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Abstract

In the problem of testing the equality of k regression curves from independent samples we

discuss three methods using nonparametric estimation techniques of the regression function. The

�rst test is based on a linear combination of estimators for the integrated variance function in

the individual samples and in the combined sample. The second approach transfers the classical

one-way analysis of variance to the situation of comparing nonparametric curves, while the third

test compares the di�erences between the estimates of the individual regression functions by
means of an L2-distance. We prove asymptotic normality of all considered statistics under the

null hypothesis, local and �xed alternatives with di�erent rates corresponding to the various

cases. Additionally consistency of a wild bootstrap version of the tests is established. In contrast

to most of the procedures proposed in the literature the methods introduced in this paper are

also applicable in the case of di�erent design points in each sample and heteroscedastic errors.

A simulation study is conducted to investigate the �nite sample properties of the new tests and

a comparison with recently proposed and related procedures is performed.

AMS Classi�cation: Primary 62G05
Keywords and Phrases: Nonparametric analysis of covariance, variance estimation, comparison of
regression curves, goodness-of-�t, wild bootstrap.

1 Introduction

An important problem in applied regression analysis is the comparison of a response Y across several
groups in the presence of a covariate e�ect. In general this model can be written as

Yij = gi(tij) + �i(tij)"ij(1.1)

(i = 1 ; : : : ; k; j = 1 ; : : : ; ni); where "ij are independently identically distributed errors, gi; �i are the
regression and variance function in the ith group (i = 1 ; : : : ; k) and the covariate tij varies in the
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interval [0; 1]: In this paper we are interested in the problem of testing the equality of the mean
functions, i.e.

H0 : g1 = g2 = : : : = gk versus H1 : gi 6= gj (9 i; j 2 f 1; : : : ; kg):(1.2)

Much e�ort has been devoted to this problem in the recent literature [see e.g. H�ardle and Marron
(1990), King, Hart and Wehrly (1991), Hall and Hart (1990), Delgado (1993), Young and Bowman
(1995), Kulasekera (1995), Kulasekera and Wang (1997), Hall, Huber and Speckman (1997) or Dette
and Munk (1998)]. Most authors concentrate on the case of two samples (k = 2) and a homoscedastic
error in all groups. H�ardle and Marron (1990) consider a semi-parametric approach in the case of
equal designs (i.e. n1 = : : : = nk; tij = tj; i = 1 ; : : : ; k): King, Hart and Wehrly (1990) and Hall and
Hart (1990) discuss the completely nonparametric homoscedastic (i.e. �2

i (t) = �2
i ; i = 1 ; : : : ; k)

model in the case of equal designs points. While the latter approach can be generalized to the case of
unequal designs points [see Hall and Hart (1990)], Kulasekera (1995) points out some drawbacks of
the test in this case and proposes several alternatives which are applicable in the model (1.1) under the
additional assumption of homoscedasticity in all groups. This approach can detect alternatives which
converge to the null at a rate of order 1=

p
n but the author also mentions some practical problems of

this procedure. On the one hand the level of the test depends sensitively on the smoothing parameter,
on the other hand larger noises yield levels substantially di�erent from the nominal levels [see also
Kulasekera and Wang (1997) for a detailed simulation study and data-driven guidelines for bandwidth
selection]. Moreover, a generalization to a heteroscedastic error or a multivariate predictor seems to
be di�cult. A rather di�erent test was introduced by Young and Bowman (1995) who generalized
the one-way analysis of variance to the model (1.1). Under the assumption of normally distributed
homoscedastic errors over all groups these authors proposed a �2-approximation for the distribution
of the test statistic. Although the �nite sample properties of the test under these assumptions look
promising, a generalization to the general heteroscedastic, nonnormal case does not appear trivial
and the asymptotic properties of this test have not been investigated so far. To our knowledge the
problem of testing the equality of the regression functions in the completely heteroscedastic model
(1.1) with a univariate predictor and unequal design points was �rstly considered by Dette and Munk
(1998) who introduced a simple estimator of the distance

X
i<j

Z 1

0

[gi(t)� gj(t)]
2dt

and proved an asymptotic normal law with a
p
n-rate for a corresponding test statistic. As a

consequence this test is not e�cient from an asymptotic point of view.
In this paper we discuss various tests for the hypothesis (1.2) which are directly applicable in the
general model (1.1), do not require any additional assumptions (as homoscedasticity or equal design
points) and improve on the asymptotic e�ciency of the test of Dette and Munk (1998). Moreover, the
new methods can easily be extended to the case of multivariate predictors. A �rst method for testing
the hypothesis (1.2) is based on a di�erence between a nonparametric variance estimator in the
combined sample fYijjj = 1 ; : : : ; ni; i = 1 ; : : : ; kg and the corresponding estimators in the individual
samples fYijjj = 1 ; : : : ; nig and yields in fact an estimator of an alternative measure of equality. Our
second proposal is to use Young and Bowman's (1995) test also in the situation of a heteroscedatic
error. Finally, we suggest a generalization of King, Hart and Wehrly's (1997) test to the general
setup (1.1), which compares the estimates of the regression functions in the individual samples. This
method is closely related to an approach introduced by Rosenblatt (1975) in the context of testing
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independence and further developed by H�ardle and Mammen (1993) and Gonz�alez Manteiga and Cao
(1993) for the problem of testing the parametric form of a regression function. We prove asymptotic
normality of all proposed test statistics under the null hypothesis and �xed alternatives with di�erent
rates of convergence corresponding to both cases. In Section 2 we introduce the di�erent methods,
state the main asymptotic results and discuss various links between the di�erent approaches. In
Section 3 we investigate the �nite sample properties of some of the proposed tests and perform a
comparison with alternative procedures which have recently been suggested in the literature [see
Hall and Hart (1990), Delgado (1993), Kulasekera (1995), Kusalekera and Wang (1997)]. It is
demonstrated that a wild bootstrap version of the test based on the di�erence of variance estimators
has excellent �nite sample properties and is very often remarkably more powerful than several other
tests proposed in the literature, which can detect alternatives converging to the null at a parametric
rate. Finally, some of the proofs, which are cumbersome, are given in the appendix of Section 4.

2 Testing the equaltiy of regression functions by kernel based

methods

In order to motivate the di�erent methods for testing the hypothesis of the form (1.2) and to in-
vestigate the asymptotic distribution of the corresponding test statistics we need a few regularity
assumptions. Let N =

Pk
i=1 ni denote the total sample size and assume

ni
N

= �i +O(
1

N
); i = 1 ; : : : ; k(2.1)

for given constants �1; : : : �k 2 (0; 1): Let r1; : : : ; rk denote positive densities on the interval [0; 1]
such that the design points tij satisfyZ tij

0

ri(t)dt =
j

ni
; j = 1 ; : : : ; ni; i = 1 ; : : : ; k(2.2)

[see Sacks and Ylvisacker (1970)]. Throughout this paper we will assume the continuity of the
variance functions �2

i (�) ( i= 1 ; : : : ; k) and additionally that the design densities in (2.2) and the
regression functions are su�ciently smooth, i.e.

gj; rj 2 C(r)[0; 1]; j = 1 ; : : : ; k(2.3)

where r � 2 and C(r)[0; 1] denotes the space of r-times continuously di�erentiable functions on the
interval [0; 1]: Let

ĝi(t) =

Pni
j=1K

�
t�tij
hi

�
YijPni

j=1K
�
t�tij
hi

�(2.4)

denote the Nadaraya-Watson estimator of the ith regression function gi and hi the corresponding
bandwidth [see Nadaraya (1964) and Watson (1964)]. We assume that the kernel in (2.4) is supported
on a compact interval, say [�1; 1]; and of order r � 2 [see Gasser, M�uller and Mammitzsch (1985)],
i.e.

(�1)j
j!

Z 1

�1

K(u)uj du =

8><
>:

1 : j = 0

0 : 1 � j � r � 1

kr 6= 0 : j = r;

(2.5)
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where
R 1

�1
K2(u)du <1.

If the hypothesis of equal regression functions is valid, the total sample could be used to estimate
the common regression, i.e.

ĝ(t) =

Pk
i=1

Pni
j=1K

�
t�tij
h

�
YijPk

i=1

Pni
j=1K

�
t�tij
h

� ;(2.6)

where h is a further bandwidth. For the sake of simplicity the asymptotic analysis of the statistics
proposed below is performed for the case of equal bandwidths hi = h (i = 1 ; : : : ; k) in the estimators
(2.4) and (2.6) where the bandwidth h satis�es

Nh2 !1 ; h = O(N�2=(4r+1)) :(2.7)

2.1 Comparing variance estimators

Our �rst measure of equality between the di�erent regression functions is obtained by comparing the
nonparametric variance estimators of the individual samples with a nonparametric variance estimator
of the pooled sample. To be precise let

�̂2
i =

1

ni

niX
j=1

(Yij � ĝi(tij))
2 (i = 1 ; : : : ; k)(2.8)

denote the estimator of the variance of the ith sample introduced by Hall and Marron (1990), where ĝi
is the nonparametric estimator of the regression function in the ith sample de�ned in (2.4). Although
these authors considered only a homoscedastic model it will be shown in the appendix (see Lemma
4.0) that in the heteroscedastic model �̂2

i consistently estimates the integrated variance functionR 1

0
�2
i (t)ri(t)dt of each sample (i = 1 ; : : : ; k). In the following we will consider the analogue of (2.8)

for the total sample size

�̂2 =
1

N

kX
i=1

niX
j=1

(Yij � ĝ(tij))
2:(2.9)

It is proved in the appendix that under the hypothesis of equal regression curves this is essentially
an estimator for a convex combination of the individual integrated variance functions, i.e.

kX
i=1

�i

Z 1

0

�2
i (t)ri(t) dt:

For these reasons we propose as a test statistic

T
(1)
N = �̂2 � 1

N

kX
i=1

ni�̂
2
i :

The asymptotic properties of the statistic T
(1)
N are listed in the following theorem.
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Theorem 2.1. Assume that (2.1), (2.2), (2.3), (2.5), (2.7) are satis�ed.

(i) If the hypothesis of equal regression functions is valid, then the statistic T
(1)
N satis�es

N
p
h(T

(1)
N �B

(1)
k h2r � 1

Nh
D

(1)
k )

D�! N (0; �2
k;1)

where

B
(1)
k = k2r

Z 1

0

((g1 �R)
(r) � g1 �R

(r))2(t)
dt
�R(t)

� k2r

kX
j=1

�j

Z 1

0

((g1rj)
(r) � g1r

(r)
j )2(t)

dt

rj(t)
(2.10)

D
(1)
k =

�Z 1

�1

K2(u) du� 2K(0)

� kX
j=1

�Z 1

0

�j�
2
j (t)rj(t)
�R(t)

dt�
Z 1

0

�2
j (t) dt

�
;

the asymptotic variance is given by

�2
k;1 = 2

Z 1

�1

(2K �K �K)2(u) du
n kX

j=1

Z 1

0

�4
j (t)
��jrj(t)

�R(t)
� 1
�2

dt(2.11)

+
kX

j=1

kX
l=1
l6=j

Z 1

0

�2
j (t)�

2
l (t)

�jrj(t)�lrl(t)
�R2(t)

dt
o
;

K �K is the convolution of the kernel with itself and �R denotes the convex combination of the
underlying densities, i.e.

