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Abstract

Data from the automatic monitoring of intensive care patients exhibits trends, outliers,
and level changes as well as periods of relative constancy. All this is overlaid with a high
level of noise and there are dependencies between the different items measured. Current
monitoring systems tend to deliver too many false warnings which reduces their accept-
ability by medical staff. The challenge is to develop a method which allows a fast and
reliable denoising of the data and which can separate artifacts from clinical relevant struc-
tural changes in the patients condition (Gather et al., 2002). A simple median filter works
well as long as there is no substantial trend in the data but improvements may be possible
by approximating the data by a local linear trend. As a first step in this programme
the paper examines the relative merits of the L1 regression, the repeated median (Siegel,
1982) and the least median of squares (Hampel, 1975, Rousseeuw, 1984). The question of
dependency between different items is a topic for future research.
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1 Introduction

On-line monitoring of intensive care patients poses an interesting challenge for statis-

ticians. Figure 1 shows a small excerpt from a series of measurements of the heart

rate of a critically ill patient. An experienced physician analysed the data as being

composed of a downward trend until time point 120 with noise and many clinically

irrelevant outliers. Figure 1 also shows the result of a running mean and of a run-

ning median (Tukey, 1977) with a time window of 31 observations. Although both

methods provide denoising, the mean is clearly effected by the outliers. The median

resists the outliers much more successfully but approximates the more or less linear

trend by a step function.

The superiority of the median in resisting the clinically irrelevant outliers indicates

the advantages of robust statistical functionals. It seems plausible that the difficul-

ties of the median in adapting to local trends can be overcome by the use of robust

regression functionals. As a first step in this programme we investigate the relative
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Figure 1: Time series of the heart rate (dotted), as well as a running mean (dashed)

and a running median (solid) with window width 31 both.
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merits of the L1 regression, the repeated median and the least median of squares.

Of particular interest are

• their ability to reproduce a linear trend in the presence of outliers

• their ability to detect trend changes

• their ability to detect level changes

• the cost of computation.

Traditionally the question of efficiency is also considered and we include some sim-

ulations for completeness. The important properties are however those listed above

and these have little to do with efficiency (Davies and Gather, 1993). The situation

we consider is a special one. The design points form a lattice and the sample size of

about 20 to 30 observations is rather small but is necessitated by the requirement

of being on-line. Clearly the more time one has the better the retrospective results

but then it might be too late for the patient.
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2 Methods for robust linear regression

The robustification of even the simple linear regression model y = a+ bx+ ε poses a

considerable problem. One main weakness of all known high breakdown methods is

their computational complexity. Huber (1995) has expressed this rather pointedly

by saying that the high breakdown methods themselves break down because of their

incomputability. The Hampel-Rousseeuw LMS functional TLMS (Hampel, 1975,

Rousseeuw, 1984) is defined by

TLMS = argmin{(a, b) : Median(yi − a − bxi)
2}. (1)

As the design points lie on a lattice a breakdown can only be caused by outliers in

the y variable. In this situation the breakdown point of TLMS in case of a sample of

size n is �n/2�/n. The computational complexity of TLMS is of order n4 (Stromberg,

1993). This can be reduced but only at the cost of attaining some approximation to

the correct solution. As such approximations are unlikely to be permitted in on-line

monitoring we are obliged to calculate the exact solution. As we are dealing with

sample sizes of the order of 20 or 30 this complexity is no great problem for a single

time series. If however several hundred items have to be treated simultaneously

then the computational complexity may become a problem. In principle (1) may

not have a unique solution but this has not proved to be a problem in practice.

Another high breakdown regression functional is Siegel’s repeated median TRM de-

fined by

β̃RM = medi

(
medj �=i

yi − yj

xi − xj

)
,

µ̃RM = medi(yi − β̃RMxi) .

Its breakdown point is also �n/2�/n and the computational complexity of it is of

order n2. It may therefore be preferred to TLMS even if its small sample performance

should turn out to be worse.

Finally we also consider the L1 regression TL1 defined by

TL1 = argmin{(a, b) :
n∑

i=1

|yi − a − bxi|} . (2)

The L1 regression functional is the one most susceptible to outliers of the three

methods. We calculate TL1 using the descent technique as described in Sposito

(1990) which is slightly faster than other methods for sample sizes n ≤ 30 and

considerably faster for larger sample sizes. The existence of multiple solutions is a

noticeable problem of TL1 but we shall ignore it. The breakdown point of TL1 can
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be calculated from the results of He et al.(1990) and Mizera and Müller (1999). For

design points on a lattice, x1 = −m, . . . , xn = m, i.e. n = 2m + 1, it reduces to

min

{
|I|

2m + 1
:
∑
t∈I

|t| ≥
∑
t∈Ic

|t|, I ⊂ {−m, . . . ,m}
}

.

For large m, this is approximately 1− 1/
√

2 ≈ 0.293. Table 1 gives the exact values

for small m.

Clearly TL1 is much less robust than either TLMS or TRM but its speed of calculation

may make it an interesting candidate if several hundred regressions have to be

performed simultaneously. For this reason we include it in the comparison.

