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Abstract

The online detection of a slow monotonic trend in a time series with a time-varying mean is an
important task in biomedical applications like intensive care monitoring, that is rendered difficult
by autocorrelations. Statistical control charts designed for controlling industrial processes are not
adequate as they typically rely on a fixed target value and since they do not consider the mean to
be time-varying. Moreover, many detection rules for slow monotonic trends assume a trend to be
linear. We develop an approach for online detection of slow, possibly nonlinear monotonic trends. For
estimation of the model parameters we use a moving time window in order to incorporate time-varying
autocorrelations. The performance of some variations of this approach and of the resulting detection
rules is investigated in a simulation study, and an application to real data is given. We find that

shrinkage estimation of a time-varying mean enhances the discriminatory power of the test statistic.

Key words: statistical process control; online monitoring; change-point detection; shrinkage estima-

tion.

1 Introduction

In many biomedical and environmental applications of statistical data analysis subsequently
measured observations need to be analyzed online. The fast and reliable detection of patterns
of change in such time series data is important since these patterns may point at some
change in the data generating mechanism. In intensive care for instance, early detection

of a monotonic trend in a time series representing heart rate or blood pressure allows the
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physician to take some therapeutical intervention before a critical threshold is exceeded.
Positive autocorrelations render this task difficult since they cause monotonic sequences in
the data, just like deterministic trends. Moreover, deterministic trends do not only influence
the process mean, but they also strongly influence the ordinary sample autocorrelations, which
are typically needed to standardize test statistics for trend detection. In retrospective analysis
often a simple linear trend is fitted to the data and the autocorrelations are approximated
by an autoregressive model for the noise (COCHRANE and ORCUTT, 1949, BLOOMFIELD and
NyYCHKA, 1992). The reason is that autoregressive models constitute a quite flexible model
class describing a wide variety of autocorrelation functions and that simple algorithms for

model fitting exist.

For online trend detection, control charts based on exponential smoothing are frequently
recommended (TRIGG, 1964, CEMBROWSKI et al., 1975, MONTGOMERY and MASTRANGELO,
1991, SCHACK and GRIESZBACH, 1994). However, for any choice of the weighting parameter
there are scenarios where the resulting EWMA chart shows poor performance. Monte Carlo
comparisons of EWMA and CUSUM charts reveal that none of these procedures has overall
optimal performance for the detection of slow trends in independent measurements (CHANG
and FRICKER, 1999). Moreover, these charts are designed for industrial processes where we
may assume stationarity in the steady state, i.e. unique model parameters for the whole
process, as well as the existence of a fixed target value. In applications such as monitoring
pollution in environmental sciences or controlling vital signs in intensive care stationarity
can often not be assumed, and it is not possible to specify a target value in advance be-
cause of natural fluctuations within the data generating mechanism itself like seasonality or
biorhythms (HOGEL, 2000, SCHMID and STELAND, 2000, GATHER, IMHOFF and FRIED, 2002,

GATHER et al., 2003).

We adapt BRILLINGER’s (1989) approach for retrospective detection of a monotonic trend
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to the online-monitoring context by applying a test statistic to the data in a moving time
window. Moving window techniques are useful to estimate model parameters which are time-
varying and to construct adaptive control limits assuming stationarity to hold only locally
(DAHLHAUS, 1997). W.r.t. the length of the time window we must look for a compromise
since a long time window results in a small variance for the expense of a large bias. We
compare several strategies for automatic preliminary detrending of the data as we need to

reduce the influence of trend patterns on the estimated time series model.

We proceed as follows. Section 2 describes the basic underlying model and the proposed
procedure. In Section 3 the reliability of this procedure and of the parameter estimates is
checked by simulations assuming an AR(1) model, which is frequently used in practice. In
Section 4, the procedure is then applied to online-monitoring data observed in intensive care,

before we finish with a discussion of the results.

2 The model

We assume that at each time point ¢ € Z the measurement Y; of a deterministic signal p; is

disturbed by additive autocorrelated random noise F,

Y;ﬁ = Mt+Eta t € 7.

