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Abstract

For the problem of checking linearity in a heteroscedastic nonparametric regression
model under a �xed design assumption we study maximin designs which maximize the

minimum power of a nonparametric test over a broad class of alternatives from the as-

sumed linear regression model. It is demonstrated that the optimal design depends sensi-

tively on the used estimation technique (i.e. weighted or ordinary least squares) and on an

inner product used in the de�niton of the class of alternatives. Our results extend and put

recent �ndings of Wiens (1991) in a new light, who established the maximin optimality of

the uniform design for lack-of-�t tests in homoscedastic multiple linear regression models.

AMS 1991 Subject classi�cations: Primary 62K05; 62G10; Secondary 62G20; 62J05
Keywords and phrases: goodness-of-�t test, weighted least squares, optimal design, maximin
optimality, D1-optimality

1 Introduction

Consider the common nonparametric regression model

Yi;n = m(ti;n) + "i;n i = 1 ; : : : ; n;(1.1)

where the "i;n form a triangular array of rowwise independent zero mean random variables
with variance Var("i;n) = �2(ti;n); m (�); �2(�) are unknown functions and fti;n j i = 1 ; : : : ; n g
is a �xed design in the interval [0; 1]: Parametric assumptions for the regression model are
attractive among practitioners and much e�ort has been devoted to the problem of checking
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the functional form of the regression m(�) [see e.g. Shillington (1979), Neil and Johnson (1985),
Azzalini and Bowman (1993), H�ardle and Mammen (1993), Gonz�alez Manteiga and Cao (1993),
Zheng (1996), Alcal�a, Christ�obal, Gonz�alez Manteiga (1999), Dette (1999, 2000) among many
others].
In the present paper we study the impact of the underlying design on the asymptotic power of
certain kernel based methods for checking linearity which were recently proposed by Azzalini
and Bowman (1993), Gonz�alez Manteiga and Cao (1993) and Dette (1999). In Section 2 we
investigate the asymptotic behaviour of these procedures under �xed alternatives using similar
techniques as proposed by Dette (1999). These results are used for the determination of the
(asymptotically) dominating term in the power function, which turns out to depend on the
variance and regression function and the underlying design. The maximization of the minimum
power (with respect to a certain class of alternatives for variance and regression function) is
considered in Section 3 as an optimal design problem. On the one hand this extends an optimal-
ity criterion introduced by Wiens (1991) (in a slightly di�erent context) to the heteroscedastic
regression model. On the other hand it is demonstrated that the uniform distribution [which
was identi�ed by Wiens (1991) as the maximin optimal design for his criterion] is not necessar-
ily a good choice for testing linearity. Its particular optimality properties depend sensitively on
the method of estimation (i.e. weighted or unweighted least squares) and on the speci�c choice
of an inner product used in the de�nition of the class of alternatives.

2 Testing the lack-of-�t in nonparametric regression |

a new optimality criterion for the choice of a design

Consider the nonparametric regression model (1.1) and a p-dimensional vector g of linearly
independent regression functions g1; : : : ; gp: We are interested in the problem of testing the
hypothesis of linearity

m 2 Up := span fg1; : : : ; gpg(2.1)

where Up = span fg1; : : : ; gpg denotes the linear space generated by the functions g1; : : : ; gp:
Throughout this paper we assume that the errors in (1.1) have uniformly bounded fourth
moments, i.e.

E["4j;n] � C <1 j = 1 ; : : : ; n ;n 2 N ;(2.2)

that the design points fti;n j i = 1 ; : : : ; n gsatisfy a Sacks and Ylvisaker (1970) condition, i.e.

i

n
=

Z ti;n

0

f(t)dt i = 1 ; : : : ; n ;n 2 N ;(2.3)

and that all functions appearing in (2.1) and (2.3) are su�ciently smooth, i.e.

m; f; �2; g1; : : : ; gp 2 C(r)([0; 1]);(2.4)

where r � 2: Let w denote a positive weight function on the interval [0; 1] and �̂n = (#̂1; : : : ; #̂p)
T

be the weighted least squares estimator for the parameter � (with respect to the function w) in
the linear model y = �Tg(t) + "; where g(t) = ( g1(t); : : : ; gp(t))

T :

Our �rst approach of testing the lack-of-�t of the linear regression was introduced by Gonz�alez
Manteiga and Cao (1993) and compares a parametric and nonparametric �t of the regression
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curve [see also H�ardle and Mammen (1993) for a similar method]. To be precise, let K denote
a kernel with compact support, say [�1; 1]; of order r � 2; i.e.

