On robust local polynomial estimation with
long-memory errors

by
Jan Beran', Yuanhua Feng!,
Sucharita Ghosh? and Philipp Sibbertsen®

Abstract

Prediction in time series models with a trend requires reliable estima-
tion of the trend function at the right end of the observed series. Local
polynomial smoothing is a suitable tool because boundary corrections are
included implicitly. However, outliers may lead to unreliable estimates, if
least squares regression is used. In this paper, local polynomial smoothing
based on M —estimation is considered for the case where the error process ex-
hibits long-range dependence. In constrast to the iid case, all M —estimators
are asymptotically equivalent to the least square solution, under the (ideal)
Gaussian model. Outliers turn out to have a major effect on nonrobust band-
width selection, in particular due to the change of the dependence structure.

1 Introduction
1.1 The model
Let y1,...,y, be an observed time series such that

yi = g(t:) + e, (1)

where t; = i/n € [0,1], ¢g(t) is an unknown sufficiently smooth function
(e.g. in C3[0,1]), ¢; = G(Z;) where Z; is a zero mean stationary Gaussian
process with autocovariances vz (k) = cov( % Z;1x) and spectral density
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fz(A) = (20 13 vz(k)exp(ikA) and G is such that E[G(Z)] = 0. For defin-
ing nonparametric M —estimators, a function % with the following proper-
ties will be needed: 1 is almost everywhere differentiable, E[y(e)] = 0,
E['(€)]£0, E[*(e)] < oo, and ${G(.)} has Hermite rank m > 1. The
last property means that, for ¢, = E[Y{G(Z)}H,(Z)], we have ¢, = 0
(0 < g <m—1) and ¢, 7#0. Here Hy(z) = exp(w2/2)%exp(—x2/2) denotes
the gth Hermite polynomial. Moreover, it is assumed that the spectral den-
sity fz is continuous in [—m,0) U (0, 7] and diverges to infinity at the origin
at the rate

Fz(A) ~as0 crzI A7 (2)

for some %— ﬁ <d< %, m € N, and 0 < ¢y z < oo. This condition

implies (see e.g. Beran 1992, 1994): 1. vz (k) ~ ¢, z|k[*¥™1 (0 < ¢,z < 00),
as |k| — oo ; 2. the process¢; = ¥{G(Z;)} has long memory in the sense
that its spectral density f¢ has a pole at zero of the form 0f7§|>\|_2dm with
0<dm=3+m(d—3) <33 ye(k) =cov(§, &) ~ m!c%nchZ|k|2dm*1, as
|k| — oo .For additional detailed regularity conditions needed in the context
of M —smoothing with long-memory errors see e.g. Beran et al. (2000).

1.2 Local polynomial M —smoothing and prediction

Suppose, the aim is to predict a future observation y,.j for some k£ >
0. This requires prediction of the stochastic part €;;; and extrapolation
of §. This problem is considered in Beran and Ocker (1999) for so-called
SEMIF AR—models which include, among others, model (1) with ¢; equal
to a fractional ARIMA model (Granger and Joyeux 1980, Hosking 1981).
Beran and Ocker use optimal linear prediction of the stochastic part and
extrapolation of § by Taylor expansion. An important problem that has
to be solved before extrapolating the trend function is to obtain reliable
estimates of g(t) and its derivative(s) at the right boundary (i.e. for ¢ close
to 1). Local polynomial smoothers are suitable for this purpose, because of
the built-in automatic boundary correction (see e.g. Fan and Gijbels 1996,
Beran and Feng 1999). A second problem is that occasional ‘outliers’ may
have an undue influence on local polynomial estimates that are based on
least squares regression. (Note that the notion ‘outlier’ does not necessarily
imply that an outlying observation is wrong, but rather that it does not
belong to the "majority” of the data or the ideal central model - see Hampel
et al. 1986 and Huber 1981). Also, in some cases one may be interested in
other location curves, such as the median, instead of the expected value.
This motivates local polynomial smoothing based on M —estimation.
Two aspects are investigated in this paper: 1. the asymptotic mean squared



error and optimal bandwidth; 2. the effect of outliers on automatic band-
width selection.

