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Abstract

In the common nonparametric regression model yi = g(ti) + �(ti) "i; i = 1 ; : : : ; n

with i.i.d. noise and nonrepeatable design points ti we consider the problem of choosing

an optimal design for the estimation of the regression function g: A minimax approach is

adopted which searches for designs minimizing the maximum of the asymptotic integrated

mean squared error, where the maximum is taken over an appropriately bounded class of

functions (g; �): The minimax designs are found explicitly, and for certain special cases

the optimality of the uniform distribution can be established.
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1 Introduction

Consider the common nonparametric regression model

Yi;n = g(ti;n) + �(ti;n)"i;n i = 1 ; : : : ; n;(1.1)

where the "i;n form a triangular array of rowwise independent identically distributed random
variables with variance 1 and mean 0; g; � are unknown smooth functions and fti;n j i =
1; : : : ; n g is a �xed design in the interval [0; 1]: Much e�ort has been devoted to the problem
of estimating the regression and variance function [see e.g. the recent monographs of H�ardle
(1990), Wand and Jones (1995), Fan and Gijbels (1996)], and many of the developed estimation
methods are meanwhile standard methods in applied regression analysis.
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Although it is well known (and intuitively clear) that the asymptotic properties of the var-
ious nonparametric estimators depend sensitively on the underlying designs, the problem of
designing experiments in the nonparametric setup (1.1) has found much less attention in the
literature. This is mainly due to the fact that { similar as in the case of nonlinear regression
models { the optimality criteria usually depend on the unknown regression and variance func-
tion. M�uller (1984) studied optimal designs for estimating derivatives of the regression function
by minimizing the asymptotic integrated mean squared error of a kernel estimate. He showed
that the optimality criteria are local in the sense of Cherno� (1953) and the asymptotically
optimal designs depend on the unknown regression and variance function. Because of these
di�culties Cheng, Hall and Titterington (1998) proposed a sequential approach for de�ning an
optimal design measure in the context of local linear regression.
A further optimality criterion is considered in the present paper, which is di�erent from the
methods considered by the aforementioned authors and mainly motivated by two observations.
On the one hand the designs proposed by M�uller (1984) are not robust with respect to misspec-
i�cations of the regression and variance function, on the other hand there are many situations
where sequential designs cannot be applied (e.g. experiments in agriculture). For these rea-
sons, we propose a minimax approach which seeks for designs minimizing the maximum of the
asymptotic integrated mean squared error, where the maximum is taken over certain Sobolev
balls for the regression and variance function. Section 2 states some basic terminology from
nonparametric kernel estimation, which is necessary for the formulation of the minimax opti-
mality criterion. The main results can be found in Section 3 showing that the minimax optimal
designs are equal to the weight function used in the de�nition of the integrated mean squared
error. This highlights the particular role of the uniform distribution, which turns out to be the
minimax optimal design with respect to the classical integrated mean squared error criterion.

2 Asymptotic representation of the integrated mean

squared error of a nonparametric regression estimator

For the introduction of the optimality criterion we need an asymptotic representation of the
integrated mean squared error of a nonparametric estimate of the regression function g; which
is nowadays standard in mathematical statistics [see H�ardle (1990), Wand and Jones (1995)
or Fan and Gijbels (1996)]. We assume that the regression function is k-times continuously
di�erentiable, i.e. g 2 Ck[0; 1]; and the variance function is Lipschitz continuous of order 
; i.e.
� 2 Lip
[0; 1] for some 
 2 (0; 1]: Following Gasser and M�uller (1984), we consider

gn;v(t) =
1

hv+1(t)

nX
i=1

Z si;n

si�1;n

Kv(
t� x

h(t)
)dx � Yi;n(2.1)

as an estimate of the v-th derivative g(v) of the regression function (v = 0 ;1; : : : ; k � 1): Here
Kv is a Lipschitz continuous function with compact support, say [�1; 1]; such that

(�1)j
j!