Table 1: Finite-sample replacement breakdown point qm of TL1

m 1 2 3 4 5 6 7 8 9 10 11 12

qm 1/3 2/5 2/7 3/9 4/11 4/13 5/15 5/17 6/19 7/21 7/23 7/25

≈ 0.33 0.40 0.28 0.33 0.36 0.31 0.33 0.29 0.32 0.33 0.30 0.28

3 Comparison of TL1, TRM and TLMS

3.1 The basic simulation model

For a comparison of the finite-sample properties of the distinct regression methods

10000 samples were simulated using the model

Yt = µ + βt + εt, t = −m, . . . , m,

with µ = 0 and for several different slopes β. The error ε was always Gaussian white

noise with mean zero and unit variance. The estimated values of µ and β are used

to provide a value of the signal at time t = 0. This represents a time delay of

m. The value of m is determined by requiring on the one hand a certain stability

(m large) and on the other hand the demands made by the on-line nature of the

application (m small). In this paper we restrict attention to the cases m = 5, 10, 15

which correspond to sample sizes n = 2m + 1 = 11, 21, 31.

3.2 Efficiency

As a first step we give the relative efficiencies of the three functionals TL1, TRM and

TLMS with respect to the least squares functional TL2. As mentioned above efficiency
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Table 2: Efficiencies relative to L2 regression (in percent) measured by the simulated

MSE for TL1 (µ̃L1, β̃L1), TRM (µ̃RM , β̃RM) and TLMS (µ̃LM , β̃LM) for N(0, 1) errors.

m β µ̃L1 µ̃RM µ̃LM β̃L1 β̃RM β̃LM

5 0.0 69.7 66.3 26.9 78.8 69.8 25.1

5 0.1 71.1 66.4 27.4 71.9 70.4 26.1

5 0.2 69.3 64.3 26.3 63.6 68.8 24.7

10 0.0 66.9 63.9 22.4 70.4 70.8 22.7

10 0.1 67.8 64.4 22.9 64.5 71.7 23.4

10 0.2 69.4 66.6 23.1 66.1 73.1 24.2

15 0.0 66.3 64.3 20.7 70.2 71.4 21.6

15 0.1 68.1 65.0 20.7 64.5 72.7 21.0

15 0.2 68.0 65.4 20.4 66.1 73.2 22.0

is not an overriding consideration here. The results are given in Table 2 for the slopes

β = 0, β = 0.1, β = 0.2. They show no great surprise except for the behaviour of

the slope component of TL1 where the relative efficiency is highest for β = 0. This

may well be due to the non-uniqueness of the L1 solution and the result of taking

β = 0 as a starting point for the calculation of the solution. A similar phenomenon

was noted by Terbeck (1996) in the case of the two-way-table.

3.3 Outliers in the steady state

Data in intensive care medicine contain large isolated outliers as well as patches of

outliers. For the sake of brevity we restrict attention to a sample size n = 21 and

replace an increasing number of observations 0(1)10 by additive outliers of increasing

size 0(2)10 at random points in the window. We concentrate on one-sided positive

outliers as those constitute a difficult challenge and are more common than negative

ones in intensive care. The simulations were performed with µ = β = 0. Each

of the 121 cases is simulated 2000 times and the squared bias, variance and mean

square error were calculated. The results are shown graphically in Figure 2 for the

intercept and in Figure 3 for the slope. For the latter, only the MSE is shown as

outliers occurring at positions chosen at random do not cause a bias for the slope.

For 0-6 outliers or for outliers of size 0-4 there is little to choose for the methods.

TL1 shows considerable bias in the intercept for 7 or more outliers. This corresponds

well with Table 1. TRM performs similarly like TL1 for the intercept although it has

the same breakdown point as TLMS. Both TRM and TL1 are dominated by TLMS in

the intercept for 8 or more outliers of any size. With respect to the slope, TRM has
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the smallest MSE among the three functionals in case of many small outliers, while

TLMS is better for many large outliers.

3.4 Level shift and outliers

A situation that is particularly important in on-line monitoring is the occurrence of

a level shift. In order to detect a level shift we need a reliable approximation of the

current level when the last observations in the time window are at another level.

Clearly some definition of a level shift is required to distinguish it from a block

of outliers. The definition we take is that the last five observations are of about

the same size and differ substantially from the preceeding observations (cf. Imhoff

et al., 1998, Gather et al., 2000). We define “substantially” to be a difference in

level of size ω ∈ {3.0, 5.0, 10.0}. To provide a greater challenge we also put some

positive outliers at time points chosen at random. Again the squared bias, variance

and mean square error were calculated for each of the three regression functionals.

The results for the shift ω = 10 are shown in Figures 4 (intercept) and 5 (slope).

