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Abstract

We investigate the behavior of nonparametric kernel M-estimators in the
presence of long-memory errors. The optimal bandwidth and a central limit
theorem are obtained. It turns out that in the Gaussian case all kernel
M-estimators have the same limiting normal distribution. The motivation
behind this study is illustrated with an example.

1 Introduction

Consider the regression model

1

yi=g(ti) +G(Zi), 1=12,.m, ;= — (1)
where g(t) is an unknown regression function in C®[0, 1] and the error process
e, = G(Z;) is generated by a transformation of a zero mean stationary

Gaussian process Z;,1 € N, with long-memory. Here G : R — R is a
measurable function and if Z denotes a standard normal variable, E[G(Z)] =
0. This paper deals with the nonparametric M-estimation of the regression
function ¢(t) in this model.

This work was motivated by the recent occurrences of storm events that
had disastrous environmental damages in Switzerland and in the neighbor-
ing countries. This resulted in increased need for developing suitable models
for storms, in particular for wind speed. As part of this research, one basic
problem is to estimate time-dependent location parameters of the marginal
wind-speed distributions. The estimator should not be affected by outliers,
or in this case, unusually large observations (extremely strong wind speed
or storms) which in spite of having short duration tend to affects the usual
(mean) location estimators. This in turn implies the development of M-
estimation procedures for time series, in particular time series which may
have long-memory. Figure 1 shows a wind speed series (in 0.1 m/s) mea-
sured at a climate station near Ziirich (source: SMA). This series consists of
hourly maxima during the years 1998-1999. The higher wind speeds during
the winters can be seen as well as the storm Lothar that occurred in the De-
cember of 1999. For the purposes of illustration, the time dependent mean
and approximate median functions were estimated by kernel smoothing of
the log transformed data. For this, we took a kernel that is proportional to



log(periodogram)
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Figure 1: Hourly wind speed maxima in Zurich in 1999, estimated mean
(broken line) and median (solid line) curves fitted to the logarithm of the
original data, and the peridograms (in log-log-coordinates) of the residuals.



the normal density function (truncated on [-1,1]) for an arbitrary bandwidth
equal to 0.05. The estimated mean and the median functions are shown
along with the periodograms for the corresponding residual estimates in the
log-log coordinates. The presence of long-memory in the residuals is evident
as well as the fact that the median estimate is less affected by the fast wind
speed due to Lothar. The changes in the probability distribution function
over time can be seen in particular by noticing the shifts in the positions of
the median curve in relation to the mean. Also, the latter curve is seen to
‘explode’ towards the end of the series, which is the effect of Lothar, whereas
the median curve is less affected by these sudden jumps in the observations.

A standard procedure for kernel estimators is to use the Naradaya-
Watson estimator () of g(¢) obtained by minimizing the function

H©) = = Y K5 - 00"

where b, > 0 is a bandwidth and K(z) is a suitably defined kernel. In the
presence of long-memory, Naradaya-Watson type estimators were considered
among others by Beran (1999), Csorgé & Mielniczuk (1995) and Hall & Hart
(1990). Ghosh (2000) considers kernel estimation for replicated time series
data including long-memory models. Due to the fact that Naradaya-Watson
estimators can be considered as local least squares estimators and the least
squares estimators are not robust, the Naradaya-Watson type estimators are
also not robust.

In this paper we consider the so-called M-smoothers § defined as the
solution of the equation:

K - 0) =0 &)

where 1 : R — R is a measurable function which can be chosen in various
ways such as the classical Huber-1-function () = min(c, max(z, —c)).
Beran (1991) considers M-estimation for (constant) location parameter
for Gaussian Long-memory processes. Robinson(1984) and Hérdle(1989)
also considered robust kernel M-estimators, but in the case of independent
errors. Boente & Fraiman(1989) obtained strong consistency for kernel M-
estimators for mixing processes. Sibbertsen (1999) consider robust paramet-
ric regression models for long-memory models. The aim of this paper is to
study the properties of robust nonparametric M-estimators for long-memory
processes. References to long-memory processes include Beran (1992, 1994),



Cox (1984), Granger & Joyeux (1980), Hosking (1981) and Mandelbrot &
van Ness (1968).

2 Asymptotic results

Define
» 1-A " 2 1
19) = [ Tl ord0<a<s
1
I(K) = / 22K (x)dx;
-1
Vold) = ——— [ [ K@Kz -y dod
Assumptions:

vz(k) = cov(Z;, Ziiy) ~ Cz|k|?*" for d € (0,1/2) and k — oo .
K is a positive symmetric kernel on [—1, 1] with f_11 K(z)dz = 1,

b, > 0 is a sequence of bandwidths such that b, — 0 and nb,, — oo as
n—00.