Z 1

�1
Kv(x)x

jdx =

8>><
>>:
0 if 0 � j < k; j 6= v

1 if j = v

B if j = k ;

(2.2)

where B 6= 0 :The triangular array fsi;n j i = 0 ; : : : ; n gis de�ned by s0;n = 0 ; sn;n = 1 ; si;n =
(ti;n + ti+1;n)=2 ( i= 1 ; : : : ; n� 1); and the design points ti;n are supposed to satisfy a Sacks
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and Ylvisaker (1970) condition
Z ti�1;n

0
f(t)dt =

i� 1

n� 1
i = 1 ; : : : ; n(2.3)

with a positive design density f: The quantity h(t) denotes the bandwidth which may depend on
a speci�c point t (local bandwidth). The locally optimal bandwidth minimizes the asymptotic
mean squared error at the point t and is given by

h�(t) =
n (2v + 1) V �2(t)

2(k � v)nB2f(t)(g(k)(t))2

o1=(2k+1)
;(2.4)

where V =
R 1
�1K

2
v (x)dx [see Gasser and M�uller (1984)], and it is assumed that g(k)(t) 6= 0 :

Insertion of the optimal bandwidth in the weighted integrated mean squared error

E
Z 1

0
fĝn;v(t)� g(v)(t)g2w(t)dt

yields [using an appropriate modi�cation of the kernel at the boundary, see M�uller (1984)]

n2(k�v)=(2k+1)E
Z 1

0
fĝn;v(t)� g(v)(t)g2w(t)dt = c �	(v)

g;�(f) + o(1) ;(2.5)

where w is a positive continuous weight function on the interval [0; 1]; c is a constant independent
of f and

	(v)
g;�(f) =

Z 1

0

n�2(t)w(t)

f(t)

o2(k�v)=(2k+1)f(g(k)(t))2w(t)g(2v+1)=(2k+1)dt:(2.6)

3 Optimal designs minimizing the maximum integrated

mean squared error

M�uller (1984) determined the design density f which minimizes the criterion (2.6) for �xed
g; �2; i.e.

f �(t) =
'(t)R 1

0 '(x)dx
(3.1)

where '(t) = [( �2(t))2(k�v)(g(k)(t))2(2v+1)(w(t))2k+1]1=(4k+1�2v): The optimal design is local in
the sense of Cherno� (1953) and might be not robust with respect to misspeci�cation of the
variance and regression function [see also Example 3.2]. For this reason we propose a minimax
criterion for the determination of optimal designs and call a design density f � minimax optimal
for the estimation of the vth derivative of the regression function if it minimizes

maxf	(v)
g;�(f) j (g; �) 2 Fg :(3.2)

Here F is an appropriate class of functions given either by

F2 =
�
(g; �) 2 C(k)[0; 1]� Lip
 [0; 1]

���Z 1

0
�2(t)dt � ";

Z 1

0
(g(k)(t))2w(t)dt � �

�
(3.3)

or by

F1 =

(
(g; �) 2 C(k)[0; 1]� Lip
[0; 1]

��� sup
t2[0;1]

j�2(t)j � "; sup
t2[0;1]

jg(k)(t)j2w(t) � �

)
(3.4)
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Theorem 3.1 Let F be either de�ned by (3.3) or (3.4) then the design with density

f �(t) =
w(t)R 1

0 w(x)dx

is optimal with respect to the minimax criterion (3.2).

Proof: We consider only the case F = F2; the corresponding result for the sup-norm is proved
by similar arguments. Without loss of generality it is assumed that

R 1
0 w(t)dt = 1 ;i.e. f � = w:

The proof is performed in two steps showing

(1) supf	(v)
g;�(f

�) j (g; �) 2 F2g = [ "2(k�v)�2v+1]1=(2k+1)

(2) 8 f 9 (g; �) 2 F2 : 	
(v)
g;�(f) � ["2(k�v)�2v+1]1=(2k+1)

(1) The �rst part follows by a direct application of H�older's inequality observing that with
the notation p = 2k+1

