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Abstract: An unbiased point estimator T for an unknown parameter 8 can be improved in the

sense of the Mean Squared Error (MSE) by T, = AT for suitable factors A. Here, we want to

discuss this approach in the context of combination of forecasts. We consider the shrinkage
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forecast combinations in the sense of the Scalar Mean Squared Error (SMSE) or the Matrix
Mean Squared Error (MM SE).
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1. Introduction

The most popular forecasting evaluation criterion is the Mean Squared Error (MSE). Thus, the
combination of forecasts is commonly based on the MSE. In general we assume that the
individual forecasts are unbiased which means that there are no systematical errors. Based on
this, forecast combinations are often restricted to be unbiased, resulting in the restriction that
the weights sum up to 1 (see e.g. Bates and Granger (1969) or Dickinson (1973)). Giving up
the unbiasedness restriction can lead to forecast combinations with smaller MSE. In this case
the optimal combination weights depend on the second moment of the variable to be
forecasted. This makes it difficult to estimate the weights in many applications. Another
approach is to shrink unbiased forecast combinations. This also results in a dependence of the
variable we are forecasting but it is possible to calculate the size of estimation errors till
leading to an improvement. Further, we can see that optimal shrinking of the optimal unbiased
combination is equivalent to the MSE-optimal technique. Using some data from the M-
competition (Makridakis et al. (1982)) we analyse the quality of different unbiased
combination techniques and their optimal shrunken versions.

Furthermore, we want to discuss the multivariate case. Here, the comparison of forecasting
techniques is usually based on the Matrix Mean Squared Error (MMSE) or on its trace, the
Scalar Mean Squared Error (SMSE). We consider two different shrinkage approaches. The
first is based on a shrinkage scalar A and the second on a shrinkage matrix I'. We calculate
optimal combinations in the sense of the SMSE and the MMSE. For a better illustration we
perform asimulation study for the multivariate case.

2. Theunivariate case

We consider the following situation (S1): Let K., , i =1...,n be unbiased forecastsfor Y,
a time T, where LUOIN denotes the forecast horizon. Thus, E(uivm):o, where

Uty =Y —F1y, 1=1..,n. Furthermore, we assume that Cov(YH,umL):O,

i =1..,n,and Cov(u,, )== isp.d., where u,,, = (ul,T+L""’un,T+L)"

Assuming that E(Y,, )#0, it is well-known, that the MSE-optimal unbiased forecast

combination of the nindividual forecastsis given by

Fcopt,unb'T+L T COpt,UHb I:'|'+L )

where ¢, = (1'Z711) 51 (1)

opt,unb *



and 1 denotes the nx1 vector of 1's, Fi, = (Fl,T+L ..... Fn,T+L)' Furthermore we have

MSE(Y,., . Foot )= (r=).

Now we calculate the M SE-optimal (biased) forecast combination.

Theorem 1: Considering the situation (S1), the M SE-optimal forecast combination is given by

1

.. s = Cop Frop  Where Gy, = (E(vz, Jr=t1+1)*E(v2, )z,

opt,b
Proof: Let F,,,, =CFy, ,where c:=(c,,....C, ), c1=1+d,d0R and
Uero = Yy —FRr = (1+ d)YT+L —CFr —dYqy,

=CUqp, —dYq, .
Thus,
E(Uc,T+L ) - C'E(UT+L ) - dE(YT+L ) - (1_ Cll) E(YT+L )

and

Var(u,,, ) =c=c+d*var(Y,, )- Zi c.dCov(u; 1., Yot )

=czc+(c1-1)*Var(Y,,, ) .
Now we can calculate the M SE.

MSE(Y o For ) = Var(ugr )+ (Elugr)f
= czo+ (1-1F [EY2,)-E(Ye. )+ 11 E(Y,.,
=cze+(C1-17E(v2,)

Since we want to minimize the M SE, we consider

OMSE(Y+, ,Forut )

I

=2z + 2 10E(Y2, )-2E(v2, )=0,,

dc
- 2@(z+11E(Y2, )= 2mE(v2, )
and thus,
o=l e irels )t @
0 ZMSE(YM cm)

Since =3 +11 E(YT2+L) is p.d. follows that c,,, is the minimizing

a 2
vector. Consulting Horn and Johnson (1985, p. 19) we get



(Z+11’E(YT2+L Toyto E—(—rlz*lg >7111'>™ and by some easy caculations we
T+L

get Con = (V2 Jrz 11 E(Y2, )21 ©)

Furthermore, MSE(YT+L,FCMT+L) (E(vz, )rzta+2) E(v2, ). 1f E(Y;., )=0 theforecast

combination F, ., isalso unbiased.

We can see that the optimal weights depend on the second moment of the variable Y.,, . In

practice it could be difficult to estimate this, especialy when the second moment of the
variable to be forecasted is not constant.
In the following we discuss the shrinkage technique for an improvement of unbiased forecast

combinations. We analyse again the M SE-optima combination in this context.

Theorem 2: Consider a forecast combination F,;,, =c'F, in situation (S1), where c'1=1

and further F ., =AF ., , AOIR, where Ac'l=A=1+k , k OR. Then the MSE-

_ Eva)
= T EYZ, )+ozc

minimizing A is given by A . The forecast combinations F,.;,, , where

E(v2, )-csc

v Jrose

A0

1% have asmaler MSE than F ., .

Proof: We get
Uperst = Yoo “FBera = (1+ k)YT+L —ACFr —KYq,,

=AU, —(A-2)Y., .
The mean and the variance of u, ., aregiven by
E(uyera )=~ -2)E(Yr.)  and
Var(u,. . )= Nczc+(A =1 Var(Y,,, ) .
From this we can cal cul ate the M SE of the forecast combination F ., .
MSE(Y 1,1 Fiore) =Varluner )+ (Eluer )

=ac'zc+ (A -12E(Y2, )



Now the question arises, for which A we get MSE(YT+L N . ) < MSE(YMVFC’H): c'zc,
that is A? (c’Zc+ E(YT2+L))— 2)\E(YT2+L)+ (E(YT2+L)—C'ZC)< 0. By some easy caculations we
get the values of A, where the left side of the former inequality is 0. Thus, the improvement

region (interval) for A with respect to the forecast combination F, ., isgiven by:

_[ElY2, )-czc E
Reura EE(Y$+L)+c'2c’1 ' ®

which minimizes the MSE. We calculate

We are further interested in A

c,opt ?

OMSENY vt Fuora) _ oy (s rglvz, )- 2elvz, )0

oA

- )\ - E(Y'I?+L)
cont E(YT2+L)+ czc '

62 IVISE(YT+L, ’ F)\C,T+L )

and since 5
0°A

>0, thisisthe minimizing A.

