅T0_EBc2 + β2,2⋅M0_EBc2 + β3,3⋅DIAMETc2

+ β1,2⋅T0_EBc⋅M0_EBc + β1,3⋅T0_EBc⋅DIAMETc

+ β2,3⋅M0_EBc⋅DIAMETc + ε

Table 7: Inscribed central composite design

trial T0_EB coded M0_EB coded DIAMET coded STYROL

1 800 −1 0.5 −1 0.004 −1 0.0332
3 900   1 0.5 −1 0.004 −1 0.0315

6 800 −1 2.5   1 0.004 −1 0.0865
5 900   1 2.5   1 0.004 −1 0.1422

8 800 −1 0.5 −1 0.006   1 0.0016

4 900   1 0.5 −1 0.006   1 0.0102
2 800 −1 2.5   1 0.006   1 0.0775

7 900   1 2.5   1 0.006   1 0.1280
9 850.0   0.00 1.50   0.00 0.0050   0.00 0.0763
10 807.5 −0.85 1.50   0.00 0.0050   0.00 0.0574
11 892.5   0.85 1.50   0.00 0.0050   0.00 0.0897
12 850.0   0.00 0.65 −0.85 0.0050   0.00 0.0425

13 850.0   0.00 2.35   0.85 0.0050   0.00 0.0853
14 850.0   0.00 1.50   0.00 0.0042 −0.85 0.0765

15 850.0   0.00 1.50   0.00 0.0059   0.85 0.0728

Model diagnostics of the estimated model shows a very acceptable goodness of fit, R2 = 0.98,

and the residual plot in Figure 5 shows no structure. The normal plot in Figure 5, however,

indicates a distribution of the residuals which is narrower than the normal distribution which

results from estimating error expectation and variance by their empirical counterparts.

Table 8 shows the predictive power R2cv, and the corresponding measure for the goodness of

fit R2 relevant for the selection of the first variable by means of variables selection.

Obviously, the best selection is the ‘Mass stream of EthylBenzol’ M0_EB.

Then, models with increment, M0_EB, and one more factor, two more factors, etc. were tried.

In the second step, i.e. after having added M0_EB, T0_EB increase the predictive power most

so that this factor is added to the model. Etc. until in the 6th step no increase of predictive

power is possible. Thus, the resulting model includes five influential factors including one

interaction and one squared factor:

STYROL =    β1 + β2 ⋅ T0_EBc + β3 ⋅ M0_EBc + β4 ⋅ DIAMETc

+ β1,2 ⋅ T0_EBC ⋅ M0_EBc + β2,2 ⋅ M0_EBc2 + ε .
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Model diagnostics of the estimated model leads to acceptable residual and normal plots (see

Figure 6). Thus, variables selection may even lead to improved models.

−1 0 1
theoret. Quantile

−0.01

0.00

0.01

0.02 0.08
Regressionsnäherung

−0.01

0.00

0.01
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Figure 5: Residual plot and normal plot of the residuals in the full optimization model for
STYROL

Table 8: Predictive power and goodness of fit of models for STYROL with increment and
one (coded) factor only

Factor R2cv R2

T0_EB −0.3018 0.0971
M0_EB 0.6687 0.7640
DIAMET −0.3910 0.0310

T0_EB2 −0.2686 0.0058

M0_EB2 −0.2458 0.0170

DIAMET2 −0.2786 0.0049

T0_EB ⋅ M0_EB −0.4121 0.0572

T0_EB ⋅ DIAMET −0.4995 0.0001

M0_EB ⋅ DIAMET −0.4918 0.0051

Table 9 tries to give an overview on the performance of cross validation for model choice if

either the design from Example 5 is used, or if the rotatable design is used. The entries in

Table 9 are the ∑ id/1 , which is proportional to the first term in formula (1) in section 3.2.

Hence, they indicate the expected size of RSScv if all the relevant factors are already in the

model. For comparison we also give the lower bound n²/(n-K-1) which is achieved by an ideal

design with all di equal. Note that if two models differ too much in ∑ id/1 , then we will

decide for the model with the smaller ∑ id/1 , even if the other model produces a much better

fit.
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Figure 6: Residual plot and normal plot of the residuals after variables selection

Table 9: Expected RSScv if there are all active effects included in the respective model

Factors in the model Bound Design from Ex. 5 Rotatable design

A 17.30 17.36 17.42

A, B 18.75 18.97 18.90

A, B, C 20.45 21.07 20.54

A, B, C, AB 22.5 24.38 22.88

A, B, C, A² 22.5 23.07 23.57

A, B, C, AB, AC 25 29.95 26.47

A, B, C, A², B² 25 25.26 26.89

A, B, C, AB, AC, BC 28.125 41.31 32.67

A, B, C, A², B², C² 28.125 28.65 ∞

A, B, C, AB, AC, BC, A² 32.14 49.80 35.71

A, B, C, AB, AC, BC, A², B² 37.5 53.72 39.07

A, B, C, AB, AC, BC, A², B², C² 45 57.91 ∞

The table shows that for all models the design from Example 5 promises to provide a

reasonable RSScv, while the rotatable design with 15 runs collapses for the models which

contain all quadratic effects. Note that the design from Example 5 prefers models with fewer

interactions if the number of factors is fixed.

6. Conclusion

In this paper we discussed the pros and cons of cross validation for variables selection using

experimental design. On the one hand, we illustrated that experimental studies provide a
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better basis for cross validation than observational studies, since the properties of the

observed factors can be controlled. Design properties favorable to greedy variables selection

are identified, namely a certain balance in the observations and orthogonality of the factors.

Screening designs meet these properties. On the other hand, however, for special screening

designs, namely saturated orthogonal designs, it was shown that cross validation does a very

poor job on variables selection since it only eliminates variables with no contribution to the

target at all. Finally, it was demonstrated that otherwise optimal designs like rotatable designs

may be sub-optimal for cross validation.
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