1.3 A data example

Figure 1 shows a wind speed series (in 0.1 m/s) measured at a climate sta-
tion in Disentis, Switzerland (source: SMA) in the years 1997-1999. The
series consists of 6-hours-maxima. Thus, for each day, there are four ob-
servations corresponding to the maximal wind speed between 0 to 6 am, 6
to 12 am, 12 am to 6 pm and 6 to 12 pm respectively. The dotted line
in figure 1 displays the local linear fit based on least squares estimation,
whereas the full line is the median (or L;) local polynomial fit obtained
from (3) with ¢ (z) = sign(z). (Note that, the derivative of the sign func-
tion is zero almost everywhere, but it can be approximated arbitrarily well
by ¢—functions with E[)’(€)]#0.) The bandwidth b was obtained by the
iterative plug-in algorithm in Beran and Feng (2000) which is based on least
squares estimation.

The following observations can be made. The wind speed series exhibits
occasional ”outliers” corresponding to sudden high speed winds (storms).
There is a seasonal difference between the least squares and the L; fit. The
mean curve (least squares fit) is clearly above the median curve (L; fit) in
the middle of winter, whereas the two curves almost coincide in summer.
This indicates a seasonal change of the distribution. In summer, high winds
are frequent (i.e. correspond to "normal” observations), because of frequent
storms. In winter, occasional storms lead to rare but extreme wind speeds.
Also note that figures 2a and b with the periodogram of the residuals (in
log-log coordinates) indicate long-range dependence and an additional strong
seasonal component.

In this example, a bandwidth based on the least squares fit was used.
This leads to two questions that are discussed in this paper:

1. What is the integrated asymptotic mean square error of and the opti-
mal bandwidth for a local polynomial M —estimator, when the random
deviations from the deterministic trend function g have long memory?

2. How do ”outliers” influence an estimated bandwidth obtained by a
least squared based plug-in algorithm?



2 Definition of local polynomial M —estimators

Let K be a positive symmetric kernel with support [—1,1] and f_11 K(u)du
=1,let t € [0,1] and b € (0,1) a positive bandwidth, and denote by p € N
the degree of the local polynomial. Then a local polynomial M —estimator
of g(t) is defined by gy (t) = ' (t)B(t) where z(t) = (1 ,¢,2,...,t?) € RPTL,
2’ denotes the transposed of z and B(t) € RPT! solves the system of p + 1
equations

Dy — B0 (1) =0 (=0 dp) ()

Note that for ¢(u) = u, equation (3) defines the local polynomial fit based
on least squares regression. In the following the least squares estimator of g
will be denoted by grsr. Robust estimates are obtained by using bounded
functions v (see e.g. Huber 1981, Hampel et al. 1986). A standard example
is the Huber function ¢ (z) = min(c, max(z, —c)) with 0 < ¢ < oo. Different
1p—functions can also be used to obtain estimates of location curves other
than the mean. For instance, the Huber function with ¢ = 0 (or ¢ close to
zero) estimates the median function. The following results hold for arbitrary
1p—functions and location curves.

3 Asymptotic mean squared error

3.1 Variance

To simplify presentation, the rectangular kernel K(u) = %1{—1 <u <
1} is used here. The extension to general kernels is straightforward. The
asymptotic variance and bias of least squares local polynomial estimates for
long-memory processes is considered in Beran and Feng (1999). For local
polynomial M —estimators, the following result holds:

Theorem 1 Let j be the solution of (3). Define the following (p+1) x
matrices: M, = ( n}) ij=1,..p+1 With m;; = COV{BZ 1(1), BJ (D)},
(Pij)ij=1,..p+1 with p;j =0 for i +j odd and p;j = /(25 —1)(2l — 1
[—1) fori+j even, kij(dm) = /(20 — 1)(2] — 1)I'(1—2d,,,) /[ (d)T(1
Q = (gj)ij=1,...p+1 with