(�1)j
j!

Z 1

�1

ujK(u)du =

8><
>:

1 if j = 0

0 if 1 � j � r � 1

�r > 0 if j = r:

(2.5)

and let h = hn > 0 denote a bandwidth satisfying

h = O(n�
1

2r ); nh2 !1 :(2.6)

De�ning the Nadaraya-Watson weights [see Nadaraya (1964)]

wij =
K
�
ti;n�tj;n

h

�
Pn

`=1K
�
ti;n�t`;n

h

� i; j = 1 ; : : : ; n;(2.7)

we obtain nonparametric estimates of the regression function evaluated at the design points by

m̂(ti;n) =
nX

j=1

wijYj;n:(2.8)

Gonz�alez Manteiga and Cao (1993) used

T (1)
n =

1

n

nX
i=1

n
m̂n(ti;n)�

pX
j=1

#̂jgj(ti;n)
o2

w(ti;n)(2.9)

as a measure of linearity and showed the consistency of the test which rejects linearity for large
values of the statistic T

(1)
n . Similarly, Azzalini and Bowman (1993) proposed the statistic

T (2)
n =

"̂T "̂� "̂TM"̂

"̂TM"̂
(2.10)

for testing the linearity of a homoscedastic nonparametric regression model. Here "̂i = Yi �
�̂Tn g(ti;n) ( i= 1 ; : : : n ), ^" = (

p
w(t1;n)"̂1; : : : ;

p
w(tn;n)"̂n)

T is the vector of (weighted) residuals
formed from a weighted least squares �t, M = ( In �W )T (In �W ) and W = ( wij)

n
ij=1 is the

matrix de�ned by the weights (2.7). It was proved by Dette (2000) that rejecting (2.1) for large

values of T
(2)
n provides a consistent test for linearity even in the heteroscedastic case.

Our �nal measure of linearity was introduced by Dette (1999) as a di�erence of a variance
estimator in the linear regression model (2.1) and the nonparametric regression model. More
precisely, this author considered the statistic

T (3)
n = �̂2

LSE � �̂2
HM ;(2.11)

where �̂2
LSE is the weighted least squares estimator of the variance in the linear regression model

and �̂2
HM is a slightly modi�ed weighted version of the nonparametric estimator introduced by

Hall and Marron (1990). This estimator is de�ned by

�̂2
HM =

1

n

nX
i=1

�
Yi;n �

Xn

j=1
wijYj;n

�2
w(ti;n);
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where the weights are given by (2.7). It was shown by Gonz�alez Manteiga and Cao (1993) and
Dette (1999, 2000) that under the hypothesis of linearity these statistics are asymptotically
normally distributed, that is

n
p
h(T (j)

n � Bj

nh
)!N (0; �2j) j = 1 ;2; 3(2.12)

as n ! 1 , where the asymptotic bias and variance are listed in Table 1 for the di�erent
cases. Similarly, Dette (1999, 2000) established asymptotic normality for the unweighted (i.e.

w � 1) versions of T (2)
n and T (3)

n under �xed alternatives. A generalization of these arguments

to arbitrary weight functions and to the statistic T
(1)
n considered by Gonz�alez Manteiga (1993)

yields under the alternative m 62 Up
p
n(T (j)

n � Bj

nh
�M2

j )! N (0; �2
j) j = 1 ;2; 3;(2.13)

where the asymptotic bias M2
j and variance are listed in Table 2 for the di�erent cases.

A straightforward calculation shows that the power function of the test which rejects the hy-
pothesis of linearity for large values of T

(j)
n (j = 1 ;2; 3); is given by

P (\rejection") = �
n
2
q
n  w

m;�2(�)
o
+ o(1);(2.14)

where � is the probability measure with density f [i.e. d�(x) = f(x)dx]; � denotes the cdf. of
the standard normal distribution,

 w
m;�2(�) =

(M2
j )

2

�2
j

=
[
R 1

0
�2(x)w(x)d�(x)]2R 1

0
�2(x)w2(x)�2(x)d�(x)

(2.15)

=
[
R 1

0
(m� P

w;�
Up
m)2(x)w(x)d�(x)]2R 1

0
(m� P

w;�
Up
m)2(x)w2(x)�2(x)d�(x)

