
1

Self-Organizing Maps
and its Applications in Sleep Apnea Research and

Molecular Genetics

Gabriela Guimarães1 and Wolfgang Urfer2

1 CENTRIA, Universidade Nova de Lisboa,
and Department of Computer Science, Universidade de Évora

Portugal

2 Department of Statistics, Universität Dortmund
Germany

Abstract

This paper presents the application of special unsupervised neural networks
(self-organizing maps) to different domains, as sleep apnea discovery,
protein sequences analysis and tumor classification. An enhancement of the
original algorithm, as well as the introduction of several hierachical levels
enables the discovery of complex structures as present in this type of
applications. Furthermore, an integration of unsupervised neural networks
with hidden markov models is proposed.
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1 Introduction

The development of more and more powerful computers in recent years has lead to a
recording of a great amount of data gathered from, for example, industrial processes,
medical applications, meteorological phenomena, etc. Artificial neural networks (ANNs)
and methods from statistics are particularly interesting for handling such noisy and
inconsistent data. The application of ANNs and statistics often refers to problems of
discrimination (supervised learning) or to clustering problems (unsupervised learning).

Self-organizing Maps (SOMs) as proposed by Kohonen(1982) are well suited for the
discovery of patterns in high dimensional data, i.e. clustering problems (Kohonen (1995),
Kaski and Kohonen (1996)). In addition, SOMs have also been successful in applications,
where temporal or sequential data are processed, for instance, in speech recognition,
process control and time series analysis in medicine (Behme et al. (1993), Walter and
Schulten (1993), Guimarães (2000)).

In this paper we give a review of SOMs to several application domains, such as sleep
apnea, protein sequence analysis and tumor classification.

For the diagnosis of sleep apnea the temporal dynamics of physiological parameters
such as respiration and heart rate, have to be recorded and evaluated. In order to perform
an automated identification of sleep apnea, a simultaneous analysis of all signals is
needed. Different types of sleep apnea diseases represent complex patterns in the time
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series that occur during one night. Those patterns may differ strongly, even for the same
patient.

The main aim of statistics in bioinformatics is the development and application of
methods for the analysis of genomic data in order to elucidate biological processes.
Statistics and ANNs play a major role in diagnosing diseases and developing new drugs
(Brunnert et al. (2000)). The most important contribution of statistics has been the
development of strategies for extracting information from DNA and protein sequence
databases by sequence comparison, characterization and classification.

These applications have in common that complex patterns are searched for and a
hierarchical segmentation of the problem is needed introducing hierarchical SOMs. In
addition to the hierarchical component, both applications demonstrate a temporal or a
sequential component.

In section 2 SOMs and their possible extensions are introduced. Section 3 presents the
application of extended SOMs to sleep apnea. The application of extended SOMs to
protein sequence analysis and tumor classification is shown in section 4. Finally, a
conclusion and the extension of the approach to other methods from statistics, as Hidden
Markov Models, is presented in section 5.

2 Self-Organizing Maps for Exploratory Data Analysis

Artificial Neural Networks (ANNs) may be classified according to their learning
principles mainly into two different types: ANNs with supervised learning and ANNs with
unsupervised learning.

ANNs with supervised learning adapt their weights to a given input-to-output
relationship, for instance, for the recognition of images representing handwritten character.
Here, the character type (class) is already known, and an association of the handwritten
character to the corresponding character type is searched for, in order to predict new
handwritten characters. Often some kind of noise is present in the data, such that the
performance of the classification system mainly depends on the chosen features and the
complexity (number of free parameters) of the model. For this kind of pattern recognition
problems, ANNs with supervised learning, such as Feed-forward Networks or Radial
Basis Function Networks, have been widely studied in relation to their statistical
properties. It is well-known that Feed-forward Networks can approximate, to arbitrary
accuracy, any smooth function. In the context of classification problems, Feed-forward
Networks with sigmoidal non-linear activation functions of the neurons can approximate
arbitrarily any decision boundary. Such ANNs provide universal non-linear discriminant
functions modeling posterior probabilities of class membership, permitting a probabilistic
interpretation of the results (Bishop (1995)). Models in statistics strongly related to those
ANNs are logistic discrimination functions, projection pursuit regression, and multivariate
adaptive regression splines.