It is obvious that only for A <1 an improvement is possible. Again, we can see that the

improvement region depends on the variable to be forecasted. Looking at (4), the scalar A,

is the midpoint of the corresponding improvement region. The optima weights in the

shrunken forecast combination are given by

gc,opt = )\c,optc = (E(Y'I?+L ) + C’z C)_l E(YT2+L )C )

Considering €:= Coy yp, = (1'2‘11)_12‘11 asin (1), we get
-1
gcupt,untwopt - %(YTZﬂ ) ¥ % 'Z_l]_H E(YT2+L )Z_ll = (E(YT2+|— )1'2_11 + 1)_l E(YT2+|_ )z_ll
= Copt,b (See (3))

The weights of the MSE-optimal combination and the weights of the M SE-optimal unbiased

combination differ only by the factor A, = (E(Yf+L )1'2‘11+1)_1 E(YT2+L )1’2‘11.

‘opt,unb ,Opt

The MSE of aforecast combination F;__ ..., isgivenby

MSE(Y,., . P et )= (E(vz, )+czc)*Elv2, )oze



which is a strictly monotone increasing function of c'Xc, and therefore a forecast

combination ., isbetterthan i ... iff K., isbetterthan F, ., .

As mentioned above, in practice E(YT2+L) is unknown and must be estimated. It is important
to know how large the estimation errors could be resulting still in an improvement of the
given unbiased forecast combination. A realised non-negative estimator E( T+L) aways leads

_E(vZ,)-czc
oo E(YT2+L)+ crc

to A <1. Thus, we have to check when A , the lower bound of the

c,opt

improvement region IR . Assuming Z is known, for a realised non-negative E(Y$+L) we

get:

o Evz)  _E[rz)-csc
E(Y?, )J+csc E(YZ )+c=c

copt
T+L

- B(v2 )Elvz, )+czc)> [Elva, )-czc)Elvz, )+ezd)

- &vz,)> E(Yjﬂ) cze (53

Hence, an underestimation of 50% of E(YT2+L) still leads to an improvement of the forecast

combination F_ ., . Furthermore, if E( T+L)< c'Zc, a positive E(YT2+L) results always in a

better forecast. In genera X is aso unknown and has to be estimated. This results in

N . E(Y'I'2+L )

copt

T _—, where 5 isap.d. estimator of . For given realised estimators this
E(Y2, )+csc

improves the unbiased forecast combination F_ ., if

E(ve,) _E(vZ)-csc
E(Y?, )J+csc E(YZ )+c=c

T+L

>

copt

E(YT2+L )c’i c_c3c

- Eivi)> 2czc 2

(5b)

If E(YT2+L ) > c'2 c theright side of (5b) is a strictly monotone increasing function of c¢zc.In
this case a larger estimation error of c'~c leads to the necessity of a larger E( T+L) In the

case where E(YT2+L)S c'>c the right side of (5b) is non-positive. Thus, a positive E(YT2+L)
leads aways to an improvement. Agan we wish to remark that the reduction of

MSE( Tl cm) given by the inequalities (5a) and (5b), holds for realised estimators of the

unknown parameters.



It isalso possible to shrink at first the individual forecasts, whichis F, ., =AF ., , A UIR,

i =1..,n. Starting from a forecast combination F, ,, := Zci)\iﬁm = Zbi':i,m , Where

b, :=cA,, i =1...,n and minimizing the M SE obviously leads to the weights given in (3).
In the next section we analyse several unbiased forecast combinations and their shrunken
versions presented above with data from the M-competition (Makridakis et a. (1982)). There

we have to deal with the problem of an unknown covariance matrix = which makes it more

difficult to get an estimator E(Y2,, ) leading to a combination with smaller MSE.

3. Application for the univariate case

We use the monthly data of the M-competition as decribed in Klapper and Wenzel (1998).
The time series are of length 18. The calculation of the first combination weights is based on
thefirst ten data points. Thus, 8 data points are |eft for the comparison of the methods. In each
step we calculate new weights on the basis of the 10 most recent data points. We consider
only four individual forecasts, that are different smoothing techniques (AEP, Bays, Holt,
Quadr). For a detailed decription of these methods see Makridakis et a. (1982). We assume
that the individual forecasts are unbiased. We compare the RMSE of the different forecasting
methods with the RM SE of the smple average of the individual forecasts. We have to remark

that we eliminated five time series because of singular 5 . Hence, 612 time series are |eft for

our analysis. We consider in each step 5 := (6”)i it o ::%ui u;,i=1..,n, and u,

denotes the vector of the most recent 10 forecast errors of the i-th individua forecast. For the
estimation of E(YT2+L) we use the mean of the squared most recent 10 data points of the

variable to be forecasted. We analyse the following unbiased combination techniques:

Method 1 (M1): MSE-optimal unbiased forecast combination (see (1)).
Method 2 (M2): Method 1 with the further restriction, that the weights are non-negative.
Method 3 (SA):  The simple average of the individual forecasts.

Methods No. 4, 5 and 6 (denoted by SM1, SSM2 and S-SA) are the optima shrunken
versions of methods No. 1, 2 and 3. Thus, method No. 4 is the MSE-optima given by the
weightsin (3). Together with the individual forecasts and their shrunken versions (S-AEP, S



Bays, S-Holt, S-Quadr) we focus on 14 different techniques. The results of the study are given
in the following table.

Table 1: Results for the study of the 612 time series

# better than SA | # better than best | # best method | mean of relative median of

individual RMSEs relative RM SEs
AEP 282 - 21 1.209 1.038
Bays 310 - 47 1.164 0.996
Holt 319 - 43 1.116 0.978
Quadr. 142 - 25 1.920 1.355
S-AEP 312 168 25 1.149 0.965
S-Bays 349 215 29 1.041 0.944
S-Holt 364 227 45 1.025 0.920
S-Quadr 191 127 24 1.639 1.223
M1 444 286 124 0.746 0.665
M2 481 139 34 0.762 0.777
SA - 89 29 1.000 1.000
SM1 446 285 105 0.745 0.666
SM2 483 249 36 0.748 0.738
SSA 330 148 25 0.936 0.991

The relative RMSE is given by the RMSE of a special method divided by the RMSE of the simple average

combination.

At first we can say that al combination techniques are doing well. They often outperform all
individual forecasts. Looking at the number of times the certain methods are best, we can see
that method M1 and its shrunken version (S-M1) are the forecasts of highest quality. Thisis
also underlined by the mean and median of the relative RMSEs. Method SA is outperformed
by shrinking. Furthermore, the ssmple average combination is in this study the combination
method of lowest quality. Each other combination method outperforms the simple average in
over 50% of the given 612 time series.