For retrospective trend detection often a linear model such as py; = it + B is assumed
for the mean (COCHRANE and ORCUTT, 1949, BLOOMFIELD and NYCHKA, 1992, SUN and
PANTULA, 1999) and it is tested whether an estimate ,31 of B; is significantly different from
zero. However, this means to specify a fixed form of the mean. Trends which are not linear
may not be detected this way. This problem becomes even more serious in online monitoring

since a procedure needs to function automatically and reliably in a wide variety of situations.
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ABELSON and TUKEY (1963) suggest to use a weighted sum Ef;l ¢tY; to test for a mono-
tonic increase of u; during a time interval ¢t = 1,..., N, ie. p1 < po < ... < puny with
pe < ppr for at least one ¢t € {1,...,N — 1}. They restrict the weights ci,...,cn to
fulfill ¢ = Zi\il c¢t/N = 0, such that ) c;uy also equals zero in case of a constant mean

p1 = o = ... = upy. Then the weights are determined to solve

e i 22 = O = B)?
¢ n Y (e —2)? Y (e —1)?

where 7 = > /N, i.e. the weights are chosen to have worst case discriminatory power for

an extremely unfavorable trend which is as high as possible. This results in

o= )

and the corresponding worst case is a single step change. Thus, the hypothesis of a constant

mean should be rejected in favor of a monotonic increasing (decreasing) mean if

N

Z ctYy

t=1

7

T =

takes large positive (negative) values, where 7 is an estimate of the standard deviation 7 of
the weighted sum. ABELSON and TUKEY (1963) estimate 7 and calculate critical values for
T under the assumption that the noise process consists of independent identically distributed
variables. BRILLINGER (1989) generalizes this approach to stationary noise processes using a
running mean to estimate the mean y; at time ¢ and a nonparametric approach to estimate 7.
The test statistic turns out to be asymptotically normally distributed. However, Monte Carlo
experiments show that the resulting rule is too sensitive even in retrospective applications to

long time series (WOODWARD, BOTTONE and GRAY, 1997).

In online monitoring of a locally stationary process with a possibly slowly time-varying
mean and autocorrelations we may test whether a monotonic trend has occurred during a

time window of the last n observations. Large sample asymptotics are not useful if the window
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width n is not very large. The choice of n will often be guided by the application. In our
case, we use n. = 60 observations corresponding to one hour of measurements. Brillinger’s
approach for standardization should not be applied here since the number of observations
used for a running mean must not be very small to reduce the impact of the noise, but it
must be small relatively to the window width n. Therefore we assume in the following that

the noise can be approximated locally within each time window by an AR(p) process
E, = oNnEia+...+opNEp+ U, t=1,...,n,

where we denote the observed N > n values by vy, nN+1,---,%0,Y1,---,Yn for notational
simplicity, i.e. y1,...,y, correspond to the current time window. Here, ¢1 n,...,¢p N are
unknown autoregressive coefficients and {Uy, ¢t € Z} denotes an unobservable white noise pro-
cess with uncorrelated, identically distributed disturbances having mean zero and unknown
variance UJZV. We note that all parameters may vary in time, i.e. depend on the current time

window, and suppress indices representing the time window further on for simplicity.

Two types of control charts have been suggested for considering autocorrelations. One
possibility is to fit a time series model like an AR(p) model to the data and to apply a
standard control chart for independent data to the residuals. Alternatively one can use
the untransformed observations and adjust the control limits for the autocorrelations. We
prefer the latter approach here since experience shows that it is often better to use the
original observations than residuals from a possibly misspecified time series model (see LU and
REYNOLDS, 1999, and the references cited therein). Nevertheless, comparing the procedure

worked out in the following to a residuals based analogue might be interesting.

In order to standardize the weighted sum >} | ¢;Y; we need to estimate its variance

2 =Var <tz_; ctY{t> = Z Z cresy(t —s).- (1)

t=1 s=1

Hence, we need reliable estimates of the autocovariances v(0),y(1),...,y(n —1) at time lags
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0,...,n — 1, or, equivalently, of the AR model parameters. A deterministic trend seriously
affects the ordinary sample autocovariances as these decay to zero very slowly, irrespective of
the true values. Similarly, standard estimates of the AR parameters are seriously mislead by
a deterministic trend if we assume the mean to be constant. Thus we have to eliminate or at
least reduce the impact of a trend in a simple way before we estimate the model parameters.
In the remainder of this section we present some variations of a model based approach for

detrending the data.