;

� = m�Pw;�
Up
m and Pw;�

Up
denotes the orthogonal projection onto the linear space Up with respect

to the inner product induced by the measure w(x)d�(x): Note that the asymptotic power in
(2.14) also depends on the weight function w: Our preliminary result identi�es an optimal
weight function which maximizes  w

m;�2 uniformly over the class of all regression functions and
over the class of all designs. The proof is a straightforward application of Cauchy's inequality
and therefore omitted.

j Bj �2j

1 t2 � R 1

�1
K2(z)dz 2�2 � R 2

�2
(K �K)2(z)dz

2 t2

s2
[2K(0)� R 1

�1
K2(z)dz] 2�

2

s4
� R 2

�2
[2K �K �K]2(z)dz

3 t2[2K(0)� R 1

�1
K2(z)dz] 2�2 � R 2

�2
[2K �K �K]2(z)dz

Table 1: Asymptotic bias and variance of the statistics T
(j)
n (j = 1 ;2; 3) under the hypothesis

of linearity (see (2.12)). Here s2 =
R 1

0
�2(x)w(x)f(x)dx, t2 =

R 1

0
�2(x)w(x)dx,

�2 =
R 1

0
�4(x)w2(x)dx and K1 �K2 denotes the convolution of K1 and K2:
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j M2
j �2

j

1
R 1

0
�2(x)w(x)f(x)dx 4

R 1

0
�2(x)w2(x)�2(x)f(x)dx

2 1
s2

R 1

0
�2(x)w(x)f(x)dx 4

s4

R 1

0
�2(x)w2(x)�2(x)f(x)dx

3
R 1

0
�2(x)w(x)f(x)dx 4

R 1

0
�2(x)w2(x)�2(x)f(x)dx

Table 2: Asymptotic bias and variance of the statistic T
(j)
n (j = 1 ;2; 3) under the alternative of

nonlinearity [i.e. m 62 Up]; (see (2.13)). Here s2 =
R 1

0
�2(x)w(x)f(x)dx;� = m � P

w;�
Up
m and

P
w;�
Up

denotes the orthogonal projection onto Up with respect to the inner product induced by the
measure w(x)d�(x) = w(x)f(x)dx:

Proposition 1: Let

w�(x) = ��2(x) �
nZ 1

0

��2(t)dt
o�1

(2.16)

then for any m; �2 and any design � (such that the criterion (2.15) is well de�ned)

sup
w
 w
m;�2(�) =  w�

m;�2(�):

Note that Proposition 1 gives a guideline for the choice of the weight function in weighted least
squares estimation provided some knowledge about the heteroscedastic structure is available.
By using weights which are inverse proportional to the variance the power of the tests for detect-
ing departures from any linear model is uniformly maximized. Especially in the homoscedastic
case it is strictly recommended to use ordinary least squares estimation. Note that for the
optimal choice (2.16) the criterion (2.15) reduces to the well-known D1-optimality criterion for
estimating the parameter a in the linear model

��1(x)
n pX
j=1

#jgj(x) + am(x)
o

[see Fedorov (1972)], that is

 w�

m;�2(�) =

Z 1

0

(m� P
w�;�
Up

m)2(x)
d�(x)

�2(x)
:(2.17)

This follows readily by a standard result of approximation theory in Hilbert spaces [see e.g.
Achieser (1956), p. 15]. For the constant weight function (in other words: for the homoscedas-
tic regression model with unweighted least squares estimation) maximin optimal designs with
respect to the criterion (2.17) were discussed by Wiens (1991).
In most cases knowledge about the variance function is not available, so the choice of the weight
function for the least squares estimation is not obvious at all. Nevertheless, the asymptotic
power in (2.14) is an increasing function of  w

m;�2(�), and consequently a good design � for
testing the lack-of-�t of the linear model should somehow maximize the criterion (2.15). Note
that  w

m;�2(�) depends on the particular nonlinear alternative m(�) and the unknown variance
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function �2(�) and is in this sense a local optimality criterion [see Cherno� (1953)]. It is also
worthwhile to mention that the local optimality criterion log w

m;�2(�) is a di�erence of two D1-
optimality criteria [see Pukelsheim (1993), p. 289 and Kiefer and Wolfowitz (1959)] and for this
reason not necessarily concave as a function on the space of all design measures. In general the
lack of concavity complicates the determination of optimal designs, because standard techniques
cannot be applied [see e.g. Silvey (1980)].