2(k�v)
; q = 2k+1

2v+1
the integrated mean squared error is given by

	(v)
g;�(w) =

Z 1

0
j�2(t)j1=pj(g(k)(t))2w(t)j1=qdt(3.5)

�
nZ 1

0
�2(t)dt

o1=pnZ 1

0
(g(k)(t))2w(t)dt

o1=q � "1=p�1=q;

and that there is equality in (3.6) for the functions

�(t) � p
"; g(t) =

p
�
Z t

0

Z s1

0
: : :

Z sk�1

0

dsq
w(s)

(3.6)

[note that (g; �) 2 F2]:

(2) Let f denote an arbitrary positive density on the interval [0; 1] and let

p0 = 1 +
1

p
=

4k + 1� 2v

2k + 1
; q0 = 1 + p =

4k + 1� 2v

2(k � v)
(3.7)

(note that 1=p0 + 1 =q0 = 1) :For the functions

��(t) =
q
"w(t); g�(t) =

p
�
tk

k!
(3.8)

it follows (observing
R 1
0 w(t)dt = 1) that (g; �) 2 F2 and

	(v)
g�;��(f) = "1=p�1=q

Z 1

0
jw(t)
f(t)

j1=pw(t)dt = "1=p�1=q
Z 1

0
(w(t))p

0 dt

jf(t)jp0=q0

= "1=p�1=qk w

jf j1=q0 k
p0

p0 � "1=p�1=q
n kwk1
kf 1=q0kq0

op0
= "1=p�1=q

where kskp = (
R 1
0 js(t)jpdt)1=p denotes the Lp-norm with respect to the Lebesgue measure

and the inequality follows again from H�older's inequality. This proves (2) and completes
the proof of Theorem 3.1.
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Example 3.2. Consider the case k = 2 ; v= 0 and w(x) � 1: The locally optimal design (with
respect to the asymptotic integrated MSE) is given by (3.1) and we are interested in how a
misspeci�cation of the regression or variance function a�ects the performance of this design.
To this end we consider the following scenario

(1) g(x) = ex; �(x) = 1

(2) g(x) = ex; �(x) = ex

(3) g(x) = ex; �(x) = e2x

(4) g(x) = sin x; �(x) = 1

(5) g(x) = sin x; �(x) = ex

(6) g(x) = sin x; �(x) = e2x:

For a misspeci�cation we investigate four cases

(A) g correct; � constant

(B) g correct; ��1 instead of �

(C) g2 instead of g; � correct

(D) eg instead of g; � correct

and calculate the locally optimal design from M�uller (1984). Note that in case (A), (B) the
variance function is misspeci�ed, while (C), (D) correspond to an incorrect assumption for the
regression function. The corresponding results are listed in Table 3.1, which also contains a
column for the minimax design which turns out to be the uniform design in this case. The
table shows the asymptotic integrated MSE obtained by the particular design f � in (3.1) for a
misspeci�cation relative to the asymptotic integrated MSE obtained by the design f � for the
correct regression and variance function.

A B C D minimax

1 1 1 0.4650 0.4625 0.9970

2 0.9562 0.8374 0.4519 0.4494 0.9326

3 0.9573 0.8406 0.4404 0.4381 0.9066

4 1 1 0.7193 0.6676 0.9776

5 0.9600 0.8502 0.8289 0.7977 0.8997

6 0.8658 0.5643 0.9379 0.7894 0.7894

Table 3.1. Asymptotic relative e�ciency of the optimal design f � in (3.1) for various misspec-
i�cations of the regression and variance function. The last column: minimax design obtained
from Theorem 3.1.

We observe that a misspeci�cation of the regression and variance function has a serious impact
on the performance of the resulting design. This dependency is even stronger, if the regression
function is not adequately speci�ed. The minimax design has a reasonable performance in
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all considered cases. For these reasons the locally optimal designs proposed by M�uller (1984)
should not be used in practice unless there is information about the variance and regression
structure available. Otherwise the minimax designs proposed in this paper are recommended.
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