�R(t) =
kX

j=1

�jrj(t):

(ii) Under the alternative gi 6= gj (9 i; j 2 f 1; : : : ; kg) the statistic T
(1)
N satis�es

p
N(T

(1)
N �M2

k;1)
D�! N (0; 
2k;1)

where

M2
k;1 =

kX
j=1

kX
l=1
l<j

Z 1

0

(gj � gl)
2(t)

�jrj(t)�lrl(t)
�R(t)

dt(2.12)

and the asymptotic variance is given by


2k;1 = 4
kX

j=1

Z 1

0

� kX
l=1
l6=j

(gj(t)� gl(t))
�lrl(t)
�R(t)

�2

�2
j (t)�jrj(t) dt:(2.13)

2.2 An ANOVA-type statistic

The following method for testing the equality of the regression functions was introduced by Young and
Bowman (1995) in the context of a homoscedastic normal distribution for the error over all k samples.
The corresponding statistic is closely related to the di�erence of variance estimators introduced in
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Section 2.1. It will be shown in this section that the method proposed by these authors is also
applicable in the general situation of nonnormal heteroscedastic errors. The test statistic of Young
and Bowman (1995) is motivated by the classical one-way analysis of variance and given by

YN =
N

ŝ2
T

(2)
N ;

where

T
(2)
N =

1

N

kX
i=1

niX
j=1

[ĝ(tij)� ĝi(tij)]
2;(2.14)

ĝ, ĝ1; : : : ; ĝk are de�ned in (2.6) and (2.4), respectively, and

ŝ2 =
1

2(N � k)

kX
i=1

ni�1X
j=1

(Yi;j+1 � Yi;j)
2

is a pooled mean of the di�erence based estimators for the variances in the individual samples [see
e.g. Rice (1984)]. The statistic ŝ2 is also a consistent estimator of

s2 =
kX

j=1

�j

Z 1

0

�2
j (t)rj(t)dt(2.15)

which follows by a straightforward calculation [see also Kulasekera and Wang (1997) for a related

result under homoscedasticity]. Note that there is a strong link between the statistics T
(1)
N and T

(2)
N .

While the statistic T
(1)
N is comparing the regression functions through residual sums of squares the

statistic T
(2)
N compares the curves through the �tted values. In the case of a �xed design, equal

homoscedastic variances in all groups and a normally distributed error Young and Bowman (1995)
proposed a �2-approximation of the corresponding test statistic under the null hypothesis. These
restrictions allow a rapid and accurate calculation of the p-value [see Young and Bowman (1995) for
more details]. It is also worthwhile to mention that the use of the same smoothing parameters in the
estimates of the individual regression function yields a direct cancelation of the bias.
Obviously, the numerator of YN given in (2.14) is an estimate for an appropriate measure of equality

of the k regression curves and we will also use T
(2)
N as a test statistic for the hypothesis (1.2) in the

general situation of not necessarily homoscedastic and normally distributed errors. The following
result makes this heuristic argument more precise and provides the asymptotic properties of the
statistic (2.14). As a by product it also proves consistency of the test proposed by Young and
Bowman (1995) if the required assumptions for the �nite sample size approximation used by these
authors are not satis�ed. Moreover critical values could be obtained from an approximation by a
normal distribution or a wild bootstrap procedure as proposed in Section 3.

Theorem 2.2. Assume that (2.1), (2.2), (2.3), (2.5), (2.7) are satis�ed .

(i) If the hypothesis of equal regression curves is valid, then the statistic T
(2)
N de�ned in (2.14)

satis�es

N
p
h(T (2)

N +B(2)
k h2r � D

(2)
k

Nh
)

D�! N (0; �2
k;2)
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where B
(2)
k = B

(1)
k is de�ned in (2.10),

D
(2)
k =

Z 1

�1

K2(u)du
kX

j=1

Z 1

0

�
1� �j

rj(t)
�R(t)

�
�2
j (t)dt;(2.16)

and the asymptotic variance is given by

�2
k;2 = 2

Z 1

�1

(K �K)2(u)du
n kX

j=1

Z 1

0

�4
j (t)
��jrj(t)

�R(t)
� 1
�2

dt(2.17)

+
kX

j=1

kX
l=1
l6=j

Z 1

0

�2
j (t)�

2
l (t)

�jrj(t)�lrl(t)
�R2(t)

dt
o

(ii) Under the alternative gi 6= gj (9 i; j 2 f 1; : : : ; kg) the statistic T
(2)
N de�ned in (2.14) satis�es

p
N(T

(2)
N �M2

k;2)
D�! N (0; 
2k;2)

where M2
k;2 = M2

k;1 and 
2k;2 = 
2k;1 are de�ned in (2.12) and (2.13), respectively.

2.3 Pairwise comparison of regression curves

Following Rosenblatt (1975), H�ardle, Mammen (1993) and Gonz�alez Manteiga, Cao (1993) an obvious
alternative test of the hypothesis (1.2) could be obtained from a pairwise comparison of the estimators
of the regression functions. To this end we consider the statistic

T
(3)
N =

kX
i=1

i�1X
j=1

Z 1

0

[ĝi(t)� ĝj(t)]
2wij(t)dt(2.18)

where wij(�) are positive weight functions satisfying wij = wji (1 � j < i � k): A similar statistic
was considered by King, Hart and Wehrly (1991) in the case of two samples with equal design points
(here the integral was approximated by a sum and a constant weight was used). A calculation similar
as given in the proof of Lemma 4.0 of the appendix shows that

E[T
(3)
N ] =

(
1
Nh
D

(3)
k +O( 1

N
) under H0

1
Nh
D

(3)
k +M2

k;3 +O( 1
N
) under H1

(2.19)

where the constants D
(3)
k ;M2

k;3 are de�ned by

D
(3)
k =

Z
K2(u) du

kX
j=1

Z 1

0

�2
j (t)

�jrj(t)

� kX
l=1
l6=j

wjl(t)
�
dt;(2.20)

M2
k;3 =

kX
j=1

kX
l=1
l<j

Z 1

0

(gj � gl)
2(t)wjl(t) dt:(2.21)

Note that in contrast to Theorem 2.1 and 2.2 there does not appear a term of order h2r in (2.19),
which is in fact a result of the application of equal bandwidths in the estimates of the regression
functions in the individual samples. The following result can be proved using similar arguments as
given for the proof of Theorem 2.1 in the appendix [see Section 4].
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Theorem 2.3. Assume that (2.1), (2.2), (2.3), (2.5), (2.7) are satis�ed.

(i) If the hypothesis of equal regression curves is valid, then the statistic T
(3)
N de�ned in (2.18)

satis�es

N
p
h(T

(3)
N � 1

Nh
D

(3)
k )

D�! N (0; �2
k;3)

where the asymptotic variance is de�ned by

�2
k;3 =

Z 1

0

(K �K)2(u) du
n kX

j=1

Z 1

0

�4
j (t)

�2jr
2
j (t)

� kX
l=1
l6=j

wjl(t)
�2

dt(2.22)

+
kX

j=1

kX
l=1
l6=j

Z
�2
j (t)�

2
l (t)

�jrj(t)�lrl(t)
w2
jl(t) dt

o
:

(ii) Under the alternative gi 6= gj (9 i; j 2 f 1; : : : ; kg) the statistic T
(3)
N de�ned in (2.18) satis�es

p
N(T

(3)
N �M2

k;3)
D�! N (0; 
2k;3)

where M2
k;3 is de�ned in (2.21) and the asymptotic variance is given by


2k;3 = 4
kX

i=1

kX
j=1
j 6=i

kX
l=1
l6=i

Z 1

0

(gi(t)� gl(t))(gi(t)� gj(t))wji(t)wli(t)
�2
i (t)

�iri(t)
dt:

Remark 2.4. It is worthwhile to mention that there is a strong link between the three statistics
T

(1)
N , T

(2)
N , T

(3)
N , which can nicely be explained by looking at the classical one-way analysis of variance

model, where
Xij � N (�i; �

2) ; j = 1 ; : : : ; ni; i = 1 ; : : : ; k:

Here the denominator of the corresponding F -test corresponds to the statistic T (2)
N of Young and

Bowman (1995) and can be decomposed as

kX
i=1

ni

�
�Xi� � �X��

�2
=

kX
i=1

niX
j=1

�
Xij � �X��

�2
�

kX
i=1

niX
j=1

�
Xij � �Xi�

�2
;(2.23)

where the �rst term on the right hand side is an estimator of the variance from the pooled sample
(assuming equal means in all k samples) and the second term is a combination of the variance
estimators in the individual samples. Consequently the right hand side of (2.23) corresponds to the

statistic T
(1)
N introduced in Section 2.1. Therefore in linear models both statistics are equivalent,

while for nonparametric models there appear di�erences because the cross product terms involve a
nonvanishing bias. Similary, we have the representation

kX
i=1

ni

�
�Xi� � �X��

�2
=

1

2N

kX
i=1

kX
j=1

ninj

�
�Xi� � �Xj�

�2

which establishes an analogy between the statistics T
(2)
N and T

(3)
N .
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2.4 Some asymptotic power comparisons

As a consequence of Theorem 2.1 - 2.3 we obtain consistent, asymptotic level � tests by rejecting
the hypothesis of equal regression curves whenever

N
p
h(T

(i)
N � B

(i)
k h2r � D

(i)
k

Nh
) > �k;iu1�� ; i = 1 ;2; 3(2.24)

where B
(3)
k = 0, B

(i)
k ; D

(i)
k , �2

k;i are de�ned in Theorem 2.1 - 2.3 and have to be replaced by consistent
estimators. In the following section we will illustrate the performance of a wild bootstrap version of
the tests given by (2.24), because the speed of convergence under the null hypothesis is usually rather
slow [see also Azzalini and Bowman (1993), Hjellvik and Tj�stheim (1995) or Alcal�a, Christ�obal and
Gonz�alez Manteiga (1999) for similar observations].
Moreover, the second part of Theorem 2.1 - 2.3 provides an important advantage in the application
of these tests (compared to most of the procedures proposed in the literature). It is well known
that in the problem of testing goodness-of-�t the essential error is the type II error and a large
observed p-value does not give any empirical evidence for the null hypothesis [see e.g. Berger and
Delampady (1987), Staudte and Sheater (1990)]. The second part of Theorem 2.1 - 2.3 now provides
an approximation for the type II error of the test by

P ("rejection") � �
�pN

k;i

n
M2

k;i �
u1���k;i

N
p
h

o�
� �

�pNM2
k;i


k;i

�
; i = 1 ;2; 3:(2.25)

We remark that the approximation by a normal distribution under �xed alternatives is more reliable
than under the null hypothesis, because it is similar to the approximation by a normal distribution
in the classical central limit theorem (see the proof in Section 4.3). Moreover, the second part of
Theorem 2.1 - 2.3 can also be used for testing the precise hypotheses [see Berger and Delampady
(1987)]

H0 :M
2
k;i > � versus H1 : M

2
k;i � �(2.26)

where � is a su�ciently small constant such that whenever M2
k;i � � the experimenter agrees to

analyze the data under the assumption of equal regression curves. Note that the rejection of H0 in
(2.26) allows us to show that the regression functions are \close" at a controlled error rate.