1,1 ,
i = rig(dn) [ [ Ny o g2 ddy,
—-1J-1

(p+

1)
P =
/G +
—du)],



Dn = ( dj(’n))i’jzl,m,p_H with dij =0 ( Z;éj) and djj = 2( nbY/(Z] — 1). Then,
asn — oo, b— 0 and nb — oo,

m .2
2mc'y

—2dpm Y ~o YN
(2nb) ™ DaMa D — ot

pPlQpr~L. (4)

In particular, for m = 1 and ¢; = Z;, the first Hermite coefficient ¢; is equal
to E[y'(€)] so that the asymptotic variance of 5(t) does not depend on the
1p—function. We thus have

Corollary 1 Let g,(t) be defined by (3), then

(nb)'*var{ gy (1)} — (1) (5)
where 0 < v(t) < oo does not depend on .

An explicit expression for v(¢) is given in Beran and Feng (1999) (also see
Ghosh 2000 for the case of repeated time series). A stronger version of
Corollary 1 can also be proved, stating that (nb)%_dm {Gy(t) —grse(t)} con-
verges to zero in probability. This is analogous to location estimation (Beran
1991), parametric regression (Giraitis et al. 1996) and kernel M —estimation

(Beran et al 2000).

3.2 Bias

The bias of grsp for long-memory processes is considered in Beran and
Feng (1999). Taylor expansion implies that the same asymptotic formula
holds for all M —estimators. Thus, define I(gP+D) = [}[g®*+1)(¢)]?dt and

I(K) = f_11 PO K (0.) (z)dz where K (0) 18 the so-called equivalent kernel

(see Beran and Feng 1999). Let 0 < A < % be a small positive number.
Then (p+1)

. g () I(K)

Elgy(t) —gt)] = prT

uniformly in A < ¢t < 1 — A. For boundary points, the order of the bias is

the same, when p is odd, with K(*O ») replaced by an equivalent boundary

+ o(bP*1) (6)

kernel. Note that this result is the same as for d = 0 (see e.g. Fan and
Gijbels, 1996) and also holds for —0.5 < d < 0.



3.3 IMSE and optimal bandwidth

The asymptotic integrated mean squared error (IMSE) follows from the
results above:

P+ (D 12T2(K ot
)[g [(p(_i_)]l)|]2( )—l—(nb)de 1/0 Q)(t)dt (7)

The bandwidth that minimizes the asymptotic IMSE is thus given by

/01 B{[§(t) —g(t)]*}dt ~ b*P*!

bopt = Clopyn(2dm—1)/(2p+3=2dm) n

where

1—2d N2 [Lo(t)dt ~
Copt = {( 2(p +)£()p ](—;(p)+]1))f_?2(.§()) ). ©)

Similar results for robust local polynomial fits with independent errors may
be found in Fan and Gijbels (1996) (p. 201, see also pp. 63ff). Note that
the formula for the asymptotic MISE is given on the interval [0, 1], since a
local polynomial estimator adapts automatically at the boundary.

3.4 Asymptotics for other values of d

The asymptotic formula (6) for the bias is correct in the whole range —1 <
d< % This is not the case for the variance. If d < % — ﬁ, then the process
& = 1(€;) is no longer long-range dependent. Therefore, the asymptotic
equivalence between all M —smoothers no longer holds, and the variance
depends on the function ¢. A general formula for the variance with ¢(z) = =
(least squares local polynomial estimator) that is valid in the whole range
—% < d < % is given in Beran and Feng (1999). For general M —estimators,
the situation is more complicated. Consider, for instance, the case of a
Gaussian error process with m =1 (and hence d,;, = d). Then the following
holds, in analogy to location estimation (Beran 1991): a) For d > 0, all
M —estimators have the same asymptotic variance (see above); b) for d =0,
nonlinear M —estimators lose efficiency compared to §rsg, the efficiency
is however still positive; ¢) for d < 0, all nonlinear M —estimators have
asymptotic efficiency zero compared grsg. Detailed formulas are omitted

here, since the focus is on long memory (d > % — #)