Finaly, the method S-M1 outperforms the method M1 in 299 cases, the method S-M2 isin
304 cases better than M2 and S-SA isin 330 cases of higher quality than SA. Looking at the
individual forecasts, SSAEP isin 324, S-Baysin 354, S-Holt in 322 and S-Quadr in 341 cases
better than the corresponding individual forecast.



4. The multivariate case
Here, we consider multivariate forecasts for a vector of variables which is described in the

following.

Situation (S2): Let F ., ::(Ef?r)+L,...,Ef$)+L), i=1..,n, be unbiased forecasts for
Y =8 ..v®) a time T, KON, k22. We hae Elu,, )=0, where
Ui ar ::(uﬁﬂ, ,u,(kT)+L) and uly, =YY -FY ., i=1.,n, j=1..,k. Further, we

assume that Cov(u®, Y™ )=0, i=1..,n, jm=1..k and Cov(u;, )=Q isp.d, where

I
I

Upy = ﬁJLH UV ey ﬁ Finaly, there exists a vector u; ., , without loss of generality

Uiri =Upgy SO that COV[((ul,T+L _un,T+L)'l"'7(un—1,T+L - nT+L) ) ] isp.d.

We consider forecast combinations of the form Fe r,, = ZCiFmL , where C, OIR**, The

MM SE-optimal unbiased forecast combination, where ZCi =1, , is given by the weights

(seeWenzel, 1998)  C ;o = [Cooptun 1 Croptunn] = [W V7L WV (6)
where

Q:=(Q,) o, »~nkxnk

Vi= (Vi) ot oa =~ (n-2kx(n-1)k,

V., =Q . +Q -Q . -Q.rs=1l.,n-
1=l ]~ (N =Dk xk,
W= (W, w, ) ~ (n—1)kxk,

I
I I

W, = ﬁNﬂ - E ~ (n—l)k x1 j=1..k,

w; =(Q,, - Qe ~kxLi=1.,n-1 j=1..k,

ji

and e; denotes the j-th unit vector.

As in the univariate case we now want to calculate the MM SE-optimal weights resulting in

I
I I

genera in a biased forecast combination. Therefore, we define Em = E:L”L . E



I
I I

Yoo :=ﬁvﬂL e Yoo ﬁ~(n[lk)><1 and further 1, ::%[Ik,...,lk]'~nﬂk><k s that

I

L~
YT+L - Ik YT+L'

Theorem 3: Considering the situation (S2), the MM SE-optimal forecast combination of the n

individual forecasts Fyr, ...F, 1. isgivenby F. ., = Copt'bﬂlfT+L , Where
Copt,b = II: E?T+L T+L %)+E@T+L T+L % .

Proof: We get

I

I |: Yr ~CFry

Ucri = YT+L - FC,T+L

I
=Cur,, _B:_ l ﬁ?T+L '

where C:=[C,,...,C] and

CT+L H: - I ﬁf T+L 1
Cov(ucr., )=CQC + B: -7 @:ov(\?T+L) B: 7 ﬁ

which gives us

MMSE(Y,, ,Fer. )=CQC'+ E: T %ﬁ?nﬁ?m' %3 i ﬁ
= C§2 + Eﬁ?nL?nL, %Z' - T;,EgnL’Y‘Tﬂ_' %' -C E§T+LVT+L' ﬁrk* + TI:,E?THVT&' ﬁ? :

At first we minimize the SM SE and calcul ate

JtriMMSELY ., , +
bl o) oy, 1 o Bt
< Coptb T E?T+L ~T+L %)+E§T+L %
and

0° tl‘(MMSE( Yo CT+L)):2§2+E§ Y ’%ispd
T+L ' T+L e

9°C

A forecast combination with an arbritary weight matrix C_,, which can be expressed by

’ -1
Copp =K %‘z + E@HYT+L % , K OIR™, cannot outperform F_ ., , since

10



MMSE(Y,. ,Fe, v J-MMSE(Y,, Fe i)

= - o [ B v e Vo B - ¥

which is obviously n.n.d. and thus MMSE(YM,FC )ZL MMSE(YT+L,FC0WT+L).

ab,b T+L

So far we analysed only the MM SE-optimal unbiased (in the class where Z C, =1,)andthe

MM SE-optimal biased combination. In the following we present the shrinkage approach for
the multivariate case.

Theorem 4. Consider in (S2) an unbiased forecast combination F. ., = ZCiFi,T+L , Where

ZCi =1, . A forecast combination F,.., =AF.;,, AOIR, improves F.., inthe sense

Htrﬁ: %?T+LVT+L’ E_ Q ﬁ:'ﬁ H
of the SMSE for A DB — ,1% The forecast combination F,. .,
PR o ¢

trﬁ:Egm\?H' %Zﬁ
C,opt = - ' )
trﬁsﬁ) + E§T+LYT+L %lﬁ

with minimal SMSE isgiven by A

Proof: We have
Unera = Yru ~Frera =C¥ry ~ACF,
=\CY,., -ACF,,, -(A-1)CY,,, =ACu,, -(A-2)CY,,,,
where C :=[C,,...,.C,].
Hence,
Elurer )= 0-NCEV,., )
and
Cov(u,e . )= A2CQC + (A —1)2CCov(\7T+L )C'
resulting in

I

MMSE(YM,FACPL):)\ZCQC’+()\—1)ZCE§T+L\7T+L ﬁ: .

11



As in the univariate case we first have a look at the improvement region in the sense of the

SMSE. We compare SMSE(Y,, ,Fyc . ) with SMSE(Y,, ,Fc .. ): For which A‘s does

)‘2“@: ﬁ) + EgnL ?T+L’ %CI Q_ 2\ trﬁ:EﬁnL ?T+L’ ﬁt’ ﬁ"‘ tr%EgnL ?T+L’ ﬁ:’ % tr(CQ C')

hold?

Theleft sideisaquadratic functionin A. Similar to the univariate case we can conclude

ANTE

= : (7)

T R o]

Since rg(C) =k (see Appendix), we derive

atr(MMSE(Y,. ,Frcru ) =2atr(cQc’)+2(a _1)tr§;EE?T+L\?T+L' % ﬁ:o

T
TR )

2 1
Since O*tr(MMSE(Yr,y Ficr) :2tr§3§2+E@m\7m % §> 0, Acow is the

a°\

Copt -

minimizing scalar.