Five outliers occurring at the end of the time window cause TL1 to be biased for

the intercept and the slope, while TRM is biased for the slope. The superiority of

TLMS is apparent. It shows much less bias than the other functionals and can even

accommodate up to 7 outliers. The slope component of TLMS shows considerable

variability if a level shift and eight or more outliers occur. The results are of course

less clear cut for a smaller positive shift but in this case TLMS is again superior. In

the case of the slope a moderate number of positive outliers and a negative shift

can balance each other when TL1 and TRM are used. This effect does not occur for

TLMS. In 3.3 as well as here we also simulated a situation with positive and negative

outliers. All methods showed a much smaller bias and MSE then. While the MSE

of TLMS is the largest one in a steady state for up to five outliers, in case of a level

shift we get almost the same results as for only positive outliers.

3.5 Computation times

The computation time needed is important if many variables are to be monitored

simultaneously or other algorithms run concurrently. Table 3 shows the mean times

of applying the functionals to 1000 samples of sizes 21 and 31 using a self-written

FORTRAN program on a Sun workstation ultra spark with 170 MHz and 320 MB

Ram. We remark that for TL1 the time depends on the data as the number of

iterations needed may vary. In case of a steep trend and an additional level shift

the computation time increased to 3.5 (n=21) and 6.2 (n=31) seconds. The time
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Figure 2: Steady state: Simulated squared bias (top), variance (middle) and MSE

(bottom) for the intercept. L1 regression x, repeated median ◦ and LMS �.
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Figure 3: Steady state: Simulated MSE for the slope: L1 regression x, repeated

median ◦ and LMS �.
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needed for computation of TLMS is much larger than that for the other functionals

and increases rapidly with the sample size.

Table 3: Mean time of applying the functionals to 1000 samples of different sizes (in

seconds) for the steady state β = µ = 0.

TL2 TL1 TRM TLMS

n = 21 0.2 2.4 2.6 28.4

n = 31 0.3 4.7 4.4 120.7

3.6 Simulated time series

We now consider a simulated time series of length 250 which is shown in the upper

panel of Figure 6. The signal is overlaid with unit noise and 10% of the observations

are outliers of size 5. These consist of seven single outliers, four patches of two

outliers, two patches of three outliers and one patch of four outliers. The outliers

were put at random time points with the exception of the two outliers at time t = 195

and t = 196 which were put there to make the detection of the level shift at time

t = 201 more difficult. In order to denoise this time series, we apply TL1, TRM and

TLMS using a window width of n = 31. We consider edge effects by extrapolating

the trend estimated in the first and last time window respectively.

In general, TLMS shows more variability, but it is effected only by the very long

outlying pattern at t = 112. The most important difference between the methods in
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Figure 4: Level shift of size 10: Simulated squared bias (top), variance (middle) and

MSE (bottom) for the level. L1 regression x, repeated median ◦ and LMS �.
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Figure 5: Level shift of size 10. Simulated squared bias (top), variance (middle) and

MSE (bottom) for the slope. L1 regression x, repeated median ◦ and LMS �.
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the clinical context can be seen at the time points of the level shifts. Both TL1 and

TRM are effected by the level shifts much earlier than TLMS which is first effected only

at times t = 46 and t = 194 respectively. At these time points there are respectively

ten and eight observations in the current time window which are effected by the level

shift. With respect to the slope the differences between the methods are not very

pronounced, but TLMS preserves the slope changes better than the other functionals

which tend to smooth the changes.

3.7 Two real examples

Finally we consider two real examples from the monitoring of intensive care patients.

As such data often contain clinically irrelevant minor trends we use a time window of

length n = 31 (see Figure 7). The first example is the one used in the introduction.

TL1 and TRM are much less volatile than TLMS which also exhibits a large spike

at t = 63 due to a particular pattern of outliers. TL1 and TRM perform well but

overestimate the signal between t = 110 and t = 140.

The second time series represents the arterial blood pressure of another patient.

Again there are outliers but only one section from t = 225 to t = 231 were judged

to be clinically relevant. TL1 and TRM are both effected by the clinically irrelevant

outliers at about t = 166 but miss the clinically relevant outliers at t = 231. TLMS

performs very well on this data set.

4 Discussion

Alarm systems in intensive care must be capable of on-line detection of clinically

relevant patterns such as trends and level changes. The first step in the development

of such systems is the on-line extraction of the signal which is corrupted by noise and

extreme outliers. In this paper we have compared three robust methods of signal

extraction namely TL1, TRM and TLMS. The comparison used simulated and real data

as they occur in the monitoring of intensive care patients. On the basis of the limited

evidence presented here our tentative conclusions are that TLMS is vary variable and

computationally expensive. TL1 and TRM can withstand a large number of outliers

and are computationally much less expensive. Because of its higher breakdown point

the present paper points to TRM as being a prominent candidate for a first sweep

over the data in practice.
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Figure 6: Simulated time series. Top: Time series (dotted), underlying level (fat

solid) and level estimates: TL1 (dashed-dotted), TRM (dashed), TLMS (solid). Bot-

tom: Slope estimates (same styles). With respect to the level, TL1 and TRM are

almost identical.
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Figure 7: Time series (dotted) representing heart rate (top) and arterial blood

pressure (bottom) as well as some level approximates: TL1 (dashed-dotted), TRM

(dashed), TLMS (solid). TL1 and TRM are almost identical.
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