Remark 2.5. The possibility of choosing the weight functions in (2.18) leaves some freedom for the

statistic T
(3)
N and using

wij =
�iri�jrj

�R
(2.27)

gives a statistic with an asymptotically similar behaviour as described in Theorem 2.1 and 2.2 for
the tests based on T

(1)
N and T

(2)
N . This weight function is very natural because under the additional

assumption of homoscedasticity it maximizes the asymptotic power for comparing the curves gi and
gj with respect to the choice of the weight function. To be precise assume that k = 2 ;then a
straightforward calculation [see also the derivation of (2.25)] shows that the probability of rejection
is an increasing function of

(M2
2;3)

2


22;3
=

(
R 1

0
(g1 � g2)

2(t)w12(t)dt)
2

�2
R 1

0
(g1 � g2)2(t)w2

12(t)(
1

�1r1(t)
+ 1

�2r2(t)
)dt

(2.28)

� 1

�2

Z 1

0

(g1 � g2)
2(

1

�1r1(t)
+

1

�2r2(t)
)�1dt =

(M2
2;1)

2


22;1
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where M2
2;1 = M2

2;2 and 
22;1 = 
22;2 are de�ned in (2.12) and (2.13), respectively, and the second
line follows from Cauchy's inequality. Now discussing the equality in (2.28) shows that the maximal
power (with respect to the choice of the weight function w12) is obtained by the weight (2.27). For

these reasons the tests based on T
(2)
N [Young and Bowman (1995)] and T

(1)
N [proposed in Section

2] should be prefered because they automatically adapt to the best possible (but unknown) weight
function for the maximization of the power at any �xed alternative.

Remark 2.6. In the remaining part of this section we will concentrate on the asymptotic behaviour of
the di�erent tests with respect to local alternatives. For the sake of transparency we will concentrate
on the case of k = 2 samples. There is no di�erence in the discussion of the general situation
of k � 3 regression functions. We will adopt an approach of Rosenblatt (1975), who proposed to
consider alternatives of the form

g2(�) = g1(�) + �Ns
� � � c


N

�
(2.29)

where s is a continuously di�erentiable function of order r and c 2 [0; 1] a given constant. �N and

N are sequences converging to 0 such that

�2N
N =
1

N
p
h
; �N = o(1) ; 
�1

N = o(h
�2r
2r�1 )(2.30)

(a typical example in the case r = 2 is h = N�2=9, �N = N�13=36 and 
N = N�1=6). For alternatives
of the form (2.29) satisfying (2.30) it follows by similar arguments as given in the appendix for the
proof of Theorem 2.1 that

N
p
h
�
T

(i)
N � B

(i)
k h2r � D

(i)
k

Nh

�
D�! N (�(i); �2

k;i)(2.31)

where the constants B
(i)
k , D

(i)
k and �2

k;i are de�ned in Theorem 2.1 -2.3 (note that B
(3)
k = 0) and

�(i) =

8>>>><
>>>>:

Z 1

0

s2(x)dx � �1�2r1(c)r2(c)

�1r1(c) + �2r2(c)
if i = 1 ;2

Z 1

0

s2(x)dx � w12(c) if i = 3

(2.32)

A similar result is obtained for local alternatives of the form (2.29) with c = 0 and 
N = 1, i.e.
g1 = g2 + s � (Nph)�1=2. In this case (2.31) is still valid, with a di�erent expectation in the limit
distribution, i.e.

�(i) =

8>>>><
>>>>:

Z 1

0

s2(x)
�1�2r1(x)r2(x)

�1r1(x) + �2r2(x)
dx if i = 1 ;2

Z 1

0

s2(x)w12(x)dx if i = 3 :

(2.33)

For an asymptotic analysis of the three testing procedures with respect to these local alternatives
we use the optimal (but unknown) weight function (2.27) for w12 in the de�nition of the statistic

10



T
(3)
N . The comparison can now easily be performed by looking at the di�erent variances in (2.31) and

observing the relationZ
(K �K)2(x)dx �

Z
K2(x)dx �

Z
(2K �K �K)2(x)dx

which has been proved by Biedermann and Dette (2000). From this inequality it follows that �2
2;2 =

�2
2;3 � �2

2;1 and consequently the procedures based on T
(2)
N , T

(3)
N are asymptotically more e�cient as

the test based on T
(1)
N .

However, some care is necessary with this interpretation, because the speed of convergence in (2.31)
is rather slow and the asymptotic analysis usually requires a rather large sample size [see Azzalini
and Bowman (1993), Hjellvik and Tj�stheim (1995) or Alcal�a, Christ�obal and Gonz�alez Manteiga
(1999) for similar observations]. For realistic sample sizes the approximation (2.25) indicates a similar
behaviour of all three methods. Moreover, for moderate sample sizes the bias has always to be taken
into account and a superiority of one of the three methods can not be established in general. In the
examples presented in Section 3 we observed a much better performance of the test based on T

(1)
N .

2.5 Generalizations: Di�erent bandwidths, smoothing techniques and
random design

Remark 2.6. Note that we have assumed the equality of all bandwidths in Section 2.1 - 2.3, which
substantially simpli�es the presentation of the asymptotic results and their proofs. Nevertheless in
practice it is strictly recommended to choose the bandwidth hi (i = 1 ; : : : ; k) and h of each estimator
ĝi and ĝ according to the size of the corresponding sample. If there exist constants b1; : : : ; bk 2 (0; 1)
such that these bandwidths satisfy (2.7) and

hi
h
= bi +O(

1

N
) ; i = 1 ; : : : ; k(2.34)

as N !1 , similar results as given in Theorem 2.1 - 2.3 can be established, where the constantsB
(i)
k

and D
(i)
k additionally depend on the proportions b1; : : : ; bk (note that B

(3)
k does not vanish in this

case). For more details we refer to Neumeyer (1999) and Dette and Neumeyer (1999).

Remark 2.7. It should also be pointed out that the asymptotic results given in Theorem 2.1 - 2.3
do not depend on the special structures of the smoothing procedures used in the construction of the
variance estimators. We used the Nadaraya-Watson estimator for the calculation of residuals because
for this choice the proofs given in the appendix are more transparent. For example, a local polynomial
estimator [see Fan (1992) or Fan and Gijbels (1996)] can be treated in the same way with greater
mathematical complexity but without changing the structure of the asymptotic results. Although
local polynomial estimators have various advantages for the estimation of the regression function,
particulary at the boundaries, our simulation results showed that this superiority is not re
ected
in the problem of testing the equality of regression functions. A heuristical explanation of this
observation is that the methods presented in Section 2.1 - 2.3 essentially avoid the direct estimation
of the regression function and only use estimates for quantities smoothed by linear integral operators.
Nevertheless there are still theoretical advantages of using local smoothing in the de�nition of the
statistics T

(i)
N (i = 1 ;2; 3). On the one hand the use of these estimators allows weaker assumptions

on the design densities, because only the continuity of the design density is required (for local
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polynomials of of odd order). On the other hand the bias of local polynomials of odd order is the
same for all curves irrespective of the design pattern. More precisely, if equal bandwidths are used
for the local polynomial estimation of the individual regression functions [see (2.4) and (2.6)] the

terms B
(1)
k and B

(2)
k in Theorem 2.1 and 2.2 vanish, while the kernel K in the asymptotic bias D

(i)
k

and in asymptotic variance �2
k;i (i = 1 ;2; 3) of Theorem 2.1 - 2.3 has to be replaced by the equivalent

higher order kernel corresponding to the local polynomial estimator [see Wand and Jones (1995)]. A
similar observation was made by Alcal�a, Christ�obal and Gonz�alez Manteiga (1999) in the context of
testing for a parametric form of the regression function.

Remark 2.8. The test statistics T
(1)
N , T

(2)
N and T

(3)
N can be directly used for a multivariate predictor

and a random design. Under the assumption of a random design ti1; : : : ; tini are realizations of i.i.d.
random variables Ti1; : : : ; Tini with positive density ri on the interval [0; 1] (i = 1 ; : : : ; k). In this
case the �rst parts of the statements of Theorem 2.1 - 2.3 regarding the asymptotic behaviour of
the statistics und the hypothesis of equal regression functions remain valid and consistent tests are
obtained exactly as in the case of a �xed design. However, it is worthwhile to mention that under the
alternative a di�erent asymptotic variance is obtained in all three cases. Consider for example the
situation of Theorem 2.1 in the case of k = 2 independent random samples. Under a �xed alternative
the asymptotic variance of the statistic T (1)

N is given by

Var(T (1)
N ) =

4�1�2
N

Z
(g1 � g2)

2(t)(�2r2(t)�
2
1(t) + �1r1(t)�

2
2(t))

r1(t)r2(t)

(�1r1 + �2r2)2(t)
dt

+
�1�

2
2

N
Var

�
(g1 � g2)

2(T11)
�2r

2
2(T11) + 2 �1r1(T11)r2(T11)

(�1r1 + �2r2)2(T11)
)

�

+
�21�2
N

Var

�
(g1 � g2)

2(T21)
�1r

2
1(T21) + 2 �2r1(T21)r2(T21)

(�1r1 + �2r2)2(T21)
)

�
+ o(

1

N
):

3 Simulation results

In similar problems it was observed by several authors [see e.g. Azzalini and Bowman (1993), Hjellvik
and Tj�stheim (1995) or Alcal�a, Christ�obal and Gonz�alez Manteiga (1999)] that the asymptotic
normal distribution under the null hypothesis does not provide a satisfactory approximation of the
distribution of the statistics T

(i)
N for reasonable sample sizes. For these reasons many authors propose

the application of bootstrap procedures in these problems [see e.g. Hall and Hart (1990) or H�ardle
and Mammen (1993)]. In this section we study the �nite sample performance of a wild bootstrap
version of the test (2.24) and compare its power properties with several other procedures suggested
in the literature. Some remarks regarding the consistency of this procedure are given in Section 4.4
of the appendix.
Because all simulation results published so far consider the two sample case with equal homoscedastic
variance (i.e. �2