As in the univariate case, A is the midpoint of the improvement region. The SMSE of a

C,opt

forecast combination A ., Fc 1. IS

trﬁ:EﬁnLan' %:' ﬁl’(CQ C')
tr@:ﬁzgm\?m' E+ Q E’J@

SMSE(Yr,0 AcoFera )=

In general we use an n.n.d estimator for E@m\?m E Looking at the given interval in (7),

we can see again that an improvement is only possible for A <1. Furthermore, we stay in the

improvement region if

12



~ ~ U tr?E$T+LVT+L’ ?’ﬁ t CQCI
trﬁtE@mYT+L %% 5 - d 5 ) (Q known), or

- es 2 'i&r(cfz(:') -
tr%EngT+L %% ﬁT ;tr(TCLQ%) _tr(C;)C) (Q  unknown),

where Q denotes ap.d. estimator of Q and EﬁVHVHI ﬁisan n.n.d estimator, both realised.

We can see, that any unbiased forecast combination can be outperformed in the sense of the
SM SE by shrinking, especially the MM SE-optimal given in (6). Comparing the MM SEs of a
given multivariate forecast and its shrunken version can result in a situation, where none of
the MM SEs dominates the other. The difference of the two MM SEs can be indefinit.

Instead of a shrinkage scalar A we now use amatrix I IR, We consider Frere =TFcqi-

Theorem 5: Consider in situation (S2) an unbiased forecast combination F.., , where

ZCi =1, . The MMSE-optimal shrunken combination is given by Fr .. =FcouFeri,

, - , -1
Where rC,opt = C:E§T+LYT+L %' él: ﬁ) + E?T+LYT+L %’Q - (8)

Proof: The combined forecast error is

Urcrat = Yruw ~Frera =TCYr, ~TCFr —(FC-C)Yy,
=rcu,, -(rc-c)vy,,, ,

where C:=[C,,...,.C,],

and

E(U rC,T+L ) = —(I_C - C) E(VT+L ) ]
Cov{urery )=FCQCT +(rc-c)cov(Y,., J(rc-c) .

Calculating the corresponding MM SE resultsin

MMSE(Y,., ,Frern )= FCQCT + rCEﬁVH\?m' - CE@VT+L\?T+L' cr
- rCE?T+LVT+L’ %I + CE@T+L?T+L’ %I .

13



Here we want to minimize M MSE(YT+L , FFC’M) with respect to I".

0triIMMSELY ., ,Frc s = ! , S 'O~
r( ng L Frera)) — 2rc§) + Eﬁ?mym @ _ZCE@T+LYT+L % =0,
=T étﬁ‘l + E?T+L?T+L, %' Q: CE?T+LVT+L’ %I

Since rg(C) =k (see Appendix), we get:

e = CEr o BB+ Vo R

and

0” tr(MMSE(Y+, Fror)) _ . ﬁ) Ve, : @
T+L " T+L

0°r
- 71
is p.d. For an arbitrary shrinkage matrix ¢ ,, = K E:%) + E@HYHL %Q , KOIR¥,

we get
MM SE(YT,,L ) Frc,arbC'T+L )_ MM SE(YT+L ) Frcvumc,nL )

~ ! ' ~ ! 71 ~ !
= ﬁ(' - CE@T+LYT+L %Iﬁ%ﬁa + E@T+LYT+L %Ig ﬁ(' - CE§T+LYT+L %’ ﬁ’

whichisn.n.dand thus MMSE(Y,, ,Fr_ 7. )20 MMSE(Y,,  Fr cr )

We cannot see directly from the form of the weights of the MM SE-optimal unbiased and of
the MM SE-optimal (biased) combination how they are related. But looking aso at the results
=T. C

opt,unb ,opt ~opt,unb *

of the study in section 5 shows us that C In the simulation study we

opt,b
only analyse forecast combinations where the weight matrices sum up to |, . Thisis not a

necessary condition for an unbiased forecast combination. We can aso demand

CE(\?M): 1. E(\?m). In that case the weights depend on E(Y-,, ). Estimating this resuilts

in genera in weights which gives us a biased forecast combination. Then the unbiasedness

assumption in Thereoms 5 and 6 is not valid. Thus we do not consider these techniques.

14



5. Simulation study for the multivariate case

We analyse the combination of three unbiased one-step individual forecasts for a two-

dimensional variable. We use E(Yt) = (5,5)’ , 1=1...,30, for the generation of the time series

of the variable to be forecasted. For Cov(Y,)=: A, ,i =1,2, t =1,..,30 we consider:

M E@a SOE % E

For the generation of the series of the forecast errors we use 20 different 6x6 covariance
matrices which are given in the Appendix. The time series of the Y-variable and of the
forecast errors are of length 30. We have two different covariance matrices of Y and 20
different error covariance matrices. This results in 40 different cases. For each case we
generate 100 times seriesfor Y and for the individual forecast errors.

The first combination weights of the different methods are calculated on the basis of the first
ten data points. Thus, 20 data points are left for our analysis. In each step the different
unknown parameters are re-estimated on the basis of the most recent 10 data points. We

anayse the following 15 techniques:

T1: MMSE-optimal unbiased combination given by equation (6)

T2: MMSE-optimal (biased) combination given in Theorem 3

T3: shrinking T1 with the corresponding optimal shrinkage scalar A

T4: simpleaverage (SA) of theindividual forecast

T5: shrinking SA with the corresponding optimal shrinkage scalar A

T6: shrinking SA with the corresponding optimal shrinkage matrix I

T7: individual forecast No. 1

T8: individual forecast No. 2

T9: individual forecast No. 3

T10: shrinking individual forecast No. 1 with the corresponding optimal shrinkage scalar A
T11: shrinking individual forecast No. 2 with the corresponding optimal shrinkage scalar A
T12: shrinking individual forecast No. 3 with the corresponding optimal shrinkage scalar A
T13: shrinking individual forecast No. 1 with the corresponding optimal shrinkage matrix I
T14: shrinking individual forecast No. 2 with the corresponding optimal shrinkage matrix I
T15: shrinking individual forecast No. 3 with the corresponding optimal shrinkage matrix I".

15



Again, we want to remark that shrinking T1 with the corresponding optimal shrinkage matrix

I" isidentical to T2. In the following tables we present the average of the MSEs (first value in

the tables) of the 100 time series in each case for both components. We also count in each

case for how many time series a certain combination technique performs better than the

simple average of the individual forecasts (second value in the tables).