4 Effect of outliers on bandwidth selection

4.1 Motivation of the simulation study

Consider the case of Gaussian errors ¢; and m = 1 .Then the results in the
previous section imply that all local polynomial fits have the same asymp-
totic mean squared error and the same asymptotically optimal bandwidth.
To choose an optimal bandwidth one might thus be tempted to always
use automatic bandwidth selection based on least squares regression (see
e.g. Ray and Tsay 1997, Beran 1999 and Beran and Feng 2000 for algo-
rithms in the long-memory context), independently of the 1)—function used
in the estimation. However, the difference between least squares and ro-
bust M —estimation comes into play under departures from the ideal Gaus-
sian process. The following simulation study illustrates how outliers can
affect the least squared based bandwith selection method in Beran and Feng
(2000).

4.2 Theoretical considerations and design of the simulation
study

The method in Beran and Feng (2000) is an iterative plug-in method that
yields an estimated optimal bandwidth b. Starting with an initial bandwidth,
an initial value of §g;,sg and preliminary residuals are calculated. In the next
iteration, a new bandwidth is obtained from the residuals and so on. Outliers
can influence the solution b by: 1. changing the estimated values of §1.g g(t);
2. changing the variance of the residuals; 3. changing the spectral density f.
at the origin. The influence of outliers on the dependence structure is often
stronger than that on the estimation of the mean function. The reason
is that estimation of the long-memory parameter (and other dependence
parameters) of the "uncontaminated” process becomes more difficult. The
asymptotic formula for by (equations 8 and 9) that is used in the plug-in
method not only depends on g and the marginal variance of ¢;, but also on
the behaviour of f. at zero.

In the simulation study, the following outlier model is used: The error
process €; is a standardized mixture of a zero mean Gaussian FARIMA (0, d, 0)
model X; with var(X;) = 1 ,and a ”mild outlier process” consisting of ob-

servations W; = %Ui with U; iid t3—distributed variables independent of

the process X;. Thus, ¢; = {(1 — ;) X; + LW;}/\/(1 — p) + 4 pwhere I; are
iid Bernoulli variables with P(I; = 1) = 1 — P(I; = 0) = p. Note that
var(W;) = 4 so that var(e;) = 1 for all values of p. Since ¢; is standardized,



the change of byp; = bepi(p) as a function of p (when calculated for the con-
taminated process ¢€;) is due to the change in the dependence structure only.
The effect of W; on the dependence structure is that, compared to the un-
contaminated process X;, dependence is weaker (¢; is closer to independence
than X;). More exactly, pe(k) = (1 —p)/(1 + 3p)px (k) ( K0) where px (k)
are the autocorrelations of the FARIMA process X;. This means that

1. For d < 0, 0 < | Y pe(k)| < oo whereas Y px(k) = 0 .Thus ¢; loses
the property of antipersistence. As a result, by (p) increases with
increasing p and is of the order O(n~/%) which is the same as in the
independent case.

2. For d = 0 ,the dependence structure does not change, whatever the
value of p is. Thus, b, (p) does not change.

3. For d > 0, adding iid observations does not change the long-memory
parameter d. However, the constant cy . is smaller than the correspond-
ing constant cy x for X;, since the spectral density is now a weighted
average of the spectral densities of X and W;. Thus, with increasing
p, the asymptotic bandwidth by (p) decreases.

The simulations were carried out for the two trends g;(¢) = 2 tan {5(t—
0.5)} and go(t) = 4sin?{(t — 0.5)7}. Moreover, d = —0.3,0,0.3, p = 0 0.05,
0.1,0.2,0.5 and the sample sizes n = 500 and 1000 were used. For each case,
four hundred simulations were carried out. The estimated optimal band-
width b for a local (unweighted) linear fit was selected for each replication
by the data-driven SEMIFAR algorithm in Beran and Feng (2000).

