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Abstract

We derive the limiting null distributions of the standard and OLS{

based CUSUM-tests for structural change of the coe�cients of a

linear regression model in the context of long memory disturbances.

We show that both tests behave fundamentally di�erent in a long

memory environment, as compared to short memory, and that long

memory is easily mistaken for structural change when standard

critical values are employed.

1 Introduction and Summary

It is by now well known that long memory and structural change are easily

confused (Lobato and Sawin 1997, Engle and Smith 1999, Granger and Hyung

1999, Diebold and Inoue 1999 and many others). Therefore it is of interest

to know about both the stochastic properties of procedures for detecting and

measuring long memory when there is only structural change, and of the per-

formance of tests for structural change when there is only long memory.

1Research supported by Deutsche Forschungsgemeinschaft; we are grateful to A. Zeileis

for expert computational assistance.
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While the former problem has attracted considerable attention, there has

been rather little work on the latter (Hidalgo and Robinson 1996, Wright

1998). Below we consider the behaviour of the standard and the OLS-based

CUSUM-tests, whose limiting distributions are well understood in the context

of various regressor-sequences and iid- or short memory disturbances (Kr�amer

et al. 1988, Ploberger and Kr�amer 1992, 1996). As shown by Wright (1998)

for the OLS-based CUSUM-test and the special case of polynomial regressors,

these limiting distributions are not robust to departures from short memory

- in fact, the OLS-based CUSUM-test has an asymptotic size of unity. The

present paper allows for more general regressor sequences also covers the con-

ventional CUSUM-test based on recursive residuals as well. We show that

Wright's results concerning the behaviour under H0 essentially go through

with more general regressors, and that similar results hold for the standard

CUSUM-test. This is a rather negative result which con�rms related theo-

rems from the structural-change-mistaken-for-long-memory-literature: Similar

to structural change being mistaken for long memory, long memory is likewise

easily mistaken for structural change, and it is remains an open problem to

e�ciently discriminate between the two2.

2 Two unpleasant theorems

We consider the standard linear regression model

yt = � 0xt + "t; (t = 1 ; : : : ; T) (1)

with nonstochastic, �xed regressors xt and stationary mean zero disturbances

"t. We assume that

1

T

TX
t=1

xt ! c <1 and (2)

2There do exist solutions for some special cases, such as K�unsch's (1986) procedure to

discriminate between long memory and monotonic trends, but a general treatment of this

problem is still missing.
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1

T

TX
t=1

xtx
0
t ! Q (�nite, nonsingular): (3)

These are standard assumptions in linear regression large sample asymptotics;

they exclude trending data, which require separate treatment and proofs which

di�er from the ones below.

We are concerned with testing the model (1) against the alternative of unspe-

ci�ed structural change in the regression coe�cients �. We consider �rst the

OLS{based CUSUM{test, as proposed by Ploberger and Kr�amer (1992). This

test rejects the null hypothesis of no structural change for large values of

TS := sup
0<�<1

jCT (�)j; where (4)

CT (�) := T� 1

2 �̂�1
"

[T� ]X
t=1

et; (5)

and where et := yt � x0t�̂ are the OLS{residuals from (1).

The limiting null distribution of TS is well known for white noise and short

memory disturbances. Our �rst theorem extends these results to stationary

long memory disturbances, where the "t follow a stationary ARFIMA(p,d,q){

process:

E("t"t�k) = L(k)k�d; (6)

L(k) slowly varying, 0 < d < 1=2.

Theorem 1 In the regression model (1), with disturbances as in (6) we have

T�dCT (�)! Bd(�)� c0Q�1�(�); (7)

where Bd(�) is fractional Brownian Motion with self-similarity parameter d

and �(�) � N(0; ��2
"Q).
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PROOF: We have

CT (�) = T� 1

2 �̂�1
"

8<
:

[T� ]X
t=1

"t �
[T� ]X
t=1

x0t

 
TX
t=1

xtx
0
t

!�1 TX
t=1

xt"t

9=
; ; so (8)

T�dCT (�) =

(
T�d+ 1

2 z[T� ]

�T�d+ 1

2

[T� ]X
t=1

x0t

 
TX
1

xtx
0
t

!�1 TX
1

xt"t

)
=�̂"; (9)

where zt = zt�1 + "t, z0 = 0. In view of

T�d� 1

2 z[T� ] ! �"B(�) (see e.g. Marmol 1995); (10)

