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Abstract

We derive the probability limit of the standard Dickey-Fuller-test in the context

of an exponential random walk. This result might be useful in interpreting tests

for unit roots when the test is inadvertantly applied to the levels of the data

when the "true" random walk is in the logs.
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1 Introduction

Consider a stochastic process yt; t = 0 ; : : : ; T given by

yt = exp(zt)

where

zt = zt�1 + ��t

and the �t are i.i.d. random variables. The random variables zt describe a random walk

and ful�l the unit root hypothesis so that it would be appropriate to apply the logarithmic

transformation to the original data yt. We investigate what happens if this is not done and

the Dickey-Fuller test is applied to the process yt.

The issue appears to be empirically relevant, as it is often not a priori clear whether a unit

root, if any, is present in the logs or in the levels of the data (Guerre and Jouneau 1995,

Ermini and Hendry 1995, Franses and Knoop 1998, Kobayashi and McAlear 1999 and many

others). The present paper provides some analytical underpinning to the suspicion �rst

voiced by Granger and Hallmann (1991) that test for unit roots tend to overreject a correct

null hypothesis of a unit root when the one forgets to take the logs.

2 A nonlinear transformation of an I(1){process

The test statistic of the Dickey-Fuller-test is

DF (T ) = T (�̂(T )� 1)

where

�̂(T ) =

PT
1
yt�1ytPT

1
y2t�1

:

The Dickey-Fuller-statistic is a nonlinear transformation of the partial sums of �t process.

Park and Phillips (1998) have developed a general method of treating nonlinear functionals of

integrated time series but unfortunately their results do not cover the asymptotic behaviour

of the Dickey-Fuller-statistic. There are two reasons for this. Firstly if we write the statistic

in the form

DF (T ) = T

PT
1
y2t�1(exp(��t)� 1)PT

1
y2t�1

= T
S1(T )

S0(T )
(1)

it is seen that the functional does not �t into the Park and Phillips framework because of

the explicit appearance of the increment �t: The second reason is not quite so obvious. Park
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and Phillips develop a theory which is applicable to the the sum S0(T ): Suppose that the �t

are i.i.d with mean zero and �nite non-zero variance. On writing

MT = max
0�t�T

zt: (2)

Theorem 5.5 of Park and Phillips (1998) gives

S0(T )p
T exp(2MT )

) L(1; smax) (3)

where) denotes weak convergence, L(x; t) is the local time of Brownian motion W on [0; 1]

and

smax = max
0�t�1

W (t):

As L(1; smax) = 0 (3) reduces to

S0(T ) = oP(
p
T exp(2MT )) (4)

so that (3) is of no help in analysing the Dickey-Fuller statistic. In order to analyse the

asymptotic behaviour of the Dickey-Fuller-statistic we require the exact order of magnitude

of S0(T ): This we do in the next section. In Section 4 we apply the result to the Dickey-

Fuller-statistic. In the particular case of the simple random walk we obtain the exact limiting

behaviour.

3 The asymptotic behaviour of
PT

0 exp(�zt))

We prove the following theorem.

Theorem 1

Suppose the increments (�i)
1
1 are i.i.d. and satisfy

E(�i ) = 0 ; V(�i) = 1 ; E(j�i j3) <1: (5)

Then

lim
C!1

P

 
exp(�MT ) �

TX
0

exp(�zt) � C exp(�MT )

!
= 1 : (6)

Proof: Clearly exp(MT ) �
PT

0
exp(�zt) so it is su�cient to prove

lim
C!1

P

 
TX
0

exp(�zt) � C exp(�MT )

!
= 1
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which is equivalent to

lim
C!1

P

 
TX
0

exp(��(MT � zt)) � C

!
= 1 :

This in turn follows from

E

 
TX
0

exp(��(MT � zt))

!
� A (7)

for some constant A: Consider the term

E(exp(��(MT � zt))) =

Z 1

0

exp(��x)dFt;T (x)

= Ft;T (f0g) + �

Z 1

0

Ft;T (x) exp(��x)dx (8)

where Ft;T denotes the distribution function of MT � zt: We have

Ft;T (x) = P(MT � zt � x)

= P(fMt � zt � xg \ f max
j=1;::: ;n�t

fzt+j � ztg � xg)
= P(Mt � zt � x)P(Mn�t � zn�t � x)

= P(mt � � x)P(mn�t � � x)

� P(zt � � x)P(zn�t � � x) (9)

where mt = min1�s�t zs: To obtain upper bounds for P(zt � � x) we note

P(zt � � x) = P

�
ztp
t
� � xp

t

�

� �

�
xp
t

�
+

Bp
t

(10)

where we have used the central limit theorem and the Berry-Ess�een bound. From (10), (9)

and (8) we obtain

E(exp(��(MT � zt))) � Bp
t(T � t)

(11)

for some contstant B where we have used the same argument for Ft;T (f0g) as for Ft;T (x):

From (11) we conclude

E

 
TX
0

exp(��(MT � zt))

!
� B

T�1X
1

1p
t(T � t)

� A:

This proves (7) and with it the theorem. 2
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4 The asymptotic behaviour of the Dickey-Fuller-statistic

Theorem 2

Suppose the increments (�i)
1
1 are i.i.d. and satisfy

E(�i ) = 0 ; V(�i) = 1 ; E(j�i j3) <1:

Then

lim
C#0

lim
T!1

P(DF (T ) � � CT) = 1 : (12)

Proof: We denote the path (t; zt)
T
0 with z0 = 0 by B(T ) and write S1(B(T )) = S1(T ): A

local maximum of B(T ) is a point (�; z� ; 1 � � � T � 1 with

minfz��1; z�+1g < z� � maxfz��1; z�+1g:

A new path of length is constructed by setting ~zt = zt; 0 � s � ��1 and ~z� = maxfz��1; z�+1g
and ~zt = zt+1; �+1 � t � T�1:We denote this new path of length by ~B(T�1):We describe

the e�ect on S1(B(T )) of removing the local maximum at �: To ease the notation we set

� = 1 :Without loss of generality we assume that z��1 � z�+1 � z� and write z� �z�+1 = �

and z� � z��1 = 
 +� with 
 and � both non-negative. We have

S1(B(T ))� S1( ~B(T � 1)) = exp(2z� )(exp(�2(
 +�))(exp(
 +�)� 1) + exp(��)� 1

� exp(�2
 � 2�)(exp(
)� 1))

= � exp(2z� )(1� exp(��))2

� exp(2z� ) exp(��)(1� exp(��))(1� exp(�
)) (13)

� � exp(2z� )(1� exp(��))2: (14)

We note that the value of the �nal point of the path is not altered i.e. ~zT�1 = zT : Under

the conditions of the theorem limT!1 P(MT > maxf0; STg + a) = 1 for all a > 0 so that

there exists at least one local maximum with z� =MT : If we remove all such local maxima

one by one then the �nal one is a strict local maximum and derives from local maxima of

B(T ) satisfying �1 � �2 and

z�1 � ��1 < z�1 =MT = z�2 > z�2+1 + ��2+1:

It follows from (14) that

S1(B(T )) � � exp(2MT )(1� exp(��))2 + S1( ~B(T � k))
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with

� = minf��1 ;���2+1g > 0: (15)

We now continue to remove local maxima until we reach a �nal path B�(T � S) which has

no more local maxima. We have

S1(B(T )) � � exp(2MT )(1� exp(��))2 + S1(B
�(T � S)):

As B�(T�S) has no local maxima it is either monontone or has at most one local minimum.
It follows that the global maximum of this path is either located at 0 or the last point. As the

removal of local maxima does not alter the value of the last point we have S1(B
�(T �S)) �

(T � S)maxf0; zTg and hence

S1(B(T )) � � exp(2MT )(1� exp(��))2 + T exp(maxf0; zTg):

As limT!1 P(MT > zT + aT ) = 1 for any sequence aT with limT!1 aTp
T
= 0 it follows that

~BT�k � oP(exp(2�MT ) and hence

S1(BT ) � � exp(2MT )((1� exp(��))2 + oP(1)): (16)

with � given by (15). From Theorem 1 it follows that

DF (T ) = T
S1(T )

S0(T )
� � C((1� exp(��))2 + oP(1))

with high probability as C # 0: To complete the proof of the theroem it su�ces to show that

lim
x#0

lim infT!1P(� � x) = 1 : (17)

To do this we �rst consider the distribution of ��1 conditioned on �1 = t1: In this case

��1 = �t1 and is de�ned by the inequalities

�t1 > 0; �t1 � �
t1�1X
t

�s; t = t1 � 1; : : : ; 0

and
tX

t1+1

�s � 0; t = t1 + 1 ; : : : ; T:

As the �t are assumed to be independently distributed these latter inequalities have no e�ect

on the conditional distribution of �t1 : The other may be written in the form

�t1 > maxf0; f(�1; : : : ; �t1�1)g:

On conditioning on �1; : : : ; �t1�1 and using the fact that

P(X � xjX � a) � P(X � x)
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for any random variable X and for any x and a we deduce

P(��1 � xj�1 = t1) = P(�t1 � xj�t1 > maxf0; f(�1; : : : ; �t1�1))
= P(�t1 � x; �t1 > 0j�t1 > f(�1; : : : ; �t1�1))=P(�t1 > 0)

� P(�t1 � x; �t1 > 0)=P(�t1 > 0)

= P(�t1 � xj�t1 > 0):

On summing over t1 we obtain

P(��1 � x) � P(�1 � xj�1 > 0)

and hence limx # 0P(��1 � x) = 1 :This together with the corresponding result for ��2 implies

that � sati�es (17) and completes the proof of the theorem. 2

In the special case of the simple random walk where the �i are either 1 or �1 a more

precise result is available.

Theorem 3

If the zt describe a simple random walk then

plimT!1
DF (T )

T
= � (1� exp(��))2

exp(2�) + 1
: (18)

Proof:

We note that for the simple random walk the 
 in (13) is always zero. Because of this we

can modify the procedure of removing local maxima as follows. If a local maximum ccurrs

at the point t then this point and the point t + 1 are removed and the reming part of the

path is translated to the left. The e�ect of this is on S1 described by

S1(B(T )) = � exp(2zt)(1� exp(��))2 + S1( ~B(T � 2)

and on S0 by

S0(B(T )) = exp(2zt)(1 + exp(�2�)) + S0( ~B(T � 2):

Iterating this gives

S0(B(T ))

1 + exp(�2�) +
S1(B(T ))

(1� exp(��))2 = OP(T exp(�maxf0; zTg)) = oP(S0(T ))

proving the theorem. 2

The upper panel of Figure 1 shows the path behaviour of zt; 0 � t � T = 105; with � = 0 :01

and the �i being i.i.d. and taking the values 1 and �1 with probability 0:5: The middle
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Figure 1: The upper panel shows the zt process with � = 0 :01 andT = 100000. The middle

panel shows the corresponding yt process. The lower panel shows the path behaviour of the

Dickey-Fuller statistic.
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panel shows the corresponding process yt: The bottom panel shows the path behaviour

of the Dickey-Fuller statistic. The �nal value of the statistics is �5:163337e � 05 which

compares well with the theoretical slope given by

� (exp(0:01)� 1)2

exp(2 � 0:01) + 1
= �4:999792e� 05:
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