The basic idea is to approximate a deterministic trend within the current time window
by a linear model p; = f(¢)’8 and to estimate the autocovariances from the residuals. As
mentioned above, in retrospective applications often a simple linear trend u; = [y + [it
is assumed. In the following we suggest some modifications of this approach that may be

particularly useful in an automatic online application.

Using a simple linear trend for detrending is not completely satisfactory as we want reli-
able estimates for all time windows, also for those where only some of the observations are
influenced by a trend, e.g. the beginning of a trend period. Therefore we suggest fitting a
higher dimensional trend function £(t) = (fo(¢),..., fx(t))’ with k +1 > 2 to achieve more
flexibility. The components f;(¢) could be chosen as low order polynomials for instance, but
then extrapolation of a trend is difficult because of the strong curvature of polynomials of

order higher than one. Instead we suggest using ramp functions such as

0, t<s
gs (t) = ’
t—s, t>s
s € {0,...,n — 1}, describing a linear trend starting at time point s. By constructing linear

combinations p; = f(t)'8 we get piecewise linear functions. For n = 60 we take k = 3 with

f1 =90, f2 = 920, f3 = ga0, and fy constant, i.e. fo(t) =1,¢t=1,...,n. This allows a rough
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approximation of any trend. We can estimate 8 using

By = (XVTX) X'V,
fo(1) oo fx(1)

fo(2) ... fk(2)
where X =

fo(n) ... fi(n)
and y = (y1,...,yn). For V.= I, the (n x n)-identity matrix, we get the ordinary least
squares estimate 8, = BI, while for V.= X = (y(¢—J))1<i,j<n, the (n X n) covariance matrix
of By, ..., E,, we get the generalized least squares estimate. While the latter is not applicable
as X is unknown, the former assumes independence of the observations when estimating 3.
For any reasonable choice of V' we can reduce the impact of a trend by subtracting f(¢)’ B VvV
from y; obtaining estimates yy/(h), h = 0,...,n—1, of the autocovariances from the residuals

~

Zy =Y, —f(t)By. t=1,...,n.

In the following we restrict attention to AR(1) models. These models are frequently used in
practice for adjusting a trend estimate when correlation is present, particularly in case of short
time series. Some simplifications are possible then. Since there is only one autoregressive
parameter we simply call it ¢. Then we have y(0) = 02/(1 — ¢?) and ~(h) = ¢"v(0),h > 1.
We get estimates of y(h),h = 0,...,n — 1, by inserting estimates of 02 and ¢ into these

equations. We can estimate ¢ and o consistently (for n — oco) using

. Yoo (?Jt - f(t),Bk) (yt—1 —f(t — l)lék)

¢k = N2 (2)
i (v — 0By

s 1 -

Ok = TE_1 ; [(yt - f(t),Bk) — b (yt,l —f(t - 1)'Bk)r (3)

assuming that the model p, = f(¢)’8 holds exactly (NICKERSON and BASAwA, 1992). We
denote the number of regressor variables by subscripts here. In the denominator of &k we

sum from ¢t = 1 to ¢t = n — 1 instead of t = n — 1 for reducing bias. Since ¢, may turn out to
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be larger than one we restrict it to be at most 0.99 in the following. In order to improve these
estimates we can use a two-step approach. First we estimate B by ordinary least squares
to get an estimate > of the covariance matrix 3 inserting qzk and ;. Then we calculate a
feasible generalized least squares estimate 8, = 3 5 Inserting B, into (2) and (3) instead of

Bk we get two-step weighted least squares estimates &k and &.

A higher dimensional parameterization p, = £(t)'8, 8 = (Bo,--.,Bk)’, provides flexibility
for time windows with non-linear trend. In a steady state, however, it may result in instability
of the mean estimates as we fit an overparameterized model. A possibility to overcome this
problem is data-driven shrinkage of the parameter estimate in the full model towards the
estimate in a reduced model corresponding to a steady state. Particularly, we consider a
convex combination B¢ of B, and By = (,0,...,0)" corresponding to fitting a (k + 1)-
dimensional trend function and a constant mean respectively to the current time window

o2
(8- B0) (X'57'X) (B - Bo)

The amount of shrinkage is controlled by a factor which is just ¢ times the inverse of a