In this work, however, we will not focus on pattern recognition problems, where a
classification is known a priori, but on pattern discovery problems, where the inherent
patterns in the data are searched for. ANNs with unsupervised learning are suitable for
such problems, since they adapt their internal structures (weights) to the structural
properties (e.g. regularities, similarities, frequencies, etc.) of high-dimensional input data.
ANNs like ART (Adaptive Resonance Theory) and Self-Organizing Maps (SOMs) belong
to this type and, specially, the latter are well-suited for clustering (Kaski and Kohonen
(1996), Ultsch and Siemon (1990)).
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The motivation of SOMs is strongly biology-oriented, where biological principles, the
generation of topographical maps in the brain through self-organization, play an important
role. In the following, the learning process will be described from a more algorithmic
point of view. During learning SOMs adapt their weights such that a n-dimensional input
space is projected onto a m-dimensional map with m<n, preserving the neighborhood of
the input data on the map. Usually, a two-dimensional map is chosen. The map is formed
by the properties inherent to the data itself. Consequently, no previous classification of the
data is needed. The input layer has n units representing the n components of an input
vector Nkxxx knkk ,...,1),,...,( 1 == . The output layer is a two dimensional array of units

arranged on a map. Each unit in the input layer is connected to every unit in the output
layer with a weight qpiwww inii ⋅== ,...,1),,...,( 1 associated. All weights are initialized

randomly. They are adjusted according to Kohonen’s learning rule
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that realizes the lateral inhibition. The learning rate determines the strength of learning
with 1)(0 << tη . The radius )(tσ determines the set of neurons in a neighborhood of the
bestmatch that are included into the learning process. Both functions usually decrease
monotonously during learning.

On the map neighboring units form regions that correspond to similar input vectors.
These neighborhoods form disjoint regions, thus enabling a classification of the input
vectors. However, in order to perform a classification, a visualization of the network
structures is needed, since the Kohonen algorithm converges to an equal distribution of the
units on the output layer (Kohonen (1995)). Therefore, a three dimensional landscape,
called U-Matrix (Ultsch and Siemon (1990)), is generated representing structural
properties of the high dimensional input space on the map. At each point of the grid the
weights are analyzed with respect to their neighbors. The distance between the weights of
two neighboring units then is displayed as height into the third dimension. A U-Matrix has
valleys where the vectors on the map are close to each other and represent data that are in
the same class. Hills or walls represent larger distances indicating dissimilarities of the
input data (see Fig. 1). Such a visualization of a SOM can be used for clustering, since
similar input vectors are close together on the map and fall into the same valley, i.e.
cluster. In the last years SOMs together with the U-Matrix method have been successfully
applied to a wide-ranging number of applications where a clustering of high-dimensional
data is intended (Kaski and  Kohonen (1996), Kohonen (1995), Ultsch et al. (1997)).

The discovery of complex patterns, for instance, in multivariate time series, protein
sequences, and genes with SOMs is much more complex, since it demands an
improvement and extension of the original SOM. Therefore, SOM with several
hierarchical layers are introduced, in order to capture and discover structures at different
abstraction levels. This is necessary, when a segmentation of complex and structured
problems is needed, for instance, in such areas as image recognition (Koh et al. (1995)),
temporal pattern discovery in multivariate time series (Guimarães (2000)), speech
recognition (Kemke and Wichert (1993)), and protein sequences analysis (Andrade et al.
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(1997)). In addition, for applications with temporal or sequential data a visualization of
trajectories on a map enables the monitoring of such phenomena, for instance, for the
recognition of misarticulations in speech (Mujunen et al. (1993), EEG signal monitoring
(Joutsiniemi et al. (1995)) and sleep apnea detection (Guimarães and Ultsch (1999)).

AirflowUMX MovementUMX

Fig. 1. U-Matrices (AirflowUMX: U-Matrix from features related mainly to airflow and
MovementUMX: U-Matrix from features related mainly to respiratory movements) for
Primitive Patterns obtained from multivariate time series of an application in medicine,
called sleep apnea.

3 Detection of Sleep-related Breathing Disorders

In this section, we introduce a method for Temporal Knowledge Conversion, named
TCon (Guimarães (1998), Guimarães (1999)), that enables the discovery of temporal
patterns in multivariate time series. The main idea lies in introducing several abstraction
levels, such that a step-wise and successive detection of the temporal patterns becomes
possible, breaking down this highly structured and complex problem into several sub-
tasks. This method also performs a transition of temporal patterns in multivariate time
series into a linguistic representation form in form of temporal grammatical rules,
intelligible and understandable for human beings such as domain experts.