Table 2: Results for component No. 1, Cov(Y, )= A,

TL | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10|T11 | T12 | T13|T14 | T15
Q, 707 | 6.27 | 6.71 | 10.07 | 853 | 7.99 |14.20| 2741 | 43.30 | 11.79 | 18.28 | 23.81 | 11.31 | 14.34 | 17.22
82 89 85 - 88 82 16 3 0 35 8 1 44 22 11
Q, 272 | 265 | 261 | 345 | 322 | 3.37 |12.72| 1861 | 6.96 | 10.23 | 13.80 | 6.39 | 6.35 | 13.56 | 6.60
72 72 70 - 66 52 0 0 3 0 0 5 10 0 2
Q, 149 | 143 | 145 | 171 | 167 | 164 | 515 | 719 | 6.04 | 478 | 638 | 548 | 490 | 6.30 | 553
66 70 65 - 60 57 1 0 0 1 0 0 2 0 0
Q, 390 | 352 | 376 | 764 | 6.81 | 599 |13.02|13.30 | 15.26 | 10.78 | 10.95 | 12.65 | 10.18 | 10.91 | 11.37
93 96 93 - 80 84 2 1 2 18 15 10 22 16 16
Q. 210 | 199 | 205 | 242 | 245 | 248 | 1193 | 6.76 | 10.44 | 10.10| 6.10 | 9.08 | 853 | 6.28 | 6.20
58 64 60 - 48 47 0 0 0 0 0 0 1 0 4
Q. 205 | 200 | 1.98 | 3.08 | 3.37 | 318 | 6.96 | 1444 | 812 | 641 |11.90| 7.23 | 6.62 | 11.74 | 5.60
85 88 89 - 33 43 4 0 2 3 0 3 3 0 7
Q, 175|168 | 1.71 | 232 | 225 | 224 | 396 | 6.85 | 1581 | 3.72 | 6.33 |12.01| 3.24 | 531 |11.23
79 79 79 - 62 63 8 3 0 12 3 0 24 5 0
Q, 249 | 243 | 242 | 531 | 4.82 | 491 |18.99|37.43 | 17.66 | 14.47 | 21.33 | 13.66 | 14.04 | 11.32 | 11.95
99 99 99 - 77 68 1 0 0 2 0 0 2 1 2
Q, 327 | 319 | 318 | 3.79 | 359 | 380 | 510 | 1355| 3.93 | 480 | 1094 | 3.69 | 482 | 10.78 | 3.87
70 70 71 - 71 57 25 0 43 29 0 58 30 0 48
Q. 129 | 102 | 128 | 149 | 1.82 | 1.38 | 9.73 | 9.88 | 295 | 846 | 822 | 281 | 7.84 | 7.07 | 177
66 86 69 - 26 58 0 0 2 0 0 3 0 0 35
Q. 212 | 210 | 208 | 3.70 | 3.41 | 351 | 8.88 | 1283|2485 | 7.75 | 10.84 | 16.26 | 8.08 | 10.79 | 15.85
93 93 93 - 75 60 2 0 0 6 1 0 6 0 0
Q. 084 | 0.80 | 0.82 | 256 | 246 | 241 | 427 | 2516 | 3.05 | 3.97 |17.06 | 295 | 343 | 1360 | 2.85
100 | 100 | 100 - 62 64 11 0 35 14 0 40 30 0 42
Q. 253 | 236 | 246 | 389 | 358 | 3.72 | 1655|1422 | 6.93 | 1293 | 11.17| 6.16 | 13.38 | 10.89 | 5.69
90 92 91 - 65 62 0 0 6 0 1 16 0 0 22
Q.. 508 | 445 | 492 | 390 | 3.89 | 3.70 | 16.98 | 8.78 | 17.20| 13.66 | 7.77 | 13.27 | 1430 | 6.08 | 9.41
21 33 27 - 46 59 0 0 0 0 1 0 0 6 1
Qs 136 | 123 | 1.33 | 195 | 1.95 | 1.76 | 16.13 | 419 | 1290 | 1266 | 3.96 | 10.43 | 10.64 | 3.42 | 7.19
82 89 82 - 46 70 0 2 0 0 5 0 0 10 0
Qi 057 | 057 | 057 | 530 | 486 | 513 | 1854 | 3.00 | 493 | 1432 | 288 | 466 | 13.69 | 2.89 | 463
100 | 100 | 100 - 75 57 0 94 59 0 95 71 0 96 65
Q, 149 | 144 | 146 | 388 | 3.65 | 3.87 [ 2424 | 698 | 959 | 1691 | 6.26 | 8.27 | 13.29 | 6.40 | 6.75
99 99 99 - 67 49 0 8 2 0 12 5 0 11 7
Qi 049 | 049 | 052 | 258 | 266 | 261 | 508 | 2890 | 18.10 | 472 | 18.13 | 13.64 | 4.69 | 17.24 | 13.93
100 | 100 | 100 - 42 51 8 0 0 11 0 0 14 0 0
Qi 485 | 45 | 462 | 571 | 519 | 555 |1791|13.79| 6.00 | 13.90 | 11.48 | 550 | 10.19 | 12.07 | 5.74
61 68 68 - 73 63 0 0 45 0 1 51 7 0 49
Q. 277 | 240 | 268 | 1.97 | 195 | 1.88 | 7.21 | 1167 | 477 | 653 | 9.71 | 441 | 6.40 | 10.04 | 443
16 27 16 - 45 65 0 0 2 0 0 6 0 0 4

Looking at the results for component No. 1 we see that method No. 2 is best. Shrinking the

unbiased forecast combinations leads to an improvement. Using a shrinkage matrix " isin

most cases better than the usage of a shrinkage scalar A. Only for the simple average
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combination the approach with the shrinkage scalar performs for 9 of the given covariance

matrices better. The simple average is aso outperformed by the other combinations.

Combining leads in general to an improvement of the individual forecasts.