4.3 Results of the simulation study

Table 1 gives the asymptotically optimal bandwidth byp; = bep(0) for the
least squares local polynomial fit and p = 0 ,i.e. for the "ideal” distribution
with no outliers. Tables 2 and 3 give the simulated mean, standard deviation,
minimum, median and maximum of b for n = 500 and 1000 respectively.
Box-plots of b as a function of p are shown in figures 3 and 4.

The simulation results confirm the theoretical considerations. In the case
of an antipersistent error process X;, iid outliers lead to an increase of b.
The estimated bandwidth therefore tends to increase with increasing p. The
opposite is the case for d > 0, whereas practically no change can be observed
ford=0.



5 Final remarks

The simulations in this paper illustrate that bandwidth choice may be
strongly influenced by ”outliers”, when the algorithm is based on least
squares regression. The aim of robust M —estimation is to reduce the influ-
ence of outliers and/or to estimate other quantities than the mean function.
In both cases, least squared based algorithms for the choice of an optimal
bandwidth need to be modified. How to obtain general, computationally
feasible algorithms will need to be considered in future research.

6 Appendix

Outlined proof of theorem 1: Consistency of f follows by standard
arguments from the law of large numbers and properties of 9 (for technical
details see e.g. Beran et al. 2000). For j =0 ,...,p,let

[n(t+b)]
Anj= > le)(i —nt)
i=[n(t—b)]
and
p_ [n(4d)] , )
Bnj=Y ¥ (€)(i — nt) (i — nt)'n~H(B — By).
1=0 i=[n(t—b)]

Here [z] denotes the integer part of z. By Taylor expansion (3), implies
A, j—B,j=0(j=0,..,p). Hermite expansion yields

[n(t+0)] . m)
Ay j = cp/(m!)(nb) Z H,(Z;)(i — nt)! = AHTZ- .
i=[n(t—b)]
Moreover, (Bj, o, ...,Bnyp)' = ( where (), can be approximated by

A)
(W) B ()0 () (X X) with X = (1)i=1,..gr1 and ;= (i)’ .
Let am = cp/{m!E[¢ ()]} and ¢, = ( %),...,A%,)),. Then 8 — 8 =~
amD(n)(X X)"*¢n. Now the right hand expression is equal to a,,D(n)
times B — B where B is the least squres estimator of 8 based on observa-
tions in the linear regression equation y; = X3 + n;, with n; = H,,,(Z;) and
—[n(t = b)] <i < [n(t+b)]. Moreover, cov(Hp,(Z;), Hm(Zivk)) = miy7(k),
so that for the spectral density f, of n; we have f,(A) ~ mlc]',|A|~ 2dm g
A — 0. By analogous arguments as in Yajima (1989) it follows that

2 .m
2mC;, Cry

—1 —1
w9, ©F

D(n)var(ﬁ~ —B)D(n) —



This completes the proof.
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Table 1: Asymptotically optimal bandwidths for p = 0 (no outliers), multi-