Fig. 2 shows the main steps of the method TCon. Multivariate time series
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from signals of complex processes are the input of the system. Results are the discovered
temporal patterns as well as a linguistic description of the patterns, interpretable for human
beings. An overview of the method is given by Guimarães and Ultsch (1999).

Features: First of all, a pre-processing and feature extraction for all time series is a
pre-requisite for further processing (Bishop (1995)). For the feature extraction one or even

more than one time series SR)(),...,()(
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multivariate time series Z with skSjk ,...,1, =∈ , ||},,...,1{ SsmS =⊂ . A feature
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then is the value of a function RR: →×lsf at time it with

},...,1{ lnl −∈ from selection S. In order to find a suitable representation of all time series,
methods, for instance, from signal processing, statistics or fuzzy theory, can be used.

Primitive Patterns: Second, exploratory methods, in particular, SOMs together with
the U-Matrix-method (see Fig. 1) are used for the discovery of elementary structures in the
time series, named as primitive pattern classes kjp j ,...,1, = . An element of a primitive

pattern class is a primitive pattern kjtp ij ,...,1),( = that belongs to a given primitive
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patterns class kjp j ,...,1, = and is associated to a given time point it . Regions on a U-

Matrix that do not correspond to a specific primitive pattern class are associated to a
special group, named tacet. We are now able to classify the whole features with primitive
patterns and tacets. This will be called a primitive pattern (PP)-channel. Instead of
analyzing all time series simultaneously, several selections of features are made.
Consequently, several SOMs are learned  (see Fig. 2). This leads to more than one PP-
channels (see Fig. 3). At this level, machine learning algorithms may be used, in order to
generate a rule-based description of the primitive pattern classes (see also Fig. 2).

Successions: In order to consider temporal relations among primitive patterns,
succeeding identical primitive patterns )(),...,( kijij tptp + , 1,...,1 +−= kni obtained from

each SOM are identified as successions. Since several feature selections are possible,
successions from different PP-channels may occur more or less simultaneously. Each
succession ),( eas j is associated to a given primitive pattern class and has a starting point

ita =: an end point lite +=: and, consequently, a duration ael −= . Since each primitive

pattern is represented through its bestmatch on a U-Matrix,  trajectories of succeeding
primitive patterns (bestmatches) on a U-Matrix are used for the identification of
successions.

Events: More or less simultaneous occurring successions ),(),...,,( 111 qqq easeas that

occur more than once are identified as an event )(le . Then ),...,(max 1 qaaA = is the

starting point, ),...,(max 1 qeeE = the end point and AEl −= the duration of the event

)(le . Each event belongs to a given event class. In order to reduce the great amount of
information, a vague simultaneity is introduced.

In addition, the significance of events (frequency of the occurrence of events) is
calculated using conditional probabilities between the occurrence of simultaneous
primitive patterns on different PP-channels. Histograms over the calculated probabilities
enable a differentiation between significant events (very frequent events) and less
significant events (less frequent events). Rare events are omitted in the sense as they are
regarded as delays between events, named as event tacets.  In order to join events with
different significance levels, very frequent events are associated to less significant events.
Therefore, similarities among significant and less significant events will be considered
counting the number of equal types of successions occurring in both events. This results in
an extremely reduced number of events. Consequently, each event is described by one
significant event and, possibly, one or more than one less significant events. At this level,
the whole multivariate time series is described by a sequence of events

mjeeF
jnj ,...,1,,...,1 == . In order to identify events with SOMs, extended hierarchical

SOMs have to be used (Guimarães (2000)). For each event a temporal grammatical rule is
generated (see Fig. 2).

Sequences: Subsequences of events ki ee ,..., that occur more than once in F are

identified as a sequence )maxmin()maxmin()maxmin( kkkiii ,,...,e,e,sq = . This means

that sequences are repeated subsequences of the same type of events at different time
points it . Since events may succeed immediately or after a time delay, i.e. an event tacet,
the duration of event tacets can be used for determining the starting event or/and the end
event of a sequence. This is possible, if the duration of event tacets is regarded as a
transition between different sequences due to larger delays between succeeding events. In
addition, probabilistic automata, can be also used for the identification of sequences.
Probabilistic automata describe transition probabilities between events such that paths



6

through such an automata describe probable subsequences of events. For each sequence a
temporal grammatical rule is generated (see Fig. 2).