Table 3: Results for component No. 2, Cov(Y, )= A,

T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10|T11 | T12 | T13|T14|T15
Q, 097 | 095 | 098 | 412 | 414 | 400 | 3.08 | 824 | 1700 | 569 | 1192|1831 | 3.11 | 7.23 | 11.68
100 | 100 99 - 50 56 76 1 0 25 1 0 77 4 0
Q, 501 | 478 | 478 | 350 | 3.39 | 355 (1528 | 884 | 897 | 1268 | 9.70 | 800 | 7.97 | 842 | 848
10 14 13 - 64 44 0 0 4 0 1 10 1 1 7
Q, 335|316 | 327 | 315 | 3.03 | 3.04 (1884 | 835 | 7.97 [1580| 7.74 | 7.34 | 1406 | 7.73 | 7.62
45 51 47 - 65 55 0 1 2 0 1 3 0 1 5
Q. 259 | 241 | 252 | 279 | 3.00 | 242 |10.27 | 12.27 | 24.37 | 10.22 | 10.89 | 18.29 | 8.62 | 10.48 | 16.32
58 66 61 - 39 74 1 0 0 1 0 0 2 0 0
Q. 213 | 202 | 207 | 6.39 | 592 | 6.22 | 13.16 | 2056 | 7.60 | 11.28 | 16.73 | 7.85 | 9.88 | 1584 | 4.88
100 | 100 | 100 - 73 53 1 0 33 4 0 31 9 0 73
Q. 360 | 349 | 348 | 11.61|10.05| 10.29 | 25.25 | 12.76 | 26.21 | 20.38 | 11.96 | 20.22 | 17.52 | 11.67 | 13.92
100 99 100 - 88 72 0 43 0 5 46 0 13 48 31
Q, 206 | 1.97 | 201 | 476 | 444 | 447 | 791 | 1066 | 291 | 7.25 | 9.06 | 6.04 | 6.12 | 8.06 | 2.99
96 97 97 - 70 63 4 0 100 7 2 35 25 6 100
Q, 310 | 299 | 299 | 3.75 | 370 | 358 | 16.22 | 23.11 | 11.75| 1412 | 20.35 | 11.76 | 13.44 | 8.76 | 9.30
71 77 77 - 54 56 0 0 0 0 0 0 0 1 3
Q, 362 | 349 | 348 | 441 | 408 | 435 | 9.08 | 1052 | 1262 | 7.92 | 954 | 1095 | 8.01 | 9.43 | 10.88
71 75 76 - 72 49 0 3 0 0 3 2 2 4 4
Q. 9.06 | 7.02 | 855 | 1051 | 9.19 | 7.98 | 854 | 27.45| 2065 | 847 | 20.57 | 18.21 | 7.35 | 15.50 | 10.87
63 89 66 - 85 88 63 0 0 71 0 0 80 16 47
Q. 381 | 362 | 366 | 431 | 402 | 416 | 1994 | 1511 | 9.04 | 15.87 | 12.50 | 11.18 | 15.36 | 12.40 | 8.39
65 70 68 - 68 59 0 0 5 0 0 2 1 0 5
Q. 164 | 158 | 163 | 264 | 252 | 253 | 7.36 | 851 | 494 | 6.70 | 11.73 | 458 | 586 | 7.24 | 4.53
85 88 87 - 67 62 2 0 6 0 0 11 4 0 11
Q.5 0.76 | 0.75 | 0.76 | 467 | 444 | 461 | 10.16 | 16.26 | 6.98 | 1047 | 13.49 | 6.81 | 956 | 13.33 | 6.41
100 | 100 | 100 - 72 58 2 0 13 4 0 19 5 0 23
Qu 036 | 0.32 | 0.38 1049 | 898 | 842 | 4405 | 874 | 4.87 |28.06| 818 | 7.59 | 26.63 | 6.19 | 3.43
100 | 100 | 100 - 78 75 0 74 99 0 74 78 1 95 99
Qs 158 | 144 | 156 | 463 | 433 | 404 | 2583 |19.27| 505 | 19.06 | 16.30 | 6.42 | 14.86 | 11.60 | 3.13
99 99 99 - 79 74 0 0 45 0 0 26 0 0 80
Qi 180 | 1.78 | 1.78 | 1.87 | 1.98 | 191 | 932 | 283 | 561 |1055| 281 | 529 | 878 | 2.81 | 529
59 59 59 - 39 45 0 15 0 0 15 0 0 15 1
Q, 215 | 206 | 211 | 3.76 | 3.61 | 3.88 | 207 | 6.67 | 1210 | 875 | 6.52 | 10.67 | 1.94 | 6.76 | 8.60
93 93 93 - 57 45 92 1 0 7 2 0 95 0 2
Qi 813 | 723 | 768 | 890 | 7.83 | 816 | 9.63 | 26.21 | 23.78 | 829 | 19.71| 1792 | 7.98 | 18.44 | 18.38
61 70 65 - 83 68 39 0 0 53 2 3 61 0 2
Qi 249 | 234 | 242 | 531 | 496 | 516 | 1400 | 15.64 | 2411 | 12.85| 13.01 | 19.79 | 8.94 | 13.44 | 16.55
94 96 96 - 63 56 4 0 0 2 1 0 16 1 0
Q. 217 | 1.88 | 213 | 435 | 417 | 410 | 1587 | 994 | 10.83 |13.21| 991 | 950 | 1247 | 9.47 | 912
93 97 93 - 63 62 0 0 0 0 0 2 0 1 5

Again, method No. 2 is best

. Combining the forecasts in most cases |eads to an improvement.

Using a shrinkage matrix I is in general better than using a scalar A. Only for the simple

average combination we have similar results as above.

To summarize the results we present the following table. The first value in the first row gives

us the number of the 20 cases, where the average MSE of the first component of the specid
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shrinked combination is smaller than that of the corresponding unbiased forecast combination.
The first numbers of the second row are the same for the second component. The first
numbers of the third row presents how often the sum of the two averages of the MSEs is
smaller than that of the corresponding unbiased combination. We aso count how often the

special methods are best (second numbers).

Table 4: Summary of the results, Cov(Y,) = A,

T2 [ T3 [ 75 [ 76 [ T10 | T13 | T11 | T14 | T12 | T15
comporent| 20 | 19 | 15 | 16 | 19 | 20 | 20 | 20 | 20 | 20
No. 1 13 5 0 2 0 0 0 0 0 0
component| 20 | 17 | 17 | 17 | 16 | 17 | 13 | 19 | 19 | 19
No. 2 15 3 2 0 0 0 0 0 0 0
smofav. | 20 | 20 | 20 | 19 | 19 | 20 | 20 | 20 | 20 | 20
MSEs | 16 3 0 1 0 0 0 0 0 0

Again, shrinking the unbiased forecasts leads to an improvement. For some covariance
matrices the unbiased forecast combinations are for a special component better than their
shrinkage versions. But looking at the sum of averaged MSEs, in dmost all cases the
shrinkage techniques are better.

As above, we want to describe now the result for Cov(Y,)=A,.