1(t) = �2
2(t) = �2); and we are interested in a comparison, we mainly restrict our

study to this case. Moreover we will concentrate on the statistic T
(1)
N based on the di�erence of

variance estimators, because it performed better than T
(2)
N (see Section 3.2) and it does not require

the speci�cation of a weight function (in contrast to the statistic T
(3)
N ). In our study we used in fact

an asymptotic equivalent test statistic given by

~TN = �̂2 � n2
1

N�1
�̂2
1 �

n2
2

N�2
�̂2
2

12



where n1=�1; n2=�2 are normalizing constants converging to 1, such that �̂2
i is unbiased for constant

regression gi [see Hall and Marron (1990)]. More precisely, these constants are de�ned by

�` = n` � 2

nX̀
i=1

w
(`)
ii +

nX̀
i;k=1

(w
(`)
ik )

2; ` = 1 ;2;

where

w
(`)
ik =

K( t`i�t`k
h`

)Pn`
s=1K( t`i�t`s

h`
)
; ` = 1 ;2 :

We used the common wild bootstrap of residuals based on a nonparametric �t [see H�ardle and
Mammen (1993)]

"̂ij = Yij � ĝ(tij) ; j = 1 ; : : : ; ni; i = 1 ;2(3.1)

where ĝ is the estimator of the regression curve from the total sample de�ned in (2.6). Let V �
ij

(i = 1 ;2, j = 1 ; : : : ; ni) denote i.i.d. random variables with masses (
p
5 + 1) =2

p
5 and (

p
5�1)=2p5

at the points (1�p5)=2 and (1 +
p
5)=2 (note that this distribution satis�es E�[V �

ij] = 0 ; E�[V �2
ij ] =

E�[V �3
ij ] = 1). Finally de�ne "�ij = V �

ij "̂ij and the bootstrap sample by

Y �
ij = ĝ(tij) + "�ij ; j = 1 ; : : : ; ni; i = 1 ;2 :(3.2)

For the test at level � the null hypothesis is rejected if ~TN is bigger than the corresponding quantile
of the bootstrap distribution of ~TN ; i.e.

~TN > ~T �
N(b(B(1��)c);(3.3)

where ~T �
N(i) denotes the ith order statistic of the bootstrap sample ~T �

N;1; : : : ; ~T
�
N;B: In our study we

resampled B = 200 times and used 1000 simulations for the calculation of the level and power in
each scenario. Moreover, we used the same bandwidth for the generation of the bootstrap sample
(3.1) and the de�nition of the test statistic ~TN . The consistency of this procedure is indicated in
Section 4.4.
We considered two samples at the design points

t1i =
i� 1

n1 � 1
; i = 1 ; : : : ; n1

(3.4)

t2j =
j

n2
; j = 1 ; : : : ; n2

and normally distributed errors in both samples unless it is stated otherwise, i.e.

"1`; "2` � N (0; �2):(3.5)

The kernel was chosen as K(x) = 3
4
(1� x2)I[�1;1](x) (which yields r = 2) and the bandwidths are

hi =

 R 1

0
�2
i (t)dt

ni

!3=10

=

�
�2
i

ni

�3=10

; i = 1 ;2(3.6)

h =

 
n1

R 1

0
�2
1(t)dt+ n2

R 1

0
�2
2(t)dt

(n1 + n2)2

!3=10

=

�
�2
1

n1 + n2

�3=10

(3.7)
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where the last equalities follow in the case of homoscedasticity and �2
1 = �2

2 : Note that we use di�erent
bandwidths for the estimators ĝ, ĝ1 and ĝ2 in our study.

(n1; n2) (10, 10) (10,20) (10,30) (10, 50) (20,20)

� = 10% 0.099 0.096 0.099 0.105 0.101

� = 5% 0.061 0.051 0.051 0.054 0.054

� = 2.5% 0.032 0.030 0.026 0.023 0.025

(n1; n2) (20,30) (20,50) (30,30) (30,50) (50,50)

� = 10% 0.098 0.108 0.099 0.090 0.108

� = 5% 0.054 0.050 0.048 0.047 0.048

� = 2.5% 0.029 0.028 0.025 0.026 0.025

Table 3.1. Simulated level of the test (3.3) for various sample sizes and standard normal errors.
The designs are uniform [according to (3.4)] and g1(t) = g2(t) = t2:

3.1 Simulation of the level

Our �rst example investigates the approximation of the level by the wild bootstrap version of the
test (2.24). Firstly we considered quadratic regression functions g1(t) = g2(t) = t2; standard normal
distributed errors and di�erent sample sizes n1; n2 = 10 ;20; 30; 50: The results are summarized in
Table 3.1 which shows the simulated rejection probabilities of the wild bootstrap test with level 10%,
5% and 2.5%. Our second Table 3.2 shows the corresponding results for the regression functions
g1(t) = g2(t) = cos( �t):We observe a reasonable approximation of the level by the wild bootstrap
procedure in all cases, even in the case of very small samples [see also Hall and Hart (1990), who
obtained a similar conclusion for their resampling procedure]. Note that for the more oscillating
regression functions gi(t) = cos(�t) the approximation is slightly worse compared to the more smooth
case g1(t) = g2(t) = t2; which can be partially explained by a larger bias in the variance estimators
�̂2; �̂2

1 and �̂2
2 :

(n1; n2) (10, 10) (10,20) (10,30) (10, 50) (20,20)

� = 10% 0.098 0.114 0.107 0.092 0.097

� = 5% 0.054 0.056 0.055 0.052 0.053

� = 2.5% 0.032 0.030 0.028 0.028 0.031

(n1; n2) (20,30) (20,50) (30,30) (30,50) (50,50)

� = 10% 0.100 0.096 0.098 0.095 0.101

� = 5% 0.053 0.048 0.050 0.051 0.052

� = 2.5% 0.023 0.026 0.031 0.028 0.027

Table 3.2. Simulated level of the test (3.3) for various sample sizes and standard normal errors.
The designs are uniform [according to (3.4)] and g1(t) = g2(t) = cos(�t):
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As pointed out by a referee it might be of interest to investigate the approximation of the level under
a heteroscedastic error distribution. To this end we considered the quadratic regression functions
g1(t) = g2(t) = t2 and the variance functions

�2
1(t) = �2

2(t) =
etR 1

0
exdx

;(3.8)

�2
1(t) =

etR 1

0
exdx

; �2
2(t) =

e2tR 1

0
e2xdx

;(3.9)

where the �rst and second scenario correspond to the case of equal and unequal variance functions,
respectively, and we normalized such that

R 1

0
�2
i (t)dt = 1 ( i= 1 ;2). The results are listed in

Table 3.3 and 3.4 and demonstrate an excellent performance of the wild bootstrap procedure under
heteroscedasticity.

(n1; n2) (10, 10) (10,20) (10,30) (10, 50) (20,20)

� = 10% 0.100 0.088 0.094 0.092 0.101

� = 5% 0.057 0.046 0.048 0.059 0.049

� = 2.5% 0.032 0.026 0.022 0.020 0.024

(n1; n2) (20,30) (20,50) (30,30) (30,50) (50,50)

� = 10% 0.088 0.093 0.095 0.092 0.106

� = 5% 0.046 0.047 0.055 0.047 0.048

� = 2.5% 0.023 0.020 0.031 0.021 0.028

Table 3.3. Simulated level of the test (3.3) for various sample sizes and standard normal but
heteroscedastic errors. The designs are uniform [according to (3.4)], g1(t) = g2(t) = t2, and the
variance functions given by (3.8).

(n1; n2) (10, 10) (10,20) (10,30) (10, 50) (20,20)

� = 10% 0.097 0.084 0.087 0.084 0.105

� = 5% 0.046 0.050 0.043 0.041 0.052

� = 2.5% 0.035 0.028 0.019 0.017 0.029

(n1; n2) (20,30) (20,50) (30,30) (30,50) (50,50)

� = 10% 0.089 0.086 0.095 0.091 0.103

� = 5% 0.051 0.044 0.050 0.047 0.044

� = 2.5% 0.026 0.021 0.033 0.020 0.030

Table 3.4. Simulated level of the test (3.3) for various sample sizes and standard normal but
heteroscedastic errors. The designs are uniform [according to (3.4)], g1(t) = g2(t) = t2, and the
variance functions given by (3.9).
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3.2 The test of Kulasekera and Wang (1997)

Recently Kulasekera (1995) proposed a new testing procedure for the hypothesis (1.2) in the case of
two samples with homoscedastic errors. Because this test is applicable for di�erent designs in both
groups and can detect alternatives converging to the null at a rate 1=

p
n; we will discuss it in a little

more detail. The test is based on the quasi residuals

e1i = Y1i � ĝ2(t1i) ; i = 1 ; : : : ; n1

e2j = Y2j � ĝ1(t2j) ; j = 1 ; : : : ; n2

and the corresponding partial sums

�i(t) =

bnitcX
j=1

eijp
ni
; 0 < t < 1; i = 1 ;2:

The test statistic proposed by Kulasekera (1995) is de�ned as suitable function of

K
(i)
1 =

1

niS2
ni

niX
k=1

�2
i (
k

ni
) ; i = 1 ;2

or

K(i)
2 =

1

S3
ni

Z 1

0

�2
i (t�)d�i(t) ; i = 1 ;2

where S2
ni
is a consistent estimators of �2

i (i = 1 ;2): Note that this test does not require equal designs

in both groups. Kusalekera and Wang (1997) investigated the functionsW1 = minfK(1)
1 ; K

(2)
1 g,W2 =

minfjK(1)
2 j; jK(2)

2 jg and proposed a method for choosing the bandwidth, which roughly speaking,
maximizes the power at a speci�c alternative. As pointed out in the latter paper the data-based
smoothing parameters in
ate the size of the test and the discrepancy from the actual size depends
largely on the variability of the reponses and the sample size. For these reasons Kulasekera and
Wang (1997) used simulation (for g1 = g2 = 0) for �nding the critical points.
In Table 3.5 we compare the test (3.3) with the procedure proposed by Kulasekera and Wang (1997).
For the sake of comparison we chosed the setup considered in Table 3 of the latter paper, that is
normally distributed errors with variance �2 = 0 :5 and the following regression functions

(a) g1(x) = �g2(x) = 0 :5 cos(2�x)

(b) g1(x) = �g2(x) = 0 :5 sin(2�x)

(c) g1(x) = g2(x)� x = cos(�x)(3.10)

(d) g1(x) = g2(x)� 1 = cos(�x)

(e) g1(x) = g2(x)� x = cos(2�x)

(f) g1(x) = g2(x)� 1 = cos(2�x):

Comparing the results of Table 3.5 with the corresponding results of Kulasekera and Wang's (1997) in
Table 3 of their paper we observe that the test proposed in this paper yields a substantial improvement
with respect to the power in all considered cases. Note that Kulasekera and Wang (1997) chosed
the bandwidths such that the power is maximized (at the cost of a simulated level) and we could
obtain a further improvement in power for the test (3.3) by applying a similar technique. Although
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this would have theoretical advantages, we do not recommend this approach in practice, because this
data based choice of the smoothing parameter usually yields a large discrepancy between the size of
the test and the actual level.

