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Abstract

OLS is as e�cient as GLS in the linear regression model with long-memory er-

rors as the long-memory parameter approaches the boundary of the stationarity

region, provided the model contains a constant term. This generalizes previous

results of Samarov & Taqqu (Journal of Time Series Analysis 9, 1988, pp. 191-

200) to the regression case and gives a further example of the `high-correlation

asymptotics' of Kr�amer & Baltagi (Economics Letters 50, 1996, pp. 13-17).
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1 Introduction

Consider the linear regression model

y = X � + u; (1)

where X is nonstochastic and has full rank, the vector of errors, u, has mean zero,

and cov(u) = V is some positive de�nite matrix. The e�ciency of the ordinary

least squares (OLS) estimator �̂ = ( X0X)�1X 0y relative to the generalized least

squares (GLS) estimator ~� = ( X0V �1X)�1X 0V �1y has been studied for many

covariance structures V , the bulk of this literature being devoted to large sam-

ple e�ciency. There is also a smaller literature on `high-correlation asymptotics'

dealing with �nite sample e�ciency of OLS for varying V ; the most prominent

case is the linear regression model with AR(1) errors. It is well known that here

OLS is e�cient if the autocorrelation parameter tends to one, provided the model

contains a constant term (Kr�amer, 1980). For additional examples see Kr�amer

and Baltagi (1996). The present note shows that, in the linear regression model

(1) with a constant term, OLS is also fully e�cient in �nite samples if futg is a

long-memory process and the long-memory parameter approaches the boundary

of the stationarity region.

2 Relative e�ciency of OLS

The most prominent examples of long-memory models are fractionally integrated

ARMA models (ARFIMA(p; d; q)) and fractional Gaussian noise. The former is

de�ned by

�(B) (1� B)d ut = �(B) �t; (2)

where f�tg is white noise (in the weak sense) and �(B) and �(B) are polynomi-

als in the backshift operator B of orders p and q; the latter is de�ned as �rst

di�erences of fractional Brownian motion. See Baillie (1996) or Beran (1994) for
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surveys of long-memory models. Process (2) is stationary and causal if and only

if d < 0:5 and the AR polynomial �(z) obeys the usual stationarity and causality

conditions for autoregressive models. Long memory corresponds to d > 0.

Following Kr�amer (1980), the relative e�ciency of OLS for a series of length T is

de�ned as

e� (T; d) =
tr cov(X ~�)

tr cov(X�̂)
=

tr X(X 0V �1X)�1X 0

tr X(X 0X)�1X 0V X(X 0X)�1X 0
; (3)

where tr denotes trace. For a full discussion of large sample e�ciency of OLS in

model (1) with stationary long-memory errors see Yajima (1991) who, however,

de�nes e� (T; d) in terms of the determinants of the covariance matrices. We are

only concerned with �nite sample e�ciency here.

Since scalar functions of V cancel out in (3), V may be replaced by the correlation

matrix R, as is done in the proof of the following theorem.

Theorem 1 Let hXi denote the column space of X and suppose e = (1 ; : : : ;1)0 2

hXi. Then

lim
d!0:5

e� (T; d) = 1 for all T 2 IN

in model (1) if

(a) futg is a stationary ARFIMA process.

(b) futg is fractional Gaussian noise.

Proof: (a) From Sowell (1992; see also Chung, 1994), the autocorrelation func-

tion of a stationary and causal ARFIMA process with distinct roots in the AR

polynomial is given by

r(k) = r�(k) �

Pp
j=1 �j A(d; k; �j)Pp
j=1 �j A(d; 0; �j)

; k = 0 ;1; 2; : : : ; (4)
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where the �j, j = 1 ; : : : ; p , are functions of the roots 1=�j of �(z), but not of d,

and

A(d; k; �j) =
qX

i=�q

 iB(d; k; p+i)
h
�2pj C(d; p+ i� k; �j) + C(d; k � p� i; �j)� 1

i
:

Here

 i =
q�jijX
m=0

�m�m+jij ;

where the �m, m = 0 ; : : : ; q, are the MA coe�cients,

B(d; k; h ) =
�(1� d� k) �( d� k + h)

�(d� k) �(1� d� k + h)
;

and

C(d; k; �j) = 2F1(d+ k; 1; 1� d+ k; �j) ;

where 2F1 is Gauss' hypergeometric series. Finally,

r�(k) =
�(1� d) �( k+ d)

�(d) �( k+ 1� d)
(5)

is the autocorrelation function of fractionally integrated white noise.