1

T

[T� ]X
t=1

xt ! �c; (11)

0
@ 1

T

[T� ]X
t=1

xtx
0
t

1
A
�1

! ��1Q�1; (12)

T�d� 1

2

[T� ]X
t=1

xt"t ! �(�) (see Giraitis and Taqqu 1998); (13)

and

�̂2
" =

TX
t=1

e2t
T

=
TX
t=1

"2

T
+ oP (1)! �2

"

the limiting relationship (7) follows. 2

>From (7), it is immediately seen that TS
P�! 1 under H0, so the OLS-

based CUSUM{test is extremely non{robust to long{memory disturbances,

in the sense that long memory is easily mistaken for structural change when

conventional critical values are employed.

Next we consider the standard CUSUM-test based on recursive residuals

~et =
yt � x0t�̂

(t�1)

ft
; �̂(t�1) =

�
X(t�1)0X(t�1)

��1
X(t�1)0y(t�1) (14)

ft =
�
1 + x0t(X

(t�1)0X(t�1))�1xt
� 1

2 (t = K + 1 ; : : : ; T); (15)
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where the superscript t� 1 means that only observations 1; : : : ; t� 1 are used.

It rejects for large values of

ST = sup
0<�<1

WT (�)=(1 + 2�): (16)

where

WT (�) := T� 1

2 �̂�1
"

[T� ]X
t=K+1

~et: (17)

Theorem 2 In the regression model (1), with disturbances as in (6) we have

T�dWT (�)! Bd(�); (18)

where again Bd(�) is fractional Brownian Motion with self-similarity parameter

d.

PROOF: Following Kr�amer et al. (1988), we write WT (�) as

WT (�) =
1p
T

[T� ]X
t=K+1

"t �
[T� ]X

t=K+1

�
�̂(t�1) � �

�0
xt: (19)

Let Qj :=
1
T

Pj
i=1 xix

0
i. First we show that

max
K�t�T

jj
�
�̂(t) � �

�
�

tX
j=K

[(yj � x0j�)xj]Q
�1
j jj = op

�
T d+ 1

2

�
(ln ln T )

1

2 :(20)

Let St :=
Pt

j=1(yj � x0j�)xj. By the law of the iterated logarithm for the sums

of long memory Gaussian random variables we have for some slowly varying

function L(T )

max
1�t�T

St�
2

(d+ 1

2
)2(d+ 1

2
)�1

T 2(d+ 1

2
)L(T ) ln ln(T )

� 1

2

= Op(1); (21)

so (20) follows directly from Lemma 3.1 of Jureckova and Sen (1984).
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Combining (19) and (20) gives

1p
T

[T� ]X
t=K+1

(yt � x0t�̂
(t�1))

=
1p
T

[T� ]X
t=1

tX
j=1

cij(yj � x0j�) + o(T (d+ 1

2
) ln ln T )

1

2 ; (22)

where

cij =

8>>><
>>>:
�x0jQ�1

(i�1)xi i > j

1 i = j

0 i < j

(23)

(see also Sibbertsen, 2000). In view of a result by Sen (1984) that

X
j�i

c2ij = 1 + 0(
1

i
) (24)

and theorem 5.1 of Taqqu (1975), the theorem now follows from (22). 2

Theorem 2 shows that the null distribution of the standard CUSUM-test tends

to in�nity as well, so the standard CUSUM-test has likewise an asymptotic size

of unity.

3 Some �nite sample Monte Carlo evidence

Figure 1 below gives the empirical rejection rates, using 1000 runs and standard

critical values form the iid-disturbance case, for the OLS-based CUSUM-test.

When the disturbances are in fact ARFIMA(0,d,0). It con�rmes our theoretical

results: rejection rates increase with d and sample size, and produce misleading

evidence even for small d and T .
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Figure 1: Empirical rejection probability of OLS-based CUSUM-test

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

re
je

ct
io

n 
pr

ob
ab

ili
ty

α = 0.05
d = 0

d = 0.1

d = 0.2

d = 0.3

d = 0.4

Figure 2: Empirical rejection probability of standard CUSUM-test

Figure 2 gives the corresponding empirical rejection rates for the standard

CUSUM-test. Not surprisingly, the empirical size is not as far o� the mark as

for the OLS-based CUSUM-test, but the test is misleading here as well.
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