model n1 = n2 = 25 n1 = n2 = 50

� = 10% � = 5% � = 2 :5% � = 10% � = 5% � = 2 :5%

(a) 0.824 0.736 0.621 0.985 0.971 0.952

(b) 0.814 0.738 0.653 0.979 0.964 0.936

(c) 0.988 0.975 0.955 1.000 1.000 1.000

(d) 0.987 0.973 0.952 1.000 1.000 1.000

(e) 0.979 0.961 0.946 1.000 1.000 1.000

(f) 0.983 0.973 0.943 1.000 1.000 0.998

Table 3.5. Simulated rejection probabilities of the test (3.3) for various alternatives given in (3.10).
The designs are uniform [according to (3.4)] and the errors are normal with variance �2 = 0 :5:

We remark that the test (3.3) can only detect alternatives converging to the null at a rate (N
p
h)�1=2

[which gives N�17=40 for the choice (3.7)], while Kulasekera and Wang's (1997) test achieves the para-
metric rate N�1=2: On a �rst glance this is a contradiction to the results obtained in our simulation.
However, these observations can be explained by the fact that the method of the lastnamed authors
implicitly uses a sample splitting. One sample is used for estimating the regression while the other
sample is used for the calculation of the residuals.
For the sake of comparison we also studied the performance of the test of Young and Bowman (1995)
in this situation. The results are listed in Table 3.6. We observe a larger power of the test (3.3)
based on the di�erences of variance estimators in most cases.

model n1 = n2 = 25 n1 = n2 = 50

� = 10% � = 5% � = 2 :5% � = 10% � = 5% � = 2 :5%

(a) 0.388 0.236 0.136 0.897 0.801 0.660

(b) 0.772 0.651 0.547 0.990 0.975 0.956

(c) 0.789 0.683 0.592 0.973 0.947 0.902

(d) 0.998 0.996 0.991 1.000 1.000 1.000

(e) 0.833 0.711 0.620 0.997 0.996 0.989

(f) 0.983 0.969 0.940 1.000 1.000 0.998

Table 3.6. Simulated rejection probabilities for the test of Young and Bowman (1995) for various
alternatives given in (3.10). The designs are uniform [according to (3.4)] and the errors normal with
variance �2 = 0 :5:
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3.3 The tests of Delgado (1993) and Dette and Munk (1998)

The test recently proposed by Dette and Munk (1998) was the �rst procedure which was applicable
in the general model (1.1). This test is based on a simple estimate of an L2-distance between the
regression functions which does not depend on a smoothing parameter. Although this procedure
can only detect alternatives which converge to the null at a rate of N�1=4; the test has promising
�nite sample properties with respect to the quality of approximation of the level [see Dette and
Munk (1998)]. Moreover, a comparison with Delgado's (1993) test, which can detect alternatives
converging to the null at a rate N�1=2; indicates that for realistic sample sizes this test is comparable
with procedures which are e�cient from an asymptotic point of view. Delgado's (1993) test requires
equal design points and is based on the sup-norm of a marked empirical process of the pairwise
di�erences from both samples.
In order to compare the new test (3.3) with these procedures we considered the setup given in Section
4.2 of Dette and Munk (1998), i.e. n1 = n2 = 15 ;30; (g1 � g1)(t) � 1; (g1 � g2)(t) = sin(2�t) and
three types of error distributions [see also Hall and Hart (1990)]

(i) ( N1;N2)

(ii) ( jN1j �
p
2=�; jN2j �

p
2=�)(3.11)

(iii) ( jN1j �
p
2=�;

p
2=� � jN2j):

The results are listed in Table 3.7 and a comparison of the power at the 5% level shows the following.
While Delgado's (1993) test performs better for the smooth alternative g1�g2 � 1; Dette and Munk's
(1998) test is more e�cient for the oscillating alternative. The new test (3.3) has a reasonable
performance in both cases. On the one hand it is substantially more powerful as Delgado's test for
the oscillating alternative and as Dette and Munk's test for the smooth alternative. On the other
hand it is comparable with these procedures in the remaining cases.

(g1 � g2)(t) 1 sin(2�t)

("1i; "2i) (i) (ii) (iii) (i) (ii) (iii)

2.5% 0.552 0.936 0.875 0.176 0.517 0.500

ni = 15 5% 0.648 0.963 0.913 0.255 0.615 0.604

10% 0.734 0.977 0.941 0.347 0.703 0.713

2.5% 0.870 0.999 0.992 0.386 0.863 0.772

ni = 30 5% 0.925 0.999 0.998 0.492 0.912 0.917

10% 0.954 1.000 1.000 0.608 0.951 0.950

Table 3.7. Simulated rejection probabilities of the test (3.3) in the scenario considered by Dette and
Munk (1998) Section 4.2. The design is uniform [according to (3.4)] and the error distributions are
given by (3.11).

Our �nal example compares the new test with the bootstrap test introduced by Hall and Hart
(1990). These authors mainly considered the case of equal design points and brie
y mentioned a
generalization of their approach to the general case. However, Kulasekera (1995) observed that this
generalization is not reliable and recommends the application of Hall and Hart's test only in the case
of equal designs. Note that this test can detect alternatives converging to the null at a rate N�1=2:
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For a comparison with our test we chosed the setup of Table 3 in Hall and Hart (1990). The test
proposed by these authors depends on a smoothing parameter p and Table 3 in Hall and Hart (1990)
lists results for three choices of p: More precisely the errors are given by (3.11) and the alternatives
by g1 � g2 = 1 and ( g1 � g2)(x) = x where g2 = 0 :The results are given in Table 3.8 and show that
the new test is a serious competitor. In most cases we observe a better power for the new test (3.3),
even if we compare it with the best choice of p in the procedure of Hall and Hart.

(g1 � g2)(t) 1 t

("1i; "2i) (i) (ii) (iii) (i) (ii) (iii)

2.5% 0.550 0.928 0.874 0.197 0.493 0.493

ni = 15 5% 0.643 0.957 0.931 0.276 0.612 0.591

10% 0.738 0.982 0.960 0.384 0.726 0.712

2.5% 0.666 0.989 0.966 0.237 0.624 0.591

ni = 20 5% 0.752 0.992 0.982 0.335 0.724 0.685

10% 0.844 0.999 0.990 0.447 0.817 0.779

2.5% 0.848 1.000 0.995 0.369 0.762 0.782

ni = 30 5% 0.898 1.000 0.998 0.487 0.847 0.832

10% 0.939 1.000 0.999 0.584 0.906 0.899

2.5% 0.990 1.000 1.000 0.541 0.941 0.940

ni = 50 5% 0.995 1.000 1.000 0.649 0.969 0.962

10% 0.999 1.000 1.000 0.741 0.983 0.981

Table 3.8. Simulated rejection probabilities of the test (3.3) in the scenario considered by Hall and
Hart (1990), Table 3. The design is uniform [according to (3.4)] and the error distributions are given
by (3.11).

4 Appendix: Proofs

4.1 Preliminaries

We will restrict ourselves to a proof of Theorem 2.1 in the case of k = 2 regression functions. The
general case k � 3 and the asymptotic results given in Theorem 2.2 and 2.3 for T

(2)
N and T

(3)
N follow

by exactly the same arguments with an additional amount of algebra and notation. For the sake of
a transparent notation we will omit all indices referring to the number of samples and to the speci�c
statistic discussed in Section 2. In other words we write B instead of B

(1)
k , TN instead of T

(1)
N etc.

Recalling the de�nition of the weights

w
(i)
jk =

K( tij�tik
h

)Pni
l=1K(

tij�til
h

)
; i = 1 ;2(4.1)

the Nadaraya-Watson estimators (2.4) of the individual regression functions evaluated at the points
tij can be rewritten as

ĝi(tij) =

niX
k=1

w
(i)
jkYik; i = 1 ;2:
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In order to obtain a similar representation for the estimator in the combined sample de�ne the
weights

wlk;ij =
K( tlk�tij

h
)P2

l0=1

Pnl0
k0=1K(

tl0k0�tij
h

)
:(4.2)

The Nadaraya Watson estimator (2.6) evaluated at the points tij using the total sample can now be
written as

ĝ(tij) =
2X

l=1

nlX
k=1

wlk;ijYlk:(4.3)

We �nally introduce the notation, �1 = �1=�2 and

�(t) = r1(t) +
1

�1
r2(t) =

1

�1
[�1r1(t) + �2r2(t)](4.4)

which will be used frequently throughout this section. Our �rst result establishes the asymptotic
expansion for the bias of the estimator T

(1)
N .

Lemma 4.0. Assume that (2.1), (2.2), (2.3), (2.5), (2.7) are satis�ed, then

E[�̂i
2] =

Z 1

0

�2
i (t)ri(t) dt+ dih

2r + o(h2r) +O(
1

ni
)(4.5)

+
1

nih

�Z 1

�1

K2(u) du� 2K(0)

�Z 1

0

�2
i (t) dt

where the constant di is de�ned by

di = k2r

Z 1

0

[(giri)
(r)(t)� gir

(r)
i (t)]2

1

ri(t)
dt

(i = 1 ; : : : ; k): Moreover, if the null hypothesis of equal regression functions is valid we have for the
estimator (2.9) in the case k = 2

E[�̂2] = �1

Z 1

0

�2
1(t)r1(t) dt+ �2

Z 1

0

�2
2(t)r2(t) dt(4.6)

+
1

Nh

�Z 1

�1

K2(u) du� 2K(0)

�Z 1

0

�2
1(t)�1r1(t) + �2

2(t)�2r2(t)

(�1r1 + �2r2)(t)
dt

+ Ch2r + o(h2r) + O(
1

N
);

where the constant C is de�ned by

C = k2r

Z 1

0

[(g1(�1r1 + �2r2))
(r) � g1(�1r1 + �2r2)

(r)]2(t)
dt

(�1r1 + �2r2)(t)
:

Under the alternative we obtain for the estimator (2.9) in the case k = 2

E[�̂2] = �1

Z 1

0

�2
1(t)r1(t) dt+ �2

Z 1

0

�2
2(t)r2(t) dt+M2 +O(h2r) +O(

1

Nh
)(4.7)
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where the constant M2 is de�ned by

M2 = �1�2

Z 1

0

(g1(t)� g2(t))
2 r1(t)r2(t)

�1r1(t) + �2r2(t)
dt:(4.8)

Proof of Lemma 4.0. The �rst part (4.5) of the Lemma is obtained from the representation (4.6)
by considering equal variance functions and design densities. The proof of (4.6) and (4.7) essentially
follows the arguments of Hall and Marron (1990) and we will only mention the main modi�cations
here, which take into account the mixture of two design densities. De�ne

�ij = gi(tij)�
2X

l=1

nlX
k=1

wlk;ijgl(tlk)(4.9)

then the expectation of the variance estimator (2.9) from the total sample splits into two parts, i.e.