Bs =B - (Bi—5) - (4)
x?-statistic which compares the fit of the reduced model to the fit of the full model. We
restrict this factor to be not larger than one. Then shrinkage estimators qsg and g can be
obtained by inserting B¢ into formulas (2) and (3). Shrinkage estimation of the parameters
of a regression model with correlated errors has been treated by NICKERSON and BASAWA
(1992) and by CHATURVEDI and WAN (2000). In the former paper it is shown that the
shrinkage estimator of the mean has smaller expected weighted mean square error than the
weighted least squares estimator if the covariance matrix is known up to a scale parameter,
n>kand 0<c<2(k-1)(n—k)/(n—k+3). For unknown covariances, it is shown there
that the shrinkage estimator of the mean has better asymptotic efficiency than the weighted
least squares estimator if the true mean is approximately constant. In the latter paper it

is shown that the shrinkage estimator of the mean dominates the feasible generalized least
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squares estimator in case of known variances and unknown correlations. Thus, shrinkage may
well improve the estimation of the mean; see SARGAN (2001) for a discussion of this topic.
We set ¢ = 4, that is at the upper end of the interval suggested by Nickerson and Basawa

since we have k = 3.

If it was known in advance that all changes of the mean in the course of time are mono-
tonic we could use isotonic regression (Wu, WOODROOFE and MENTZ, 2001) to restrict the
estimate. However, in our application the mean can show smooth non-monotonic behavior

even in the steady state and then this restriction may be unduly severe.

We are not primarily interested in the mean estimates but we use them to detrend the
data and to estimate the AR parameters thereafter. Therefore we check in Section 3 whether
these improved estimates of the regression function also result in better estimates of the
autocovariances. We compare the performance of (¢1,62), (¢3,52), (ég,&g) and (qgg,&%),
where the index denotes the number of regressors in the trend function, while S denotes
shrinkage. The first estimator is computationally very cheap as we detrend the data by just
fitting a simple linear trend, the second needs fitting a four dimensional trend function, the
third is a two-step estimator, that needs iteration to obtain feasible generalized least squares
in a second step, while shrinkage estimation only affords to additionally evaluate equation

(4) once in each step.

3 A simulation study

In the following we perform a Monte Carlo study to check the reliability of the parameter
estimators, to derive critical values for the test statistic and to check the power of the proposed

procedure.
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3.1 The simulation design

We simulate time series Y7, ..., Y309 of length NV = 300 corresponding to five hours of moni-

toring of a process with observations measured every minute from

Yi = m+E

E, = o¢oE, 1+U,

where U; denotes N (0, 1)-distributed disturbances. We consider ¢ € {0.0,0.1,...,0.9} and
several deterministic mean functions p¢. The latter either include no trend, a linear trend

,ugl) = a(t—100)1100<t<200 + 100al;>200 starting at time point ¢ = 101 with a duration of 100

time points and slope a € {0,0.05,0.1}, or a non-linear trend u§2) having the shape of the
ascending part of the sinus-function, i.e. zero derivatives at both endings, and causing the
same total change in level as a linear trend with slope a € {0.05,0.1} during the same time

interval. For monitoring, we move a time window of length n=60 observations corresponding

to one hour of measurements through the series.

First we illustrate the problems resulting from positive autocorrelations and the corre-
sponding behavior of shrinkage estimates as proposed above. Figure 1 shows simulated time
series with an inserted linear trend having slope a = 0.05. The autoregressive parameter is
chosen to be ¢ = 0.0 (independent errors), ¢ = 0.3 (small autocorrelations), ¢ = 0.6 (mod-
erate autocorrelations) and ¢ = 0.9 (large autocorrelations) respectively. The realizations of
the test statistic T" with shrinkage-based standardization as described above are also shown.
For ¢ = 0.9 the underlying deterministic trend is barely visible as there are monotonic in-
creasing as well as monotonic decreasing patterns. Nevertheless, T' increases during the trend
period even in case of such high autocorrelations, but it takes more time until it becomes
large. The highest value of the test statistic even occurs some time after the trend period,

when only some of the observations in the time window are influenced by the trend. The
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reason is that there is a long monotone pattern in the data caused by the strong positive
correlations. In case of small to moderate autocorrelations T increases strongly briefly after

the start of the trend.