Temporal Patterns: Finally, small variations in the events of each sequence type lead
to the identification of similar sequences. Similar sequences

)max,min(...)max,min( ii vvvi sqsq ∨∨  will be joined together to a temporal pattern

)max,(mintp , where )min...,(minminmin vi ,= and )max...,(maxmaxmax vi ,= .

Temporal patterns are abstract descriptions of the main temporal structures in multivariate
time series. String exchange algorithms are suitable for the identification of temporal
patterns. For each temporal pattern a temporal grammatical rule is generated (see Fig. 2).
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Temporal Data Mining 
with Temporal Knowledge Conversion

A Primitive pattern is a ‘pp-name´
if
 ‘feature i’ ∈ [min, max]
 and
 ‘feature j’ ∈ [min, max]
 and
 …
 and
 ‘feature k’ ∈ [min, max]

An event is a ‘e-name’

if

 ‘succession i1’ and …  and ‘succession 1n’

is more or less simultaneous

…

is more or less simultaneous

 succession k1’ and …  and ‘succession kn’

A sequence is a ‘s_name’ [min, max]

if

 ‘Eventi’: ‘name of event i [min, max]’

 followed by  or  followed after [min, max ] by

…

followed by  or  followed after [min, max ] by

 ‘Eventk’: ‘name of event k [min, max]’

A temporal pattern is a ‘tp_name’ [min, max]

if

 ‘sequencei’ [min, max]’

 or

 …

 or

 ‘Sequencek’ [min, max]’

Fig. 2. Abstraction levels and steps of the method for Temporal Knowledge Conversion
(TCon)

This approach was applied to an example in medicine, namely sleep-related breathing
disorders (SRBDs), consisting in various types among which sleep apnea is best known
(Penzel and Peter (1992)) (see Fig. 3 for a cutout from a recording of one patient). For the
diagnosis of sleep apnea the temporal dynamics of physiological parameters such as
respiration and heart rate, have to be recorded and evaluated. For an analysis of sleep
apnea, a large number of parameters are involved, such as sleep-related signals (EEG,
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EOG, EMG), signals concerning the respiration (airflow, ribcage and abdominal
movements, oxygen saturation, snoring) and circulation related signals (ECG, blood
pressure).

For the identification of different types of SRBD, mainly apnea and hypopnea, just the
signals concerning the respiration had to be considered (Peter et al. (1998)). Severity of
the disorder is calculated by counting the number of apnea events per hour of sleep. The
sum of the index of apneas and hypopneas is a measure for the respiratory disturbance
index (RDI). It can be seen as pathological, when the RDI exceeds 20 events per hour of
sleep, while patients with more than 40 events per hour of sleep have to be referred  to
therapy.
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Event2

Event3

Event5

Event Tacet

No ribcage  and abdominal
movements  without snoring
S trong ribcage and abdomina l 
movements
Reduced ribcage and abdomina l
movements  without snoring
Tace t

No a irflow without snoring

S trong a irflow with snoring

Tace t

Airflow

Ribcage  movements

Abdomina l movements

S noring

Fig. 3. Multivariate time series and resp. primitive patterns/successions from a patient
with SRBDs

Technical assistants usually make the visual classification of the different types of
SRBDs based on such a recording. An automatic identification of SRBDs is a quite hard
task, since a simultaneous analysis of all signals is needed. In addition, quite different
patterns for the same SRBD may occur, even for the same patient during the same night,
and a strong variation of the duration of each event may occur, as well.

SRBDs can be subdivided into SRBDs with and SRBDs without an obstruction of the
upper respiratory tracs. The different kinds of SRBDs are identified through the signals
´airflow´, ´ribcage movements´ and ´abdominal movements´, ´snoring´ and ´oxygen
saturation´, where a distinction between amplitude-related and phase-related disturbances
is made. Concerning the amplitude-related disturbances, we distinguish disturbances with
50% as well as disturbances with 10-20% of the baseline signal amplitude. Phase-related
disturbances are characterized by a lag between ´ribcage movements´ and ´abdominal
movements´. An interruption of ´snoring´ is present at most SRBDs as well as a drop in
´oxygen saturation. 25 Hz sampled data from three patients having the most frequent
SRBDs (altogether 27 patterns) have been used. No additional information was provided
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from the medical experts, since the main aim is to discover inherent structures in
multivariate time series using unsupervised methods, such as SOMs.