E[�̂2] =
1

N

2X
i=1

niX
j=1

�2
ij +

1

N

2X
i=1

niX
j=1

E

��
�i(tij)"ij �

2X
l=1

nlX
k=1

wlk;ij�l(tlk)"lk

�2�
:(4.10)

A straightforward but tedious calculation shows

�ij =

�
1

�(tij)
+R(tij)

� �
�2
�i
r3�i(tij)(gi � g3�i)(tij)(4.11)

+
1

h

Z
K(

tij � t

h
)
�
(g1r1)(tij)� (g1r1)(t) + gi(tij)f�(t)� �(tij)g

+ ( g2
1

�1
r2)(tij)� (g2

1

�1
r2)(t)

�
dt

�
+O(

1

Nh
) +O(h2r)

=
�2
�i
r3�i(tij)(gi � g3�i)(tij)

�(tij)
+O(hr) +O(

1

Nh
);(4.12)

uniformly in j = 1 ; : : : ; ni; i = 1 ;2. Here the function R is de�ned by

R(x) =
�(x)� 1

h

R
K
�
x�t
h

�
�(t) dt

�2(x)
= O(hr) ;(4.13)

where the estimate on the right hand side follows from the di�erentiability of the design densities
and the moment assumptions on the kernel.
Now the evaluation of the �rst term in (4.10) gives for g1 6= g2

1

N

2X
i=1

niX
j=1

�2
ij = �1

Z 1

0

( 1
�1
r2)

2(x)r1(x)

�2(x)
(g1 � g2)

2(x) dx+ �2

Z 1

0

r2(x)r
2
1(x)

�2(x)
(g1 � g2)

2(x)dx

+ 2 �1

Z 1

0

1
�1
r2(x)r1(x)

�2(x)
(g1 � g2)(x)

� 1
h

Z
K(

x� t

h
)
n
(g1r1)(x)� (g1r1)(t)

+g1(x)(�(t)� �(x)) + (g2
1

�1
r2)(x)� (g2

1

�1
r2)(t)

o
dt
�
dx
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+ 2�1

Z 1

0

R(x)

�(x)
(
1

�1
r2(x)(g1 � g2)(x))

2r1(x) dx

+ 2 �2

Z 1

0

r2(x)r1(x)

�2(x)
(g2 � g1)(x)

�1
h

Z
K(

x� t

h
)
n
(g1r1)(x)� (g1r1)(t)

+ g2(x)(�(t)� �(x)) + ( g2
1

�1
r2)(x)� (g2

1

�1
r2)(t)

o
dt
�
dx

+ 2 �2

Z 1

0

R(x)

�(x)
(r1(x)(g2 � g1)(x))

2r2(x) dx+O(h2r) +O(
1

Nh
)

= �1

Z 1

0

1
�1
r2(x)r1(x)

�(x)
(g1 � g2)

2(x) dx

+ 2 �1

Z 1

0

1
�1
r2(x)r1(x)

�2(x)
(g1 � g2)(x)

� 1
h

Z
K(

x� t

h
)
n
(g1r1)(x)� (g1r1)(t)

+ g1(x)(�(t)� �(x)) + ( g2
1

�1
r2)(x)� (g2

1

�1
r2)(t)� (g1r1)(x) + ( g1r1)(t)

� g2(x)(�(t)� �(x))� (g2
1

�1
r2)(x) + ( g2

1

�1
r2)(t)

o
dt
�
dx

+ 2 �1

Z 1

0

R(x)(g1 � g2)
2(x)r1(x)

1

�1
r2(x) dx+O(h2r) +O(

1

Nh
)

= �1

Z 1

0

1
�1
r2(x)r1(x)

�(x)
(g1 � g2)

2(x) dx+ 2 �1

Z 1

0

1
�1
r2(x)r1(x)

�2(x)
(g1 � g2)(x)

�
� 1
h

Z
K(

x� t

h
)(g1(x)� g2(x))(�(t)� �(x)) dt

�
dx

+ 2 �1

Z 1

0

R(x)(g1 � g2)
2(x)r1(x)

1

�1
r2(x) dx+O(h2r) +O(

1

Nh
)

= �1

Z 1

0

1
�1
r2(x)r1(x)

�(x)
(g1 � g2)

2(x) dx+O(h2r) +O(
1

Nh
)

= M2 +O(h2r) +O(
1

Nh
);(4.14)

where we used the de�nition of 1=�1 = �2=�1 in the �rst equality, the de�nition of R(x) in (4.13)
and of M2 in (4.8) for the last step. Under the assumption of equal regression curves g1 = g2 (4.11)
simpli�es and we obtain observing (2.7) and (4.4)

1

N

2X
i=1

niX
j=1

�2
ij = �1

Z 1

0

�
1

�(x)
+R(x)

�2 �1
h

Z
K(

x� t

h
)
n
(g1�)(x)� (g1�)(t)

+ g1(x)(�(t)� �(x))
o
dt +O(

1

Nh
)
�2
r1(x) dx

+ �1

Z 1

0

�
1

�(x)
+R(x)

�2 �1
h

Z
K(

x� t

h
)
n
(g1�)(x)� (g1�)(t)

+ g1(x)(�(t)� �(x))
o
dt +O(

1

Nh
)
�2 1
�1
r2(x) dx+O(

1

N
)
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= �1

Z 1

0

h 1

�(x)
+R(x)

i2
�(x)

�
hrkr

�
g1�

(r) � (g1�)
(r)
�
(x) + o(hr) +O(

1

Nh
)

�2

dx

+O(
1

N
)

= h2rk2r�1

Z 1

0

1

�(x)
[g1�

(r) � (g1�)
(r)]2(x) dx+ o(h2r) +O(

1

N
)

= h2rC + o(h2r) +O(
1

N
)(4.15)

For the second term in (4.10) we obtain by a straightforward but cumbersome calculation

U =
1

N

2X
i=1

niX
j=1

E

��
�i(tij)"ij �

2X
l=1

nlX
k=1

wlk;ij�l(tlk)"lk

�2�
(4.16)

=
1

N

2X
i=1

niX
j=1

�2
i (tij)�

2

N

2X
i=1

niX
j=1

�2
i (tij)wij;ij +

1

N

2X
i=1

niX
j=1

2X
l=1

nlX
k=1

�2
l (tlk)w

2
lk;ij

=
2X

i=1

�i

Z 1

0

�2
i (t)ri(t) dt

+
2X

i=1

1

Nh

"
�2K(0)

Z 1

0

�2
i (t)

�i
�1
ri(t)

�(t)
dt+

1

h

Z Z
K2(

t� x

h
)
�2
i (x)

�i
�1
ri(x)

�(t)
dt dx

#

+O(
1

N
) +O(

hr

Nh
) +O(

1

(Nh)2
)

= �1

Z 1

0

�2
1(t)r1(t) dt+ �2

Z 1

0

�2
2(t)r2(t) dt

+
1

Nh

h Z
K2(u) du� 2K(0)

in Z 1

0

�2
1(x)r1(x)

�(x)
dx+

Z 1

0

�2
2(x)

1
�1
r2(x)

�(x)
dx
o
+O(

1

N
)

and the assertions (4.6) and (4.7) follow from (4.10), (4.14), (4.15) and (4.16).
2

4.2 Proof of Theorem 2.1: the null hypothesis of equal regression func-
tions

In a �rst step we introduce the notation [observing (4.1)]

�ij = gi(tij)�
niX
k=1

w
(i)
jk gi(tik); j = 1 ; : : : ; ni; i = 1 ;2(4.17)

and decompose the centered version of TN as follows

TN � E[TN ] = �̂2 � n1

N
�̂2
1 �

n2

N
�̂2 � E[TN ] = R1;N +R2;N(4.18)
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where

R1;N =
2

N

2X
i=1

niX
j=1

�ij

�
�i(tij)"ij �

2X
l=1

nlX
k=1

wlk;ij�l(tlk)"lk
�

(4.19)

� 2

N

2X
i=1

niX
j=1

�ij

�
�i(tij)"ij �

niX
k=1

w
(i)
jk�i(tik)"ik

�

= T̂
(1)
N + T̂

(2)
N ;

R2;N =
1

N

2X
i=1

niX
j=1

�
�i(tij)"ij �

2X
l=1

nlX
k=1

wlk;ij�l(tlk)"lk

�2
(4.20)

� 1

N

2X
i=1

niX
j=1

E

��
�i(tij)"ij �

2X
l=1

nlX
k=1

wlk;ij�l(tlk)"lk

�2�

� 1

N

2X
i=1

niX
j=1

�
�i(tij)"ij �

niX
k=1

w
(i)
jk�i(tik)"ik

�2

+
1

N

2X
i=1

niX
j=1

E

��
�i(tij)"ij �

niX
k=1

w
(i)
jk�i(tik)"ik

�2�

=
7X

j=3

T̂
(j)
N :

Here the random variables T̂ (j)
N are de�ned by

T̂
(i)
N =

1

N

niX
j=1

�ij"ij ; i = 1 ;2(4.21)

T̂
(2+i)
N =

1

N

niX
j=1

kij("
2
ij � 1) ; i = 1 ;2(4.22)

T̂
(4+s)
N =

1

N

nsX
i=1

nsX
l=1
l6=i

r
(s)
il "si"sl ; s = 1 ;2(4.23)

T̂
(7)
N =

1

N

n1X
i=1

n2X
j=1

�tij"1i"2j(4.24)

and the coe�cients �ij are given by

�ij = 2
�
�ij � �ij �

2X
l=1

nlX
k=1

�lkwij;lk +

niX
k=1

�ikw
(i)
ik

�
�i(tij)(4.25)

(j = 1 ; : : : ; ni; i = 1 ;2) where �ij and �ij are de�ned in (4.9) and (4.17), respectively. The coe�cients

kij; r
(s)
il ; �tij in the representation of R2;n are de�ned as follows:

kij =
�
2w

(i)
jj � 2wij;ij +

2X
l=1

nlX
k=1

w2
ij;lk �

niX
k=1

(w
(i)
ik )

2
�
�2
i (tij) ; i = 1 ;2;(4.26)
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r
(s)
il =

�
2w

(s)
il � 2wsi;sl +

2X
j=1

njX
k=1

wjk;siwjk;sl �
nsX
k=1

w
(s)
ki w

(s)
kl

�
�s(tsi)�s(tsl) ; s = 1 ;2;(4.27)

�tij =
�
� 2w1i;2j � 2w2j;1i + 2

2X
l=1

nlX
k=1

wlk;1iwlk;2j

�
�1(t1i)�2(t2j) :(4.28)

The next Lemmata specify the asymptotic behaviour of the terms T̂
(j)
N on the right hand side of (4.19)

and (4.20). Note that all terms in these representations are centered, i.e. E[T̂
(j)
N ] = 0 ( j= 1 ; : : : ;7):