Figure 2 shows the shrinkage factors obtained for the previous four time series as a function
of time. For ¢ € {0.0,0.3,0.6}, i.e. for small to moderately large autocorrelations, this factor
is close to one in a steady state, while it is close to zero in a trend period. In case of large
autocorrelations (¢ = 0.9), the resulting monotonic patterns cause the shrinkage factor to be

small most of the time.

A comparison of the mean estimates reveals that a four dimensional regression function
fits the data most of the time very well, but during the steady state the data are overfitted
as could be expected. Shrinkage reduces this overfitting. On the other hand, fitting a simple
linear trend means a crude approximation particularly at the beginning and the end of a

trend period.

3.2 Comparison of the parameter estimates

A crucial point for the proper standardization of the weighted sum is the estimation of the
AR(1) parameters ¢ and o2. In order to explore the properties of the distinct estimators
proposed above we simulate 500 time series for each of ¢ = 0.0,0.3,0.6,0.9 and a linear time
trend with slope 0.05 between the time points 101 and 200. We calculate the averages of
these parameter estimates across all the 500 time series corresponding to each model for each

time point to assess the bias of the distinct methods for such a trend.

Figures 3 and 4 depict the averaged estimates of the autoregressive coefficient ¢ and of
the standard deviation 7 of the weighted sum, respectively. We discuss them jointly as
the results are essentially the same. When all observations within the current time window

arise from a steady state, the estimators based on simple linear detrending usually show the
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Figure 1: Simulated time series (solid), underlying mean M (bold solid) and test statistic T'

(dashed) for zero (¢ = 0.0, top left), small (¢ = 0.3, top right), moderate (¢ = 0.6, bottom

left) and large (¢ = 0.9, bottom right) autocorrelations.
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Figure 2: Shrinkage factors for simulated time series with inserted trend and zero (¢ = 0.0,
top left), small (¢ = 0.3, top right), moderate (¢ = 0.6, bottom left) and large (¢ = 0.9,

bottom right) autocorrelations.
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smallest (negative) bias. Omne-step third order detrending results in a substantially larger
bias, and two-step estimation provides only minor improvement, that is almost negligible in
case of small autocorrelations, c¢f. ¢ = 0.0 and ¢ = 0.3. This is in line with the results of
BLOOMFIELD and NYCHKA (1992), who find the ordinary least squares and the optimal (in
the sense of mean square error) unbiased estimate of a simple linear trend in case of AR(1)
disturbances to be very close to each other if the autocorrelations are moderate to small.
GRENANDER (1954) shows that ordinary least squares is asymptotically fully efficient in a
broad range of regression models with correlated errors. Shrinkage estimation is usually in
between simple linear and third-order detrending in a steady state. For o (not shown here),
it has even a smaller bias than simple linear detrending. For ¢ and 7, all methods show a

negative bias, that increases with increasing autocorrelations.

In case of small to moderately large autocorrelations, simple linear detrending results in
estimates that are typically larger in a trend period than in a steady state, the bias becoming
even positive during a trend if the autocorrelations are close to zero. However, this means
that we lessen the effect of a trend on the test statistics as compared to a steady state when
using linear detrending for standardization. On the other hand, the negative bias of shrinkage
estimation increases even slightly in a trend period if the autocorrelations are not very large.
This is due to the fact that the shrinkage estimators are close to the ordinary, not trend
corrected estimators during a steady state and close to the two-step third order regression
estimators during a trend. Such behavior is advantageous for trend detection since it increases
the differences between the values of the test statistic in a trend period and in a steady state
even more, while we can cope with a bias in a steady state adjusting the estimator or the
critical value. The not trend-corrected estimators are not depicted here since these show a
very large positive bias in a trend period, i.e. including them in the figures would prohibit

discerning differences between the other methods. An additional analysis for a non-linear,
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Table 1: Simulated and fitted bias (multiplied by -1) of the shrinkage estimator bs in case of

no trend for several autocorrelations.

0] .0 1 2 3 4 D .6 7 .8 9

sim. 0.0365 0.0496 0.0511 0.0668 0.0763 0.0977 0.1051 0.1254 0.1619 0.2084

fit. 0.0432 0.0436 0.0496 0.0594 0.0748 0.0922 0.1175 0.1435 0.1670 0.1887

sinusoidal trend leads to essentially the same results, while an analysis of the variances of the

estimators does not reveal large differences.