A structured and complete evaluation of the discovered temporal knowledge at the
different abstraction levels was made using a questionnaire. All events (six) and temporal
patterns (four) consisting in six different sequences (see Fig. 4) presented to the medical
expert described the main properties of SRBD as, for instance, ´hyperpnoe´, ´obstructive
snoring´, ´obstructive apnoe´ or ´hypopnoe´. The generated temporal grammatical rules
described very well the domain knowledge. An evaluation of the rules at this level lead to
an overall sensitivity of 0,762 and a specificity of 0,758. ´Event5´ was correctly identified
as a special event, called ´hyperpnea´. SRBDs always end up with a ´hyperpnea’. In some
cases the duration of ´Event5´ was too short. The duration of all other events were in a
valid range. For one of them even previously unknown knowledge was discovered. This
temporal pattern was named by the expert as ´mixed obstructive apnoe´, distinguished into
a ´mixed obstructive apnoe´ with an interruption and snoring having a ´central´ and an
´obstructive´ part and a ´mixed obstructive apnoe´ without an interruption and without
snoring ending in an ´hypoventilation´.

Event 5Event 2 Event 3

Event 1

13 to 17 sec 20 to 38 sec 6 to 11 sec

Event 6 Event 5Event 4

3 to 8 sec 6 to 20 sec 11 to 15 sec

Event 6 Event 5

20 to 24 sec 12 to 14 sec

Event 4Event 4 Event 5

3 to 6 sec 11 to 15 sec 7 to 8 sec

Event 4 Event 5

10 to 20 sec 6 to 9 sec

> 6 min

= Sequence1  - TemporalPattern1

= Sequence2

= Sequence3

= Sequence4

= Sequence5

= Sequence6    - TemporalPattern4

or             TemporalPattern2

or            TemporalPattern3

Fig. 4. Temporal Patterns with corresponding sequences and events for all SRBDs

4 Classification of Protein Sequences and Tumors

A self-organizing map (SOM) can be used to classify sequences within a protein
family (ras-p 21 family) into subgroups that correspond to biological subcategories.
Andrade et al. (1997) present a modified SOM-algorithm and use the rab family of small
guanosine-triphosphate-ases to illustrate the performance of the method.

In their approach each of N protein sequences is binary coded as a sequence vector
(input vector) NkLnfff knkk ,...,1,20),,...,( 1 =⋅== . Each position of the sequence is
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described by 20 components corresponding to all possible 20 amino acids
A,C,D,E,...,S,T,V,W,Y. The component corresponding to the amino acid type at this
position is coded by ‚one‘, and the rest of the components are set to zero. The resulting
sequence vector fk has length 20⋅L, where L is the length of the sequence alignment.

The SOM is a two-dimensional layer of pxq units with one weight
pxqiLnwww inii ,...,1,20),,...,( 1 =⋅== for each of the pxq units. The weights have the

same number of components as the sequence vectors fk and their components take real
values between zero and one. At zero time the weights wi, i=1,…,p⋅q are the mean of all
sequence vectors. The distance δi,k from weight wi to the sequence vector fk is given by

∑
⋅

=
−=

L

n
kjnkki wf

20

1

2

,,,δ (3)

where n=1,…,20⋅L is the index of the vector components.
The bestmatch is identified by having the smallest distance to the sequence vector.

This vector is updated with a linear combination of its previous value with the presented
sequence vector as follows:

k
o

i
o

i ftwtw αα +−=+ )()1()1( (4)

where αo is a factor that sets the weight given to the example sequence in the updating
step. The update makes the weight more closer to the example presented to the network.
The examples are presented to the system in random order, once for each training cycle.
Then the time devoted to all cycles is s⋅N, where N is the number of examples (protein
sequences) and s is the number of learning epochs. These procedure adds noise to the
dynamics of the weight evolution, which helps the system to avoid non-optimal
classification.