Lemma 4.1. If the assumptions of Theorem 2.1 are satis�ed we have under the hypothesis of equal
regression curves

T̂
(j)
N

H0= op(
1

N
p
h
); j = 1 ;2

and under the alternative

Var(T̂
(i)
N )

H1=
4

N

(�1�2)
2

�i

Z 1

0

(g1 � g2)
2(t)�2

i (t)
r21(t)r

2
2(t)

ri(t)(�1r1(t) + �2r2(t))2
dt+ o(

1

N
) ; i = 1 ;2:

Proof: We only prove the assertion for the statistic T̂
(1)
N ; the remaining case follows by exactly the

same arguments. From (4.21) it follows

Var(T̂
(1)
N ) =

1

N2

n1X
i=1

�2
1i(4.29)

where, by (4.25) and (4.12)

�1i = 2
n 1

�1
r2(t1i)

�(t1i)
(g1 � g2)(t1i)(4.30)

� 1

n1h

2X
l=1

nlX
k=1

�2
�l
r3�l(tlk)

�(tlk)
(g1 � g2)(tlk)K

� tlk � t1i
h

� 1

�(tlk)

o
�1(t1i)

+O(hr) +O(
1

Nh
)

=
2 1
�1
r2(t1i)�1(t1i)

�(t1i)
(g1 � g2)(t1i) +O(hr) +O(

1

Nh
)

uniformly with respect to i = 1 ; : : : ; n1: The last equality in (4.30) uses the fact that the integral
approximations of the two sums have the same absolute value with opposite signs. Now (4.29) implies
under the hypothesis of equal regression curves

Var(T̂
(1)
N ) = o(

1

N2h
)

and an application of Chebysev's inequality proves the �rst part of the Lemma. For the second part
we obtain from (4.29) and (4.30)

Var(T̂
(1)
N ) =

1

N2

n1X
i=1

�2 1
�1
r2(t1i)�1(t1i)

�(t1i)
(g1 � g2)(t1i)

�2
+

n1

N2
(O(hr) +O(

1

Nh
))

=
4

N
�1

Z 1

0

(g1 � g2)
2(t)�2

1(t)
r1(t)(

1
�1
r2)

2(t)

�2(t)
dt+ o(

1

N
);
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which completes the proof, by the de�nition of � and �1:
2

Lemma 4.2. Under the assumptions of Theorem 2.1 we have

T̂ (j)
N = op(

1

N
p
h
) ; j = 3 ;4:

Proof. Note that E[T̂ (j)
N ] = 0 for j = 3 ;4: Recalling the de�nition of the coe�cients k1i in (4.26) we

obtain

k1i =
n2K(0)

n1h1

1

r1(t1i)
� 2K(0)

n1h

1

�(t1i)
+

1

n1h2

Z
K2(

s� t1i
h

)
1

�(s)
ds(4.31)

� 1

n1h21

Z
K2(

t� t1i
h1

)
1

r1(t)
dt
o
�2
1(t1i) + o(

1

n1h
) = O(

1

Nh
)

uniformly in i = 1 ; : : : ; n1: This implies for the variance of T̂
(3)
N

Var(T̂
(3)
N ) =

1

N2

n1X
i=1

k21iVar("
2
1i) = o(

1

N2h
)

and proves Lemma 4.2 for the case j = 3 :The remaining case is obtained by exactly the same
arguments and therefore omitted.

2

Lemma 4.3. Under the assumptions of Theorem 2.1 we have

Var(T̂
(4+i)
N ) =

2

N2h

Z 1

0

�4
i (x)

h
1� �i

�1

ri(x)

�(x)

i2
dx �

Z
(2K �K �K)2(u) du+ o(

1

N2h
); i = 1 ;2:

Proof. We only sketch a proof of the �rst part i = 1 of the assertion, the remaining case i = 2
follows by exactly the same arguments. Recalling the de�nition of the weights r

(s)
il in (4.27) we obtain

by straightforward algebra

r
(1)
il =

�
2K

�
t1i � t1l

h

�
1

r1(t1i)
�K

�
t1i � t1l

h

�
2

�(t1i)
+

1

h

Z
K

�
s� t1i
h

�
K

�
s� t1l
h

�
1

�(s)
ds

� 1

h

Z
K

�
t� t1i
h

�
K

�
t� t1l
h

�
1

r1(t)
dt

�
�1(t1i)�1(t1l)

n1h
+ o(

1

N
)

uniformly for i; l = 1 ; : : : ; n1 and straightforward but tedious algebra shows
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Var(T̂
(5)
N ) =

1

N2

n1X
i=1

n1X
l=1
l6=i

[(r
(1)
il )

2 + r
(1)
il r

(1)
li ] =

2

N2

n1X
i=1

n1X
l=1

(r
(1)
il )

2 + o(
1

N2h
)

=
2

N2h

�
4

Z
K2(u) du

Z 1

0

�4
1(x)

h
1� r1(x)

�(x)

i2
dx+

Z
(K �K)2(u) du

Z 1

0

�4
1(x)

h
1� r1(x)

�(x)

i2
dx

� 4

Z
(K �K)(u)K(u) du

Z 1

0

�4
1(x)

h
1� r1(x)

�(x)

i2
dx

�
+ o(

1

N2h
)

=
2

N2h

Z 1

0

�4
1(x)

h
1� r1(x)

�(x)

i2
�
Z
(2K �K �K)2(u) du+ o(

1

N2h
):

2

Lemma 4.4. Under the assumptions of Theorem 2.1 we have

Var(T̂
(7)
N ) =

4

N2h

Z
(2K �K �K)2(u) du

Z 1

0

r1(x)
1
�1
r2(x)

�2(x)
�2
1(x)�

2
2(x) dx + o(

1

N2h
):

Proof. A straightforward calculation shows for the coe�cients �tij in (4.28)

�tij =

�
� 2

n1h
K

�
t1i � t2j

h

�� 1

�(t1i)
+

1

�(t2j)

�
(4.32)

+
2

n1h2

Z
K

�
s� t1i
h

�
K

�
s� t2j
h

�
1

�(s)
ds

�
�1(t1i)�2(t2j) + o(

1

N
)

(uniformly for i = 1 ; : : : ; n1; j = 1 ; : : : ; n2) which implies for the variance of T̂
(7)
N

Var(T̂ (7)
N ) =

1

N2

n1X
i=1

n2X
j=1

�t2ij

=
1

N2h

Z
r1(x)

1
�1
r2(x)

�2(x)
�2
1(x)�

2
2(x) dx��

16

Z
K2(u) du� 16

Z
(K �K)(u)K(u) du+ 4

Z
(K �K)2(u) du

�
+ o(

1

N2h
)

=
4

N2h

Z
(2K �K �K)2(u) du

Z 1

0

r1(x)
1
�1
r2(x)

�2(x)
�2
1(x)�

2
2(x) dx+ o(

1

N2h
):

2

Lemma 4.5. Under the assumptions of Theorem 2.1 we have for the covariances of the statistics
de�ned in (4.21) { (4.24)

Cov(T̂
(i)
N ; T̂

(j)
N ) = 0 ; if fi; jg 6 =f1; 3g; f2; 4g:
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Under the hypothesis of equal regression functions it follows

Cov(T̂
(1)
N ; T̂

(3)
N ) = o(

1

N2h
); Cov(T̂

(2)
N ; T̂

(4)
N ) = o(

1

N2h
)

while under the alternative g1 6= g2

Cov(T̂
(1)
N ; T̂

(3)
N ) = o(

1

N
); Cov(T̂

(2)
N ; T̂

(4)
N ) = o(

1

N
):

Proof. The �rst part of Lemma 4.5 is obvious. From (4.21) and (4.22) we obtain

Cov(T̂
(1)
N ; T̂

(3)
N ) =

1

N2

n1X
i=1

�1ik1iE["
3
1i]

where �1i; k1i are de�ned in (4.25) and (4.26), respectively. Now (4.30) gives

�1i =

8<
: O(hr) +O(

1

Nh
) : if g1 = g2

O(1) : if g1 6= g2

(uniformly for i = 1 ; : : : ; n1): Similary, we have from (4.31)

k1i = O(
1

Nh
);

(uniformly for i = 1 ; : : : ; n1) which implies

Cov(T̂
(1)
N ; T̂

(3)
N ) = o(

1

N2h
)

under the null-hypothesis, and

Cov(T̂
(1)
N ; T̂

(3)
N ) = o(

1

N
)

under the alternative g1 6= g2: This proves the second part of the assertion for the statistics T̂
(1)
N and

T̂
(3)
N : The remaining case follows by exactly the same arguments and is therefore omitted.

2

Proof of Theorem 2.1 (i): Observing Lemma 4.0 and (2.7) we obtain

N
p
h
�
TN �Bh2r � 1

Nh
D
�
= N

p
h
�
TN � E[TN ]

�
+ o(1)

= N
p
h(T̂

(5)
N + T̂

(6)
N + T̂

(7)
N ) + op(1);

=
2X

s=1

h nsX
i=1

nsX
l=1
l6=i

p
hr

(s)
il "si"sl

i
+

n1X
i=1

n2X
j=1

p
h�tij"1i"2j + op(1)

where the second equality follows from (4.18), (4.19), (4.20), Lemma 4.1 { 4.5 and the constants B
and D are de�ned in (2.10) for k = 2. De�ning

�r
(s)
il :=

r
(s)
il + r

(s)
li

2
; s = 1 ;2;
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the right hand side of this equation can be written as a symmetric quadratic form with vanishing
diagonal elements, i.e.

WN = N
p
h
�
T̂

(5)
N + T̂

(6)
N + T̂

(7)
N

�
= XTAX

where X = ( X1; : : : ; XN)
T = ( "(1); "(2))

T ; "(i) = ( "i1; : : : ; "ini) ( i= 1 ;2); the matrix A = ( aij)i;j=1;:::;N

is given by aii = 0 ( i= 1 ; : : : ; N)

aij :=

8>>>><
>>>>:

p
h�r

(1)
ij : i; j = 1 ; : : : ; n1; i 6= jp

h
�ti;j�n1

2
: i = 1 ; : : : ; n1; j = n1 + 1 ; : : : ; n1 + n2p

h
�tj;i�n1

2
: i = n1 + 1 ; : : : ; n1 + n2; j = 1 ; : : : ; n1p

h�r
(2)
i�n1;j�n1

: i; j = n1 + 1 ; : : : ; n1 + n2; i 6= j

(4.33)

and r
(s)
ij ; �tij are de�ned in (4.27) and (4.28), respectively.