3 Minimax designs | why is the uniform distribution

optimal?

In this section we investigate a maximin version of the optimality criterion (2.15). Our approach
is similar as in Wiens (1991), but illuminates the particular optimality properties of the uniform
distribution from a di�erent point of view. To be precise, let v denote a positive weight function
(not necessarily equal to w) and de�ne for �; " > 0

F =
n
(m; �2)j R 1

0
m2(x)v(x)dx � �2; sup

x2[0;1]

jw(x)�2(x)j � "2;(3.1)

R 1

0
m(x)gj(x)v(x)dx = 0; j = 1 ; : : : ; p

o

as the set of pairs (m; �2) of regression and variance functions such that the weighted sup-norm
of �2 is bounded, m is orthogonal to the linear space Up spanned by the regression functions
(with respect to the inner product induced by the measure v(x)dx) and has L2-norm bounded
from below by �2:

De�nition 2: A design �� is called maximin optimal for testing the lack-of-�t of the linear
model Up; if and only if it maximizes

inff w
m;�2(�) j (m; �2) 2 Fg :(3.2)

It might be desirable to use only L2-norms in the de�nition of the set F in (3.2). However, the
following result indicates that this is in general impossible.

Proposition 3: Let p = 1 ; g1(x) = x� 1
2
; � denote the Lebesgue measure and for "; � > 0

~F =
n
(m; �2) j

Z 1

0

m2(x)dx � �2;

Z 1

0

�2(x)dx � "2;

Z 1

0

m(x)g1(x)dx = 0
o
:

then we have for any design � with positive and continuous density in a neighbourhood of the
point x = 1

2
:

inff �
m;�2(�) j (m; �2) 2 ~Fg = 0 :
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Proof: Let h = d�
dx

denote the density of the measure �; assume without loss of generalityR 1

0
g21(t)d�(t) = 1 ;let Mn = [1

2
� 1

n
; 1
2
+ 1

n
] and de�ne a regression and variance function by

mn(x) = �

r
n

2
IMn(x)

�2
n(x) = "2

n

2
IMn(x);

where IMn denotes the indicator function of the set Mn: Obviously, we have (mn; �
2
n) 2 ~F for

all n 2 IN , and a straightforward calculation shows that

P
�;�
U1
m(x) = hg1; m ig1(x);(3.3)

where hg1; m i= R 1

0
g1(t)m(t)d�(t) denotes the inner product with respect to the measure d�(t):

Observing the de�nition of mn, we obtain for the numerator in (2.15) [note that w = �; p =
1; g1(t) = t� 1

2
] Z 1

0

(mn � P
�;�
U1
mn)

2(x)d�(x) = hmn; mni � hmn; g1i2(3.4)

=
n

2
�2
hZ

Mn

h(t)dt�
nZ

Mn

g1(t)h(t)dt
o2i

= �2h(
1

2
) + o(1);

because of the continuity of the function h in a neighbourhood of the point x = 1
2
: A similar

reasoning gives for the denominatorZ 1

0

(mn � P
�;�
U1
mn)

2(x)�2
n(x)d�(x)(3.5)

= hmn; mn�
2
ni � 2hmn; g1ihmn; g1�

2
ni+ hmn; g1i2hg21; �2

ni
=

n

2
�2"2h(

1

2
) + o(1):

Consequently, we obtain from (3.4) and (3.5)

lim
n!1

 �
mn;�2n

(�) = 0 ;

which proves the assertion.
2

Theorem 4: Let �� denote the measure corresponding to the density

v(x)

w(x)

nZ 1

0

v(t)

w(t)
dt
o�1

;

then �� is maximin optimal for testing the lack-of-�t of the linear model Up:
Proof: The proof essentially follows by similar arguments as given in Wiens (1991). More
precisely, we prove in two steps

(1) 8 � 9 (m; �2) 2 F :  w
m;�2(�) �

�2

"2

(2) inf
(m;�2)2F

 w
m;�2(�

�) =
�2

"2
;
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where �� denotes the design with density proportional to v
w
: This establishes maximin optimality

of ��: For the sake of a transparent notation assume without loss of generality that v and w are
appropriately normalized such that

Z 1

0

v(t)

w(t)
dt = 1 :