Table 5: Results for component No. 1, Cov(Y,)=A,

T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10|T11 | T12 | T13|T14 | T15
Q, 706 | 545 | 661 | 967 | 7.71 | 532 | 13.94 | 26.86 | 43.01 | 10.03 | 15.74| 19.41 | 8.05 | 8.91 | 10.98
80 91 80 - 92 99 13 2 0 46 9 2 65 54 38
Q, 250 | 248 | 237 | 359 | 332 | 340 | 1272|2011 | 7.05 | 9.83 | 1273 | 6.00 | 348 | 11.30 | 6.22
80 82 88 - 71 63 1 0 6 3 1 10 48 0 9
Q, 155 | 137 | 149 | 174 | 1.75 | 1.30 | 493 | 7.01 | 590 | 443 | 6.08 | 529 | 448 | 5.07 | 4.92
60 75 67 - 52 89 2 0 0 3 0 0 5 0 0
Q, 419 | 268 | 388 | 7.78 | 647 | 3.45 | 1317 | 1301|1491 | 998 | 982 | 1069 | 7.78 | 9.14 | 9.15
88 99 92 - 87 98 0 1 4 22 23 19 51 33 31
Qs 197 | 169 | 190 | 248 | 255 | 249 | 1224 | 7.15 | 1066 | 951 | 6.25 | 830 | 6.44 | 649 | 2.73
72 82 73 - 42 48 0 0 0 0 2 1 0 2 44
Qs 19 | 191 | 1.86 | 3.23 | 348 | 3.20 | 6.89 | 1442 | 823 | 599 |10.26 | 6.82 | 6.08 | 9.78 | 4.55
91 92 93 - 34 44 0 0 0 5 0 2 6 0 22
Q, 184 | 166 | 1.79 | 226 | 224 | 210 | 394 | 6.88 | 1591 | 355 | 6.01 |11.12| 234 | 424 | 7.73
74 80 75 - 49 59 5 1 0 10 2 0 44 9 1
Qs 244 | 236 | 234 | 545 | 480 | 3.84 | 1844 |36.79 | 16.67 | 11.97 | 17.95| 11.73 | 10.94 | 5.46 | 8.16
97 97 97 - 7 92 1 0 0 8 0 1 7 52 16
Q, 348 | 328 | 328 | 3.78 | 351 | 359 | 515 | 13110 | 3.94 | 457 |10.14| 3.68 | 444 | 898 | 3.91
61 65 68 - 65 59 21 0 43 29 0 56 30 1 44
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Table 5 continiued

Q. 132 | 061 | 1.31 | 144 | 206 | 1.07 | 943 | 949 | 299 | 764 | 769 | 277 | 585 | 582 | 0.84
63 98 63 - 11 89 0 0 0 0 0 1 0 0 91
Q. 207 | 199 | 1.9 | 3.76 | 3.38 | 3.22 | 940 |13.73 | 2469 | 7.36 | 10.11 | 14.64 | 7.69 | 9.59 | 12.10
89 90 93 - 73 71 3 0 0 6 3 0 8 2 0
Q. 085 | 073 | 084 | 238 | 229 | 1.79 | 391 | 2528 | 311 | 3.62 | 1524 | 292 | 224 | 857 | 232
100 | 100 | 100 - 62 91 12 0 28 18 0 33 56 0 56
Q.5 255 | 222 | 247 | 360 | 3.34 | 3.24 | 1523|1346 | 7.37 |10.86| 9.82 | 6.20 | 10.33 | 899 | 443
82 91 84 - 64 74 0 0 2 1 1 7 1 1 32
Qu 486 | 287 | 461 | 392 | 399 | 325 | 1763 | 8.77 | 16.61 | 11.70 | 7.27 | 11.60 | 1233 | 3.59 | 4.32
32 83 34 - 40 76 0 0 0 1 5 0 0 59 41
Qs 136 | 1.00 | 1.34 | 198 | 1.96 | 1.28 | 15.85| 4.03 | 12.77 | 11.09 | 3.71 | 935 | 8.44 | 283 | 3.14
80 93 81 - 48 93 0 2 0 0 5 0 0 18 15
Qi 056 | 054 | 055 | 558 | 482 | 464 (1981 | 3.05 | 481 [1278| 278 | 425 | 10.34| 254 | 3.78
100 | 100 | 100 - 82 74 0 93 69 0 96 80 4 95 94
Q. 156 | 143 | 1.51 | 400 | 364 | 3.75 | 2436 | 6.81 | 957 |1484| 591 | 7.71 | 6.42 | 573 | 4.69
100 | 100 | 100 - 71 65 0 11 4 0 16 5 14 19 37
Qi 052 | 051 | 056 | 247 | 264 | 246 | 536 | 29.33 | 1820 | 470 | 16.00 | 12.32 | 4.28 | 13.88 | 12.35
100 | 100 | 100 - 34 49 4 0 0 6 0 0 10 0 0
Qi 517 | 471 | 479 | 563 | 473 | 472 | 1750|1424 | 6.05 | 1157 | 10.08 | 516 | 6.38 | 10.17 | 5.28
60 69 73 - 79 77 0 0 47 2 6 62 34 4 58
Q. 288 | 171 | 274 | 206 | 198 | 1.58 | 7.52 | 11.99 | 5.08 | 6.26 | 9.17 | 444 | 566 | 890 | 4.00
16 73 20 - 59 88 0 0 2 0 0 2 0 0 5

The results for matrix A, are similar to the results for matrix A,. For component No. 1

method No. 2 is best. Shrinking the unbiased forecast combinations improves the forecast
guality in the sense of the MSE. Using a shrinkage matrix I' is for al techniques better than

using ascalar A. The simple average is the combination method with lowest quality.

Table 6: Results for component No. 2, Cov(Y,)=A,

T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10| T11 | T12 | T13|T14 | T15

Q, 094 | 092 | 093 | 387 | 344 | 298 | 299 | 806 | 1602 | 428 | 813 | 1148 | 284 | 533 | 761
100 | 100 | 100 - 67 85 73 0 0 42 2 0 77 20 1

Q, 527 | 453 | 490 | 357 | 320 | 3.21 | 1523 | 948 | 943 | 10.04| 805 | 743 | 3.79 | 7.68 | 6.70
7 22 16 - 75 73 0 1 3 0 1 4 41 2 6

Q, 343 | 251 | 325 | 338 | 298 | 211 (1984 | 881 | 815 | 15.07| 6.90 | 657 | 6.83 | 520 | 513
47 80 52 - 87 99 0 0 1 0 3 7 2 18 16

Q 257 | 181 | 241 | 294 | 279 | 159 |10.30| 11.95| 2467 | 7.38 | 881 | 1485| 601 | 792 | 872
4 63 92 68 - 58 99 0 0 0 0 1 0 4 0 1

Q 221 | 180 | 212 | 635 | 527 | 422 (1265|2089 | 7.91 | 891 | 1489 | 653 | 578 | 819 | 1.98
° 99 99 100 - 94 96 2 0 28 17 0 42 65 24 100

Qs 365 | 328 | 347 |1117| 829 | 6.23 | 2445|1276 | 2530 | 1756 | 8.88 | 17.31| 8.76 | 843 | 6.17

99 99 99 - 96 96 1 33 0 7 68 2 74 80 94
Q 198 | 165 | 1.89 | 471 | 413 | 312 | 7.87 | 1087 | 283 | 6.68 | 834 | 477 | 3.29 | 451 | 278
! 97 99 97 - 86 94 6 0 100 10 4 56 81 56 100