In order to show asymptotic normality of the statistic WN under the hypothesis of equal regression
curves we apply Theorem 5.2 in de Jong (1987). For the asymptotic variance of WN we obtain from
Lemma 4.3 { 4.5 and the de�nition of � in (4.4)

�2
N = Var(N

p
h(T̂

(5)
N + T̂ (6)

N + T̂ (7)
N )) = �2 + o(1) = O(1);(4.34)

where �2 = �2
2;1 is de�ned in (2.11) for k = 2. Observing (4.32) we have

h
n2X
j=1

�t2ij =
1

n1

n 4

h

Z
K2
�t1i � t

h

�� 1

�(t1i)
+

1

�(t)

�2
�2
2(t)

1

�1
r2(t) dt

+
4

h3

Z � Z
K
�s� t1i

h

�
K
�s� t

h

� 1

�(s)
ds
�2 1
�1
r2(t) �

2
2(t) dt

+
8

h2

Z Z
K
� t1i � t

h

�
K
�s� t1i

h

�
K
�s� t

h

� 1

�1
r2(t) �

2
2(t)

�
� 1

�(t1i)
+

1

�(t)

� 1

�(s)
ds dt

o
�2
1(t1i) + o(

1

N
) = O(

1

N
)

and a similar argument implies

h

n1X
j=1

(�r
(1)
ij )

2 = O(
1

N
):

From these estimates it follows

NX
j=1

a2ij = h
n1X
j=1

(�r
(1)
ij )

2 +
h

4

n2X
j=1

�t2ij = O(
1

N
) ; i = 1 ; : : : ; n1(4.35)

and an analogous argument shows that (4.35) is also valid for i = n1+1 ; : : : ; N:Therefore condition
1) and 2) in de Jong's (1987) theorem are satis�ed with KN = logN: In order to establish the
remaining condition 3) in the latter theorem we note that by Gerschgorin's theorem the eigenvalues
�1; : : : ; �N of the matrix A can be estimated as follows

n1
max
i=1

j�ij � n1
max
i=1

NX
l=1

jailj �
p
h

n1X
l=1

j�r(1)il j+
p
h

2

n2X
l=1

j�tilj = O(
p
h)
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where we used the de�nition of �r
(s)
il and (4.27), (4.32) in the last estimate. Similarly, we obtain

n2
max
i=1

j�ij = O(
p
h)

which implies maxNi=1 �
2
i =�

2
N = o(1): The assertion of Theorem 2.1(i) now follows from de Jong's

(1987) theorem and (4.34), i.e.

��1
N WN

D�! N (0; 1):

4.3 Proof of Theorem 2.1: �xed alternatives

If g1 6= g2 we have from Lemma 4.0 { 4.4 that

p
N
�
TN �M2

�
=
p
N
�
TN � E[TN ]

�
+ o(1) =

p
N(T̂

(1)
N + T̂

(2)
N ) + op(1)(4.36)

=
1p
N

2X
i=1

niX
j=1

�ij"ij + op(1) = WN + op(1)

where the last equality de�nes WN . The assertion now follows from the standard central limit
theorem using Ljapuno�'s condition. To this end we note that under a �xed alternative

�2
N = Var(WN) = 
2 + o(1);

where we used Lemma 4.1, 4.5 and 
2 = 
22;1 is de�ned in (2.13) for k = 2. For the coe�cients �ij in
(4.36) we have from (4.30) for the case i = 1 and a similar argument in the case i = 2

�4
ij =

16 (�2
�i
r3�i)

4(tij)

�4(tij)
�4
i (tij)(g1 � g2)

4(tij) + o(1) (i = 1 ;2)

which implies Ljapuno�'s condition, i.e.

1

�4
N

2X
i=1

kX
j=1

E

�����ij"ijp
N

����
4

� 16n1

N2�4
N

�Z 1

0

( 1
�1
r2)

4(t)r1(t)

�4(t)
�4
1(t)(g1 � g2)

4(t) dt

+

Z 1

0

r41(t)
1
�1
r2(t)

�4(t)
�4
2(t)(g1 � g2)

4(t) dt
�
+ o(1) = o(1);

and completes the proof of Theorem 2.1 (ii).
2

4.4 Some comments on the consistency of the wild bootstrap

In this subsection we brie
y indicate the consistency of the wild bootstrap procedure used in the
simulation study of Section 3. For the sake of brevity we restrict ourselves to the statistic T (1)

N based

on a di�erence of variance estimators for k = 2 samples. Corresponding results for T
(2)
N ; T

(3)
N and

k � 3 regression functions can be proved following a similar pattern. Recall that we again omit all
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indices referring to the number of samples and to the speci�c statistics in our notation (e.g. we use

B instead of B
(1)
k , TN instead of T

(1)
N etc.).

To be precise let ĝ(�; h );ĝi(�; h ) denote the estimates of the regression functions from the joint and
individual sample de�ned in (2.4) and (2.6), respectively, where the dependency on the bandwidth
h > 0 is now stated explicitly. The residuals for the bootstrap sample are given by (see the discussion
in Section 3)

"̂ij = Yij � ĝ(tij; b ); j = 1 ; : : : ; ni; i = 1 ;2;(4.37)

"�ij = V �
ij "̂ij; where b is a bandwidth not necessarily equal to the bandwidth h used in the statistic

TN of Section 3.1 and the V �
ij are iid with E�[V �

ij] = 0 ; E�[(V �
ij)

2] = 1. Throughout this section E�

denotes the conditional expectation given the total sample fYij j j = 1 ; : : : ; ni; i = 1 ;2g and all
quantities formed from the bootstrap sample

Y �
ij = ĝ(tij; b ) +"

�
ij ; j = 1 ; : : : ; ni; i = 1 ;2;(4.38)

will be denoted with an extra �; e.g. T �
N ; ĝ

� etc. Under the additional assumption

h2r+1 = o(b2r)(4.39)

we sketch a proof of

d2[N
p
h(T �

N �Bh2r � D

Nh
);N (0; �2)]

P�! 0(4.40)

where B;D and �2 = �2
2;1 are de�ned in Theorem 2.1 and d2[�; �] denotes the Mallows distance [see

Mallows (1972)]. Applying Lemma 8.8 of Bickel and Freedman (1972) it follows that (4.40) can be
established by showing

d2[N
p
h(T �

N � E�(T �
N));N (0; ��2)]

P�! 0(4.41)

N
p
hjE�(T �

N )�Bh2r � D

Nh
j P�! 0(4.42)

��2
P�! �2(4.43)

where
��2 = Var�(N

p
hT �

N)(4.44)

is the conditional variance of N
p
hT �

N .

Proof of (4.41). This follows along the lines of the proof of Theorem 2.1 in Section 4.1 - 4.2 and
is therefore omitted.

Proof of (4.43). Let T
�(j)
N denote the bootstrap versions of the statistics T̂

(j)
N introduced in (4.21)

{ (4.24) such that

T �
N � E�(T �

N) =
7X

j=1

T
�(j)
N(4.45)

[compare with (4.18),(4.19) and (4.20)]. Conditionally on fYij j j = 1 ; : : : ; ni; i = 1 ;2; g it follows by
straightforward algebra

Var�(T
�(i)
N ) = op(

1

N2h
) ; i = 1 ;2; 3; 4(4.46)

Cov�(T
�(i)
N ; T

�(j)
N ) = op(

1

N2h
) ; i 6= j
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(just repeat the steps in the proofs of Lemma 4.1, 4.2 and 4.5). Moreover

Var�(T
�(5)
N ) =

1

N2

X
i6=`

(r
(1)
i` )

2 + r
(1)
i` r

(1)
`i

�2
1(t1;i)�

2
1(t1;`)

"̂21i"̂
2
1` + o(

1

N
)

where r
(1)
i` is de�ned in (4.27) and its asymptotic expansion is derived in the proof of Lemma 4.3. It

now follows by a straightforward calculation that the expectation of the left hand side is given by

2

N2h

Z 1

0

�4
1(x)

h
1� r1(x)

�(x)

i2
dx �

Z
(2K �K �K)2(u) du+ o(

1

N2h
)

and a tedious calculation for the variance establishes

Var�(T
�(5)
N )� Var(T

(5)
N ) = op(

1

N2h
) :

Similar arguments for T
�(6)
N ; T

�(7)
N and (4.45), (4.46) establish the assertion (4.43), i.e.

��2 � �2 = N2h
7X

j=5

fVar�(T �(j)
N )� Var(T

(j)
N )g+ op(1) = op(1):

Proof of (4.42). Recall the de�nition of the weights w
(`)
ij , ( `= 1 ;2), w`k;ij in (4.1) and (4.2), respec-

tively. In order to re
ect the particular dependency on the bandwidth we denote these quantities
with w(`)

ij (h); w`k;ij(h) etc. A straightforward calculation shows for i = 1 ;2

E�[��2i ] =
1

ni

niX
j=1

�̂ij +
1

ni

niX
j=1

"̂2ij +
1

ni

niX
j=1

n
�2w(i)

jj (h) +
niX
k=1

(w
(i)
jk (h))

2
o
"̂2ij(4.47)

and

E�[�̂�2] =
1

N

2X
i=1

niX
j=1

f�̂2
ij + "̂2ijg +

1

N

2X
i=1

niX
j=1

f�2wij;ij(h) +
2X

`=1

nX̀
k=1

w2
ij;`k(h)g"̂2ij:(4.48)

Here �̂ij and �̂ij denote the analogues of the quantities �ij and �ij de�ned in (4.9) and (4.17),
respectively, where the regression functions g(t) and gi(t) have been replaced by the estimate from
the combined sample ĝ(t; b): Combining (4.47) and (4.48) yields

E�[T �
N ] = E�[�̂�2]� n1

N
E�[��21 ]� n2

N
E�[��22 ](4.49)

=
1

N

2X
i=1

niX
j=1

(�̂2
ij � �̂2ij) +

1

N

2X
i=1

niX
j=1

kij
�2
i (tij)

"̂2ij

where kij is de�ned in (4.26). Observing that under the null hypothesis of equal curves g = g1 = g2
"̂ij = �i(tij)"ij + g(tij)� ĝ(tij; b ) we obtain for the second term in (4.49)

1

N

2X
i=1

niX
j=1

kij
�2
i (tij)

"̂2ij �
1

Nh
D =

1

N

2X
i=1

niX
j=1

kij"
2
ij �

1

Nh
D + op(

1

N
p
h
)(4.50)

=
1

N

2X
i=1

niX
j=1

kijE["
2
ij]�

1

Nh
D + op(

1

N
p
h
) = op(

1

N
p
h
)
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where the �rst equality follows from the uniform consistency of the estimate ĝ(�; b ) [see e.g. Mack and
Silverman (1982)], the second equality from (4.31) in the proof of Lemma 4.2 and the third equality
is obtained by a similar argument as given in the proof of Lemma 4.0 observing the de�nition of kij,
(4.31) and E["2ij] = 1 :For the �rst term in (4.49) it can be proved by similar arguments

1

N

2X
i=1

niX
j=1

(�̂2
ij � �̂2ij)� Bh2r = op(

1

N
p
h
)(4.51)

and a combination of (4.49), (4.50) and (4.51) yields (4.42), which completes the proof of assertion
(4.40).
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