In order to prove the assertion (2), we note that Pw;��

Up
is the projection with respect to the

inner product induced by the measure w(x)d��(x) = v(x)dx and the de�nition of the set F
yields Pw;��

Up
m = 0 whenever (m; �2) 2 F : For such pairs we have

inf
(m;�2)2F

 w
m;�2(�

�) = inf
(m;�2)2F

[
R 1

0
m2(x)v(x)dx]2R 1

0
m2(x)v(x)w(x)�2(x)dx

� inf
(m;�2)2F

1

"2

Z 1

0

m2(x)v(x)dx =
�2

"2
:

On the other hand it follows for the variance function � 2(x) := "2

w(x)

inf
(m;�2)2F

 w
m;�2(�

�) � inf
(m;�2)2F

 w
m;�2(�

�)

=
1

"2
inf

(m;�2)2F

Z 1

0

m2(x)v(x)dx =
�2

"2
;

which establishes assertion (2). In order to prove (1), let � denote the signed measure � = ����:
By the Hahn decomposition theorem there exists a measurable set A1 with ��(A1) > 0 and
�(A1) > 0; � (Ac1) = ��(A1) < 0: Obviously ��(Ac

1) = ( �� �)(Ac
1) > �(Ac

1) � 0, which implies
the existence of sets A2; : : : ; Ap+2 satisfying �

�(Aj) > 0 such that

Ac
1 =

p+2X
j=2

Aj and �(Aj) � 0 j = 2 ; : : : ; p+ 2 :

Let � = ( �2; : : : ; �p+2)
T denote a nontrivial solution of

p+2X
j=2

�j

Z
Aj

gk(x)v(x)dx = 0 ( k= 1 ; : : : ; p );

de�ne

m�(x) := �

p+2X
j=2

�jIAj
(x) �

np+2X
j=2

�2
j�(Aj)

o�1=2
;

where � is the measure corresponding to the density v (with respect to the Lebesgue measure)
and consider the variance function

�2
�(x) :=

"2

w(x)
:(3.6)

A straightforward calculation shows that (m�; �
2
�) 2 F ; and

P
w;��

Up
m� = P

v;�
Up
m� = 0 ;(3.7)
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which yields

 w
m�;�2�

(��) =
1

"2

Z 1

0

m2
�(x)v(x)dx =

�2

"2
:(3.8)

On the other hand we have from (3.6) - (3.8)

 w
m�;�2�

(�)�  w
m�;�2�

(��) =
1

"2

nZ 1

0

(m� � P
w;�
Up
m�)

2(x)w(x)d�(x)�
Z 1

0

m2
�(x)w(x)d�

�(x)
o

� 1

"2

Z 1

0

m2
�(x)w(x)d�(x) =

�2

"2

Pp+2
j=2 �

2
j

R
Aj
w(x)d�(x)Pp+2

j=2 �
2
j �(Aj)

� 0:(3.9)

A combination of (3.8) and (3.9) yields (1) and completes the proof of the theorem.
2

Note that Theorem 4 contains the result of Wiens (1991) as a special case. More precisely, this
author considered the unweighted least squares estimation (i.e. w(x) � 1) in a homoscedastic
regression for which the criterion reduces to

 �
m;�2(�) =

1

�2

Z 1

0

(m� P�;�
Up
m)2(x)d�(x):

For the set

F� =
n
m j

Z 1

0

m2(x)dx � �2;

Z 1

0

m(x)gj(x)dx = 0; j = 1 ; : : : ; p
o

(3.10)

Wiens (1991) proved the maximin optimality of the uniform design. A careful inspection of the
proof of Theorem 4 shows that the design with density v is maximin optimal, if the Lebesgue
measure dx is replaced by the measure v(x)dx in the de�nition (3.10) of the inner product in
the class of alternatives F�: In other words the optimality property of a particular design with
respect to Wiens (1991) maximin criterion is intimately related to the particular measure used
in the de�nition of the set F�:
We conclude with the discussion of a further important special case which uses the optimal
weight function de�ned in (2.16). The proof is similar to Theorem 4 and therefore omitted.

Corollary 5: The design which maximizes

inf
nZ 1

0

(m� P
��2;�
Up

m)2(x)
d�(x)

�2(x)
j (m; �2) 2 F

o

is given by the measure
v(x)dxR 1

0
v(t)dt

:
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