However, a single SOM just leads to the clustering of the family at a definite
resolution level. Only several SOMs with several resolutions enable the identification of a
sequence relationship not existant in a single map, that means a hierarchy of sequences in
the family. Therefore,  a set of experiments with SOMs having different sizes are arranged
in a tree-like fashion through a linkage of the clusters that contains the same sequences at
successive levels. Such a tree representation can be compared with phylogenetic  trees
that try to accommodate the evolutionary relationsships of a group of sequences in a tree
according to their sequence homology.

Andrade et al. (1997) analyzed 42 proteins of the rab family and showed the power of
the SOM to obtain a reliable classification that agrees with the classifications obtained by
phylogenetic trees.

A recent application is given by the molecular classification of tumors using SOMs.
Specific cancer treatments (chemotherapy) try to maximize efficacy and minimize
toxicity. Therefore, improvements in cancer classification are important to advances in
cancer treatment therapies. Golub et al. (1999) described a statistical approach to cancer
classification based on gene expression monitoring by DNA micro-arrays. Cancer
classification is divided into class discovery and class prediction. Class discovery refers to
defining previously unrecognized tumor subtypes and entails two issues:

1. developing algorithms to cluster tumors by gene expression and
2. determining whether putative classes produced by such clustering algorithms

reflect the true structure in the data.
Golub et al. (1999) applied a two-cluster SOM to group 38 initial leukemia samples

into two classes on the basis of the expression pattern of 6817 genes. This class discovery
technique can be used to identify fundamental subtypes of any cancer.
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5 Conclusions

In this paper, a survey of the application of extended SOMs to sleep apnea, protein
sequence analysis and tumor classification was given. Therefore, a hierarchical
segmentation of the problem using hierarchical SOMs is needed. In addition, both types of
applications demonstrate a temporal or a sequential component, that could be investigated
with statistical methods, such as hidden markov models (HMMs).

HMMs and the EM-algorithm are alternative statistical methods for the
characterisation of a protein family. Following Krogh et al. (1994) we consider a family of
protein sequences that all have the same three-dimensional structure. An HMM is thought
to be able to generate protein sequences by a random process. The core of the HMM
consists of M so called match states in corresponding to positions in a protein. Each of
these match states mk, k=1, ..., M generates an amino acid x from the 20-letter amino acid
alphabet according to the distribution P(x|mk), k=1, 2,...., M. For each match state mk there
is a delete state dk that is used to skip mk. There are also a total of M+1 insert states ik

which generate amino acids according to probability distributions P(x|ik). From each state,
there are three possible transitions to other states. The transition probability from state q to
state r is denoted by T(r|q). We can generate a sequence of amino acids x1, x2, ..., xL by
following a path of states q0, q1, ..., qN, qN+1, where q0=m0 is the begin state and
qN+1=mN+1 is the end state. If qi is a match or insert state, we define l(i) to be the index in
the sequence x1, x2, ..., xL produced in state qi.

The probability of the event that the path q0, q1, ..., qN+1 is taken and the sequence x1,
x2, ..., xL is generated is given by

∏
=

−++ =
N

i
iiliiNNNL qxPqqTqmTqqqxxxP

1
)(1111021 )|()|()|()model|...,,,,...,,,(

where 1)|( )( =iil qxP if  qi is a delete state.

The probability of any sequence x1, x2, ..., xL is a sum over all possible paths that could
produce that sequence. So we get

∑
+

+=
110 ,...,,

1102121 ).model|,....,,,...,,,()model|,....,,(
Nqqqpaths

NLL qqqxxxPxxxP

The second equation defines a probability distribution on the space of amino acid
sequences. The goal of our analysis is to find a model that describes a family of proteins
by assigning large probabilities to amino acid sequences in this family. Liu et al. (1999)
write the basic form of an HMM as

)|(~ ttt hyfy and ).|(~ 1−ttt hhgh

Here tf and tg are probability distributions, the ty are observations and the th form

an unobservable Markov-chain. The dynamic linear model or state space model in time
series analysis used by Schmitz and Urfer (1997) is a special case of this model.

There are several algorithms that given an arbitrary starting point for the parameters
find a local maximum in such a way that the likelihood increases in each iteration. The
well known EM-algorithm can be used to estimate transition probabilities and the amino
acid distributions. This algorithm is often used in statistics in quite different applications
such as toxicology (Selinski et al. (2000), Gilberg et al. (1999)) and plant genetics (Emrich
and Urfer (1999)).
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