1) is differentiable almost everywhere with respect to the Lebesgue
measure;

E(t(ei)) = 0, E(*(e:)) < 003
E(¢'(ei)) # 0;

there exists a measurable function My such that |g—;¢(t)| <
Mg(t), E[Mg(t)] < ko < o0

there exists a measurable function Mj such that |g—;¢(t)| <
Mg(t), E[Mg(t)] < k3 < oo

hs(y) = supy<; [¥(y+x) —9(y)| < c almost everywhere for some § > 0
and 0 < ¢ < oo;

for § tending to zero, hs(y) tends to zero almost everywhere;

¥(G(Z)) has Hermite rank m (m > 1) and ¢, denotes the mth Hermite
coefficient.



Theorem 1 Under the above assumptions and if d € (0,0.5), we have

1. Uniform consistency: There exists a sequence of solutions gy such that
supea,1-A]l9n (t) — g(t)] — 0 as n — oo in probability;

2. Bias: E[§(t)—g(t)] = $62¢" (t)I(K)+o(b2) uniformly in A <t < 1—A,;

8. Variance: (nb,)'~2%war(g§(t)) = 2,CPVy(d) uniformly in A < t <
1-Aif3(1-1/m) <d<i.

4. IMSE : If %(1 —1/m) <d< %, the integrated mean square error in
[A,1— A] is given by

[ B0 — gty = v OOED ety oy

o(max(by, (nbn)*1));

5. Optimal bandwidth: If 3(1 —1/m) < d < %, the bandwidth that min-
imizes the asymptotic IMSE is given by: byp = C’optn(Zd_l)/(5_2d),
where Copt = Copt(o) [%w_]l/ (5— Zd)

6. Asymptotic distribution: For every fized t, and (1 —1/m) < d < 3,
(nb)l/Z*dc;lngm/QVw_l/Z[g(t) — g(t)] converges in distribution to Z,
where Zy, is a Hermite process (see Rosenblatt 1984 and Taqqu 1975)
of order m at time 1.

If m = 1 and G(z) = =z, then ¢, = E[Y'(¢)] and Vy(d) =
é fol fol K(z)K (y)|z — y|**~'dzdy so that we have

Corollary 1 If G(z) = =z, then for all ¢ functions satisfying the con-
ditions of Theorem 1 and such that (G(Z)) has Hermite rank 1,

(nb)%fdcglﬂ[g(t) —g(t)] converges to a normal distribution with zero mean
and variance equal to [y [ K(z)K (y)|z — y|** 'dzdy.

Thus the above corollary implies that when mm = 1 and the error process ¢; is
Gaussian, then the limiting distribution of (nb)l/Q_dC’,;lC’gm/ZVJl/Z[g(t) -
g(t)] is the same Gaussian distribution for all M-estimators.



3 Appendix

Proof of Theorem 1: We start with the estimating equation

St (!

)=0.

The uniform consistency follows, in a similar way as in Beran (1991), Hall
& Hart (1991) and Huber (1967), by Taylor expansion of the estimating
equation, the law of large numbers and properties of g and .

As for bias, using Taylor expansion and the assumptions stated above

a(6) = 9(t) = Y- 0l — 9o(0) K (=Y /(0 — a0 K (5=

where E(R,) = o(b?). The result now follows by noting that y; — g(t) =

g(t;) — g(t) + €;, where the expected value of ¢; is zero and

(t: — 1) (t; — 1)
2 6

™'+ R,

g(t)—g(t)+ei = g' (1) (ti—t)+g (1) +g (t) +ei(t), [t"—t| < [ 1],

so that

_nz, 53
U N s

* (ti - t)3
e

Y(yi —g(t) = b(e&) + ¢ (e)lg ()t — 1) +¢ (1) I+

2

8 - +g 0B g 26—l < | dt) —g(0)].
The final result follows from the properties of 1 and K.

The expression for the variance follows from Taylor expansion of the estimat-
ing equation around g and by noting that the v function can be expanded
via a Hermite expansion of order m. Moreover, cov(H,(Z;), H,(Z;)) = 0 if
p # ¢, and equal to [cov(Z;, Z;)]P otherwise. Recall that [cov(Z;, Z;)]P ~
Czli — 724! when |i — j| — oo .

The IMSE and the formula for the optimal bandwidth follows from stan-
dard arguments whereas the limiting distribution of §(¢) follows from Taqqu
(1979) and the expansions above.
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