In view of these results we prefer shrinkage estimation for detrending in case of observations
measured every minute, i.e. in a situation which is not extremely time critical. The increas-
ingly negative bias of these estimators in trend periods increases the power of the procedure
if we use them to standardize the weighted sum. Two-step estimation without shrinkage
improves the results only in case of very large autocorrelations. Although the estimates ob-
tained from fitting a straight line usually increase in a trend period, the improvement in

comparison to the ordinary, not trend corrected estimates is large.

Although there are bias corrected estimators for AR parameters (FULLER, 1996, chapter
6.2), we are not aware of such methods for shrinkage estimation. In order to get a bias-
corrected version of qﬁs we estimate its bias in a Monte Carlo study. For each of ¢ =
0.0,...,0.9, we simulate 200 time series of length 300. Then we calculate the sample mean
of the resulting 200 - 241 = 48200 shrinkage estimates, cf. Table 1. The standard error
is about 0.0006 for each value of ¢. Plotting the simulated bias against ¢ reveals that a
quadratic function might be appropriate. We find the linear term not to be significantly
distinct from zero and the adjusted R? to increase from 0.949 to 0.955 when neglecting it.
Fitting a pure quadratic function (cf. Table 1) we get the approximately bias-corrected

estimates qBS,,,C = $5(1 + 0.305(&5) + 0.0424.
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Figure 3: Average estimates of ¢ in case of a linear time trend between ¢ = 100 and ¢ = 200:

Zero (¢ = 0.0, top left), small (¢ = 0.3, top right), moderate (¢ = 0.6, bottom left) and

large (¢ = 0.9, bottom right) autocorrelations. True parameter (bold solid), simple linear

detrending (dotted), one-step / two-step third order detrending (dashed / solid) and shrinkage

estimates (dashed-dotted).
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Figure 4: Average estimates of 7 in dependence on ¢ in case of a linear time trend between
t = 100 and ¢ = 200: Zero (¢ = 0.0, top left), small (¢ = 0.3, top right), moderate (¢ = 0.6,
bottom left) and large (¢ = 0.9, bottom right) autocorrelations. True parameter (bold solid),
simple linear detrending (dotted), one-step / two-step third order detrending (dashed/solid)

and shrinkage estimates (dashed-dotted).
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3.3 Critical values

As stated above, BRILLINGER’s (1989) rule for retrospective trend detection turns out to be
too sensitive even for long time series. This problem may become even more serious when time
series with time-varying variability are monitored online. Here, we perform multiple testing
since we test at each time point whether a trend has occurred recently. To overcome this
problem, we derive approximate critical values for the test statistics via simulations as these
are hard to derive analytically. We simulate 5001 time series for each of ¢ = 0.0,0.1.,...,0.9
and a constant mean. In view of the results obtained in the last subsection we use shrinkage
estimation to standardize the weighted sum and apply the bias correction derived there. For

each time series the maximal absolute value of the test statistic is calculated.

Table 2 provides some percentiles of the empirical distribution of these maxima for each
AR parameter. These (1 — «)-percentiles are approximative 2a-significance limits for a test
whether a monotonic trend occurs during 300 observations corresponding to five hours of
measurement in our application. The percentiles are rather stable for small to moderately
large autocorrelations, say 0 < ¢ < 0.6, but they increase strongly for very large autocor-
relations. Thus, we should choose critical values in dependence on an estimate of ¢. If we
estimate ¢ to be less than 0.5 we regard ¢ = 5 to be a conservative 5% significance bound
for wrong detection of a trend within five hours of measurements. If the estimate of ¢ is
substantially larger we should use a larger critical value, that can be chosen from Table 2 by

interpolation.
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Table 2: Percentiles of Max T; in case of a constant mean for ¢ = 0.0,...,0.9.