plied by 10.
Trend g1 g2
n 500 1000 500 1000
d -0.3 0 0.3 | -0.3 0 0.3 | -0.3 0 0.3 | -0.3 0 0.3
bopt (0) x 10 | 0.77 1.06 1.59 | 0.63 0.92 1.50 | 0.56 0.75 1.07 | 0.46 0.65 1.00
Table 2: Simulated mean, standard deviation, minimum, median and max-
imum of b for n = 500, based on 400 simulations. All values are multiplied
by 10.
g1 g2
d pg Mean SD Min Med Max | Mean SD Min Med Max
0 0.69 0.064 0.57 0.68 0.99 | 0.58 0.024 0.52 0.58 0.66
0.06| 0.71 0.079 0.54 0.70 1.06 | 0.61 0.055 0.51 0.60 0.98
-0.3 0.1 0.75 0.115 0.56 0.73 193 | 0.63 0.064 0.51 0.62 1.17
0.2 0.80 0.119 0.52 0.79 140 | 0.67 0.071 0.52 0.66 0.98
0.5 0.89 0.141 054 0.89 153 | 0.73 0.081 0.55 0.73 1.06
0 0.92 0.139 0.61 091 133 | 0.75 0.079 0.57 0.75 1.06
0.06 | 092 0.146 0.62 091 1.33 | 0.75 0.079 0.55 0.75 1.04
0 0.1 0.93 0.142 0.59 092 144 | 0.76 0.084 0.56 0.74 1.07
0.2 0.93 0.154 054 093 151 | 0.76 0.091 0.56 0.75 1.29
0.5 0.93 0.165 055 093 1.55 | 0.76 0.101 0.53 0.76 1.45
0 1.60 0.793 0.70 1.40 5.00 | 1.09 0.172 0.59 1.09 1.76
0.06 | 1.41 0.638 0.47 1.27 5.00 | 1.01 0.254 0.61 1.00 5.00
0.3 0.1 1.28 0.447 0.64 1.22 5.00 | 096 0.241 0.60 0.95 5.00
0.2 1.14  0.370 0.57 1.10 5.00 | 0.89 0.235 0.60 0.87 5.00
0.5 1.01  0.187 0.54 1.00 1.76 | 0.79 0.106 0.52 0.78 1.23
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Table 3: ASimulated mean, standard deviation, minimum, median and maxi-
mum of b for n = 1000, based on 400 simulations. All values are multiplied

by 10.
g1 g2
d Pe | Mean SD Min Med Max | Mean SD Min Med Max
0 0.58 0.032 049 058 0.79 | 049 0.012 0.47 0.49 0.54
0.056 | 0.62 0.062 0.52 0.61 0.95 | 0.52 0.035 0.47 0.52 0.92
-0.3 0.1 | 0.66 0.067 0.52 0.65 0.97 | 0.55 0.049 047 0.54 1.06
0.2 | 071 0.083 0.52 0.71 1.19 | 0.59 0.052 0.49 0.58 0.86
0.5 | 0.79 0.112 0.53 0.78 1.37 | 0.65 0.062 0.50 0.64 0.92
0 0.80 0.106 0.54 0.80 1.11 | 0.66 0.062 0.53 0.66 0.88
0.06| 0.81 0.112 0.55 0.80 1.25 | 0.66 0.058 0.52 0.65 0.95
0 0.1 | 0.81 0.110 047 0.81 1.24 | 0.66 0.060 0.52 0.66 0.87
0.2 | 0.82 0.112 0.52 0.82 1.23 | 0.66 0.055 0.51 0.66 0.83
0.5 | 0.83 0.109 052 0.84 1.23 | 0.66 0.064 0.52 0.66 0.94
0 1.38 0.465 0.71 1.29 5.00 | 1.05 0.134 0.67 1.04 1.37
0.06 | 1.20 0.302 0.63 1.15 3.15 | 0.95 0.129 0.49 0.95 1.98
0.3 0.1 .11 0.308 0.59 1.07 5.00 | 0.88 0.109 0.55 0.88 1.37
0.2 | 099 0.169 048 098 1.59 | 0.80 0.095 0.52 0.80 1.20
0.5 | 0.86 0.127 048 0.87 1.38 | 0.70 0.071 0.53 0.70 1.20
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Six hours maxima of wind speed at Disentis (Switzerland)
for the years 1997 to 1999
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Figure 1: Wind speed (6-hours-maxima) at Disentis (Switzerland) for the
years 1997 to 1999, fitted least squares (dotted line) and median local linear
trends (full line).
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Figure 2: Periodogram (in log-log-coordinates) of estimated residuals ¢; =
y; — g for the least squares (figure 2a) and the median (figure 2b) local linear
fit.
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Figure 3: Boxplots of B, each based on 400 simulations with n = 500, as a
function of p and different values of d. The trend functions were g; and go

respectively.




g1 with n=1000 and d0=-0.3 g2 with n=1000 and d0=-0.3
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Figure 4: Boxplots of ZA), each based on 400 simulations with n = 1000, as a
function of p and different values of d. The trend functions were g; and go
respectively.