Now r�(k) ! 1 and B(d; k; h )! 1 for d! 0:5, whereas

lim
d!0:5

C(d; k; �j) = 2F1(1=2 + k; 1; 1=2 + k; �j) = 1F0(1; �j) ; (6)

a geometric series independent of d and k (see Slater, 1966, chapter 1). Note

that j�jj < 1 by stationarity and causality, so this series converges. In (6), the

interchange of the limits can be validated using a suitable version of the dominated

convergence theorem (Billingsley, 1995, Theorem 16.8).

Overall, this gives r(k) ! 1 for d ! 0:5, hence the correlation matrix R =

(r(i � j))i;j tends to �R = ee0, a matrix of ones. Now, �Ry 2 h Xi, y 2 IRT ,

whenever e 2 h Xi, and from Kr�amer and Baltagi (1996) the limiting e�ciency is

one in this case.
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(b) From e.g. Baillie (1996, p. 16) the autocorrelation function of fractional Gaus-

sian noise is given by

r(k) =
1

2

h
(k + 1)2H � 2 k2H + ( k� 1)2H

i
;

which also implies r(k)! 1 forH ! 1. Here, the `Hurst coe�cient'H is related to

the fractional di�erencing parameter d of (a) as d = H�1=2. Again, the theorem

in Kr�amer and Baltagi (1996) yields a limiting e�ciency of one if e 2 h Xi.

Part (a) generalizes earlier results of Samarov and Taqqu (1988, p. 198) in two

directions. These authors obtained an optimal limiting e�ciency of OLS forX = e

in �nite samples when futg is fractionally integrated white noise (their � equals

�d); as Theorem 1 shows, this carries over to all linear regressions with stationary

ARFIMA errors that contain a constant term. Regarding (b), Beran (1994, pp.

149-151) found a high �nite sample e�ciency of the sample mean when errors are

fractional Gaussian noise. Again, this carries over to all linear regressions that

contain an intercept.

Although e 2 h Xi seems to be the most important case in empirical applications,

it is of some interest to identify sets of regressors for which OLS should be avoided.

Corollary 2 Suppose e =2 h Xi [ hXi?, where ? denotes the orthogonal comple-

ment. Then

lim
d!0:5

e� (T; d) = 0 for all T � 2

in model (1) if

(a) futg is a stationary ARFIMA process.

(b) futg is fractional Gaussian noise.

Proof: In the proof of Theorem 1 it was shown that r(1) = ri;i+1 ! 1 if d! 0:5

for both error structures, hence the result follows from the theorem in Kr�amer

(1984).
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This implies, for example, that OLS is ine�cient in the linear regression model

with a linear trend, but no constant term, when the errors are fractionally inte-

grated ARMA (or fractional Gaussian noise) and d (or H) is su�ciently large.

3 Numerical illustration

Table 1 presents relative e�ciencies for a regression on a constant and a linear

trend for T = 10 ;50; 100; 200; 500; 1000 and selected values of d 2 [�0:5; 0:49],

and Figure 1 graphs the e�ciency function e�(T; d) for T = 10 ;50; 200; 1000

and d 2 [�0:2; 0:49], evaluated in steps of 0.01. The errors are assumed to be

fractionally integrated white noise (cf. (5)).

Table 1: E�ciency of OLS relative to GLS

d T=10 T=50 T=100 T=200 T=500 T=1000

-0.4 0.9304 0.8085 0.7641 0.7267 0.6871 0.6631

-0.3 0.9657 0.9001 0.8786 0.8614 0.8443 0.8348

-0.2 0.9845 0.9606 0.9531 0.9475 0.9425 0.9399

-0.1 0.9965 0.9916 0.9902 0.9893 0.9885 0.9881

0 1 1 1 1 1 1

0.1 0.9974 0.9946 0.9940 0.9936 0.9933 0.9932

0.2 0.9916 0.9839 0.9824 0.9815 0.9809 0.9807

0.3 0.9865 0.9759 0.9739 0.9729 0.9722 0.9720

0.4 0.9870 0.9783 0.9768 0.9760 0.9755 0.9753

0.45 0.9914 0.9861 0.9852 0.9847 0.9844 0.9843

0.49 0.9979 0.9966 0.9964 0.9963 0.9963 0.9962
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Figure 1: E�ciency of OLS relative to GLS

T=10 , T=50 , T=200 , T=1000 (from top)
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The results are quite similar to those of Samarov and Taqqu for X = e (they

cannot be identical as the relative e�ciency depends on the regressors). In par-

ticular, e� (T; d) is decreasing in T for �xed d; also, there is a local minimum

around d = 0 :32. In general, the relative e�ciency is uniformly above 0.97 for

positive d, hence the loss of e�ciency associated with OLS is not severe in the

present context.
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