[0 .0 N 2 3 4 .0 .6 7 .8 9

90% 3.476 3.535 3.644 3.707 3.789 3.961 4.163 4.496 5.269  7.379

95% 3.724 3.840 3.925 4.027 4.143 4.338 4.590 5.051 6.058  8.593

97.5% 3.961 4.032 4.184 4.347 4.521 4.640 5.102 5571 6.725  9.856

99% 4.235 4.317 4.604 4.771 4.991 5.170 5.630 6.344 7.748 11.415

99.5% 4.537 4.652 4.832 5.008 5.285 5.573 6.006 6.984 8.391 12.360

3.4 Statistical power

Now we inspect the power of the proposed procedure. We simulate 200 time series of length
300 for each of several models. Either a linear or a sinusoidal trend is inserted between ¢ = 101
and ¢ = 200 causing a total change of 5o or 100. We use the weighted sum test statistic T’
calculated from n = 60 subsequent observations for monitoring and apply the bias-corrected
shrinkage estimators for standardization. We choose the significance level « = 5% and select
the critical value corresponding to the estimate qsg for the current time window from Table 2
by interpolation. Then we count in how many time series a trend is detected between ¢ = 101
and ¢ = 260 for the first time as a signal outside this period means a false alarm. To check
the validity of these critical values we also analyze time series without a trend. Here, we
calculate the number of time series for every value of ¢ in which a trend is detected at any

time point since any alarm is false then.

Table 3 provides the numbers of time series in which a trend was detected. All trends
considered here can be detected reliably if the autocorrelations are small or moderate. For
large autocorrelations, say ¢ > 0.8, it is difficult to distinguish whether monotonic sequences
are due to autocorrelations or due to a trend. For ¢ = 0.9 the number of false alarms

largely exceeds the percentage of false alarms regulated by the significance level even though
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Table 3: Number of identified trends (first line) and average delay of trend detection (second
line) for several trend sizes (measured in multiples of the standard deviation o): No trend

(top), linear trend (center) and sinusoidal trends (bottom)

¢

Size 00 01 02 03 04 05 06 07 08 09

0o 7 7 10 ) 16 8 12 20 24 63

5c 200 199 198 198 198 187 164 127 88 92

41.3 43.7 445 49.0 56.2 584 65.6 68.5 70.7 854

100 199 199 199 196 198 200 194 185 153 132

31.3 324 335 36.6 384 423 494 544 62.1 684

5¢ 197 197 200 200 191 180 151 115 97 84

344 369 404 459 508 572 65.1 704 772 76.2

100 200 199 198 198 198 197 194 186 176 137

20.8 227 253 274 31.7 352 444 515 570 67.7
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we derived critical values from simulations. This confirms the findings of WOODWARD and
GRAY (1993), who note that deterministic trends are very difficult to detect in short time
series with large autocorrelations. In our case, this large percentage of false alarms may be
caused by the need to estimate the lag one autocorrelation for choosing the critical value,
while these values were derived assuming this autocorrelation to be fixed (and known). The
results might improve if we demand that T' exceeds the critical value at some subsequent time
points and not a single time point only in order to reduce the impact of minor fluctuations.
Obviously non-linear, sinusoidal trends are more difficult to detect than linear trends which
affect the level by the same amount. This might be caused by the smooth beginning of this
non-linear trend form, which has zero derivatives at its endings. However, the power for

sinusoidal trends increases with increasing steepness even for very large autocorrelations.

In Table 3 the average delay of trend detection is also provided. Here, we consider only
those cases where a correct alarm is given. The delay increases slightly for small to moderate
autocorrelations, and significantly for large autocorrelations. While for small autocorrela-
tions on average about 45 (34) observations are sufficient to detect a linear trend with slope
0.05 (0.1), more than 60 (50) observations are needed in case of large autocorrelations. We
conclude that reliable and fast discrimination of a trend from a steady state affords a trend
to be stronger then than those rather slow trends considered here when the autocorrelations
are high. The average delay for a sinusoidal trend is typically smaller, but we have to keep in
mind the lower detection rate for this trend form. The time delay could be reduced by using
a shorter time window but the expense would be a larger number of false alarms, particularly

for large autocorrelations.

The trends shown in Figure 1 are detected with a delay of 44 (¢ = 0.0), 44 (¢ = 0.3),
and 72 (¢ = 0.6) observations respectively, while in the time series with ¢ = 0.9 no trend is

detected at all as the large positive autocorrelations cause here many monotonic patterns with



Online Detection of Monotonic Trends 22

durations less than 30 observations. Here, the systematic changes are small in comparison to

the random variability found in the data.