Q 332 | 305|319 | 369 | 331 | 278 |16.89 | 22.73| 12.35| 11.42 | 12.87 | 9.21 | 9.84 | 433 | 6.56
8 58 69 61 - 69 85 0 0 0 1 0 0 1 35 8

Q, 352 | 314 | 331 | 437 | 383 | 357 | 904 |11.31|1315| 741 | 837 |10.75| 528 | 7.26 | 6.57

74 81 78 - 85 82 0 0 0 1 8 1 31 15 9
Q. 865 | 366 | 7.81 |10.89| 828 | 3.77 | 887 | 2824|2090 | 6.99 | 18.22 | 1748 | 492 | 6.89 | 3.65
71 100 78 - 99 100 69 0 0 83 2 1 96 86 99
Q. 367 | 3.04 | 345 | 440 | 3.77 | 3.30 | 20.77 | 1488 | 9.22 | 13.86| 9.73 | 814 | 9.50 | 852 | 7.30
80 85 83 - 86 85 0 0 5 1 1 2 6 4 12
Q. 166 | 1.33 | 161 | 239 | 219 | 1.70 | 695 | 7.98 | 486 | 578 | 7.90 | 430 | 2.83 | 532 | 290
84 95 87 - 76 92 0 0 3 1 0 7 39 0 33
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Table 6 continiued

Q.5 073 | 0.72 | 0.72 | 460 | 405 | 3.71 | 986 | 1587 | 7.03 | 7.73 |1091| 586 | 7.74 | 8.69 | 411
100 | 100 | 100 - 83 83 6 0 11 7 0 26 10 3 59
Qu 035 | 021 | 0.36 | 1097 | 816 | 5.09 | 4650 | 9.08 | 4.89 | 22.77 | 6.97 | 567 | 1431 | 3.44 | 218
100 | 100 | 100 - 100 99 0 76 96 0 96 94 25 100 | 100
Qs 154 | 112 | 149 | 461 | 406 | 236 | 2550 | 18.67 | 484 | 1510|1513 | 5.03 | 815 | 538 | 143
98 99 98 - 86 100 0 0 40 0 0 40 12 36 99
Qi 182 | 1.72 | 1.77 | 207 | 201 | 202 | 9.06 | 298 | 634 | 7.77 | 270 | 535 | 6.96 | 240 | 4.02
65 66 65 - 50 53 0 18 0 0 35 0 0 40 5
Q, 227 | 197 | 219 | 390 | 345 | 347 | 200 | 7.05 | 1231 | 590 | 583 | 885 | 1.65 | 548 | 489
90 98 93 - 7 71 97 0 0 15 6 0 100 9 28
Qi 814 | 518 | 749 | 819 | 649 | 520 |1019| 2481|2176 | 8.03 | 13.11 | 1259 | 531 | 11.27 | 11.26
52 86 59 - 96 97 32 0 0 52 10 11 80 12 20
Qi 267 | 243 | 249 | 526 | 440 | 423 |13.62| 1489|2470 | 9.40 | 1001 | 1835 | 528 | 9.23 | 7.57
97 97 97 - 86 85 3 0 0 12 4 0 45 6 20
Q. 220 | 1.34 | 210 | 416 | 3.69 | 246 |14.86| 9.88 | 10.77 | 11.06| 7.47 | 8.68 | 6.49 | 7.01 | 559
94 98 94 - 80 95 0 0 2 0 7 3 8 12 27

Method No. 2 again is best for the second component. Shrinking leads to a smaller MSE. The
forecast combinations improve the individual forecasts. For all combination methods the
approach with a shrinkage matrix ' performs better than the approach with a constant A.
Furthermore, only the simple average is in some cases of lower quality than some of the

individual forecasts. We now want to summarize the results in the following table.

Table 7. Summary of theresults, Cov(Y,)=A,

T2 | 13 [ 75 | 76 | T10 | T13 [ T11 | T14 | T12 | T15
comporent| 20 | 19 | 14 | 19 | 20 | 20 | 20 | 20 | 20 | 20
No. 1 13 5 0 2 0 0 0 0 0 0
comporent| 20 | 19 | 20 | 20 | 18 | 19 | 17 | 20 | 20 | 20
No. 2 14 0 1 3 0 1 0 0 0 1
smofav. | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20
MSEs | 19 0 0 1 0 0 0 0 0 0

We can conclude as for matrix A,. Shrinking leads to an improvement. Method No. 2 is

obviously the best.

6. Concluding remarks

Giving up the requirement of unbiased forecast combination improves the quality of the
combined forecast in the sense of the MSE (uinivariate), the SMSE or the MMSE
(multivariate). Especially the shrinkage approach gives information, how unbiased forecast
combinations can be improved. Although the optimal shrinkage scalar (matrix) depends on
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unknown variables, the second moment of the variable to be forecasted (univariate case) and
the error covariance matrix, it is possible to caculate shrinkage scalars lying in the
improvement region. An example shows us that the shrinkage versions of different unbiased
forecast combinations are of high quality. A more detailed analysis of the performance of the
estimators of the unknown parameters is necessary. In this case it could be possible to decide
when shrinking is useful and which estimators we should rely on.

In practice subjective weighting schemes are often used for the combination of forecasts.
Anaysts often decide to weight the forecasts in a special relation, depending on some a-priori
knowledge. Then they conclude in common that the weights should sum up to one. Shrinking
these forecasts combination saves the relation between the weights. The restriction that the
weights sum up to one is no more valid. Then, choosing adequate estimators for the unknown
parameters can lead to an improvement.

7. Appendix

A1) Weshow that a k xnlk matrix C:=[C,,...,C,], where ZCi =1, , hasfull row rank:

k:rgok)=rg§gq §= o(Cll -1 J') < 1(C).

A?2) The 20 error covariance matrices in the simulation study:

o4 4 2 -3 4 4p 13 -11 -6 2 0 7f
04 3 5 -3 -1 -17 11 16 9 2 3 -3[
U2 5 27 -2 -5 10U U6 9 19 6 2 -6

Q,:=0 0, Q,:=0 i
+3 -3 -2 8 -3 8 02 2 6 9 -1 00
U4 -1 -5 -3 42 -gH Jo 3 2 -1 7 4F
ﬁ4 -1 1 8 -8 16@ ﬁ 7 -3 -6 0 4 9@
15 1-3 -3 -1 2p 713 0 10 4 -1
01 19 -7 6 -2 -5[ 0o 10 -1 -5 1 -7
L3 -7 7 o 3 1H J10 -1 13 4 1 -13U

Q,:= 0, q,:=0 if
3 6 0 9 -3 -40 04 -5 4 12 -8 20
U1 -2 3-3 6 1H Us 1 1 -8 15 -1H

1
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