4 Application to real time series

In order to judge the performance of the proposed procedure for real data we analyzed a
couple of real physiological time series representing physiological variables like the heart rate
or blood pressure and found the procedure to perform well. We present a single example
in the following. Figure 4 shows two hundred measurements of the systolic arterial pressure
of a critically ill patient taken every minute. Analyzing a large number of such time series,
IMHOFF et al. (2002) find that the autocorrelations can be described well by AR models
of low order during a steady state. This particular time series first drifts slightly around a
steady state and then starts increasing slowly at about £ = 100. Then from about ¢ = 164 on
it increases more strongly. An analysis of the autocorrelations shows that an AR(1) model
with ¢ between 0.1 and 0.4 seems adequate. Figure 4 also shows the standardized weighted
sum test statistic calculated using a moving time window of length n = 60. The test statistic
remains well within the non-critical limits up to time point 163, then it increases and crosses

the critical value ¢ = 5.0 at ¢t = 165.

5 Discussion

We have proposed a procedure for online detection of monotonic trends in time series with
slowly time-varying parameters. Autocorrelations are modelled using a low order AR model
for the noise process. We have also investigated some variations of linear detrending of the
data for estimation of the autocorrelations and have found that shrinkage estimation improves

the discriminatory power of the test statistic.
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Figure 5: Time series representing arterial pressure and standardized weighted sum statistic
T. We subtracted 100 from the pressure for the reason of illustration. At t = 165 an upward

trend is detected.

Although some work remains to be done, we consider the results to be encouraging so far.
The shrinkage estimators for the AR parameters are only mildly influenced by deterministic
trends, and the proposed test statistic usually results in much larger absolute values in trend
periods than in a steady state. Both linear and nonlinear trends were identified correctly
rather soon in most of the cases. The procedure shows very satisfactory performance in
case of moderately large autocorrelations. We applied the procedure to a couple of long
physiologic time series observed in intensive care and found the results to agree well with
the opinion of an experienced physician. Problems may arise w.r.t. the clinical relevance
of the detected trend periods. Inserting a constant percentage of the current mean value
instead of an estimate of the observational variance y(0) into formula (1) can enhance the
results. Further improvements are possible by smoothing the parameter estimates resulting

from subsequent time windows.
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Problems may also arise in case of very large positive autocorrelations. This is also true for
other procedures designed for retrospective trend detection. Considering several test statis-
tics for the retrospective detection of a deterministic trend, WOODWARD and GRAY (1993)
found the rate of false alarms to be often larger than 50% for large positive autocorrelations.
The detection of a deterministic trend in a time series with very large autocorrelations is a
hard problem anyway since the behavior of the undisturbed process is already close to non-
stationarity with frequently occurring monotonic sequences. Hence, using a time window of
length n = 60 may not be sufficient to distinguish slow deterministic trends and large positive

autocorrelations as both result in similar patterns.

A critical issue for the proposed procedure is the proper specification of the window width
n, similarly as a suitable forgetting factor A is needed for an EWMA chart. However, we
consider the choice of a time period to be easier for an operator than the choice of a weighting
factor. In our biomedical application, an experienced physician may well consider a monotonic
change of a vital sign over one hour to be clinically relevant. Moreover, the power of EWMA
and CUSUM charts is best for sudden shifts of the mean, whereas this is the worst case for
the weighted sum statistic. This statistic mirrors the start and the end of the time window
as the weights have different signs in the first and the second half of the time window.
This is similar to comparing time delayed means, that has also been suggested for trend
detection. Comparison of time delayed means corresponds to special weighted sums with
weights —1/mq,...,—1/mq,0,...,0,1/mg,...1/mo. Therefore, the resulting test statistics
have lower worst-case discriminatory power than the statistic advocated here as the latter

uses optimal weights.

Similarly as EWMA and CUSUM charts the procedure as presented here is not robust
against outliers. A simple possibility to reduce this deficiency is to additionally apply a

procedure that detects and replaces outliers online (GATHER, BAUER and FRIED, 2003).
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Alternatively, the test statistic itself can be robustified using M-estimation for instance. This

will have to be addressed in further studies.
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