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Summary

Positive estimators of the between-group (between-study) variance are proposed.
Explicit variance formulae for the estimators are given and approximate confidence
intervals for the between-group variance are constructed, as our proposal to a long
outstanding problem. By Monte Carlo simulation, the bias and standard deviation
of the proposed estimators are compared with the truncated versions of the maxi-
mum likelihood (ML) estimator, restricted maximum likelihood (REML) estimator
and a (lately) standard estimator in meta-analysis. Attained confidence coefficients

of the constructed confidence intervals are also presented.

Key words: random effects model; positive estimates of the between-group variance;

confidence intervals on the between-group variance; Patnaik’s approximation.

1. Introduction

In the usual random effects ANOVA model, the problem of variance component
estimation is widely documented. The traditional one-way ANOVA estimator of
the between-group variance component, also called the between-study variance in
meta-analysis, is unbiased but can assume negative values, Thompson (1962) and

Wang (1967). Even the maximum likelihood (ML) and restricted maximum likeli-
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hood (REML) procedure can give negative estimates which have to be truncated
at zero, cf: Herbach (1959) and Thompson (1962), respectively. In practice, when-
ever unbiased estimators become negative, they are truncated at zero, thus making
them biased and have now a positive probability to take on the value zero which, in
most applications, is not a very useful value and contradicts practical understand-
ing. Such estimators have also a further disadvantage that in concrete situations
their estimates of precision cannot be computed, meaning that confidence bounds
on the variance components cannot be constructed.

In meta—analysis, the same problem is encountered by using, for example, the Der-
Simonian and Laird (1986) estimator, which of late may be regarded as the stan-
dard estimator of the between-study variance. In fact Hardy and Thompson (1996)
observe that since the DerSimonian-Laird estimator is truncated, there is no possi-
bility of obtaining confidence intervals on the between-study variance. For work on
confidence intervals on the between-group variance component for the unbalanced
case but with homogeneous error variances, see for instance, Thomas and Hultquist
(1978), Burdick and Eickman (1986), and Hartung and Knapp (2000). The REML
approach has also been advocated for use in meta-analysis by, cf: for example,
Brown and Kempton (1994) and Normand (1999). However, REML together with
ML procedures are iterative methods and by Searle’s (1988) remarks that nothing
is unbiased after iteration (referring specifically to REML). For more insightful dis-
cussions refer, for instance, to Hartley and Rao (1967), and Harville (1977) for ML;
and Corbeil and Searle (1976) for REML.

In this paper, we propose finite positive (almost everywhere) estimators of the
between-study variance in a one-way random effects ANOVA and meta—analysis
model. In section 2, we present our working model together with the moments esti-
mator of the between-study variance by DerSimonian and Laird (1986). In section
3, we derive two positive estimators of the between-study variance and give their
explicit variance formulae. Confidence limits on the between-study variance are also

presented in section 3. Section 4 presents simulation results on the biases and stan-



dard deviations of the two proposed positive estimators, and the truncated versions
of the DerSimonian-Laird estimator, the ML estimator and the REML estimator.
Reported also in section 4 are results on the attained confidence coefficients of the

constructed confidence bounds.

2. Model

Consider a situation where K studies are available, with the ith study having n;

observations, © = 1,..., K,which follow the model
yij:u+ai+eij,izl,...,KZQ,jzl,...,nZ?. (1)
The variables a4, ...,ax,e11,...,exn, are mutually independent and normally dis-

tributed with a; ~ (0,07), e; ~ (0,07), 02 > 0, 07 > 0, and p is the common
mean. In the ith study, the estimate of the common mean is given by ji; = 7; =
Z?;l yij/ni,i =1 ,..., K.These estimates are also normally distributed with mean
p and variance 77 = 02 + 02, /n; = 02 + 0. The error variances are estimated unbi-
asedly by 67 = s2 =300 (yij — 5.)*/(ne — 1),i=1,..., K.

Let 67 = s2/n; = & and define wy = Y wi, wy =1 /5§ i =1 ,...,KFor
var(&) = 2 -0} /(n; — 1), we can take var(&) = 2 - &2/(n; — 1) as its estimate or
the best invariant unbiased estimator var(§;) = 2 - &2/(n; + 1) ,cf: Hartung and

Voet (1986). The standard estimate of o2 in meta-analysis is a moment estimator

suggested by DerSimonian and Laird (1986), namely,
6a,DL = max {07 62,1}7

where
K

K 2
~ wz _ Wi _

1 j=1

cf: also Mengersen, Tweendie and Biggerstaff (1995), Biggerstaff and Tweendie
(1997). Other authors have also suggested the ML and the REML estimators.



However, these estimators are iterative in nature and their difficulties are well doc-

umented in, for example, Brown and Kempton (1994).

3. Proposed Positive Estimators and Confidence Bounds on o?

Now, let b = (&,...,bx)" be weights such that X1 b, =1, < 1/2,i=1,..., K.
Define an unbiased estimate of u by ji(b) = 2K | b; ji; with var{(b)} = SK b7 72;

and a quadratic form Q(b) by Q(b) = XK | vi{ /s — 1(b)}2, where ~; = b2/{(1 — 2b;) -
> b (1= 0) /(1 = 2b;)}.

Lemma 1

The estimator

. 1 S
P20 = - (QU- ) ®)
2 =1 bj i=1
is unbiased for o2.
Proof
Using Rao et al. (1981),
K K
E{Q(®)} = D vl —20)77 + Y bir}
i=1 i=1

I e ity b7/ (1 - 2b;) . i b2
YR (L =b)/(1—2b;) =

K
i (4)
=1

Therefore,

K
E(6,5) = W'E{Q(b)—zb?&}

Jj=1"7

2

= o,.

Now, E(67,) = [ HQ(b)} — E(Zi, b7€)]/ £, b7, implying that

Qb . YR b Yo, b2
E{ K( )2} — E(62,)+E (7251 2 > > E (7251 2 > . (5)
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However, after a realization from a random experiment, E{Q(b)} and E(X~ | b2£)
are, respectively, replaced by, say, Q(b) and X, b2¢;,. This may lead to Q(b) <
S K | b2, meaning that the estimate of o2 is negative. This is a problem which
restricts the use of most unbiased estimators of variance components. Usually solu-
tions are given in the name of truncated estimators, cf: Herbach (1959). By using
truncated estimators, apart from losing the desirable property of unbiasedness, in
many applications, it sometimes becomes difficulty to accept zero as an estimate
of the between-study variance when it is well known that there is variation among
groups under consideration. For example, in genetics we know that genetic variation
exists among, say, bulls whose sperms are used for insemination. This and many
other similar situations beg for a positive estimate of the between-group variance.

Instead of using complicated numerical algorithms, cf: Hartung (1981, sec. 5), we

will proceed as follows:

Interpret Q1(b) = Q(b)/ X/, b3 as a positive estimate of o7 which requires some
correction and define an estimator of o2 by 62(b) = § - Q1(b), 6 > 0. For r; =

b/ 31, b2, the magnitude of the bias of 62(b) is given by
|Bias{oz(b)}| = [E{0-Qi(b)} — op

K
= [0-0246-) riol —o.]

a

i=1
0—1 o2
0 Zi[il rio?
0—1 o2
< : (6)

by the Cauchy-Schwarz inequality, where ||(.)|| represents the euclidean norm of (.).
According to the uniformly minimum bias principle, cf: Hartung (1981), we have to

minimize (6 — 1) 4 62 for 6 > 0, giving § = 1.



a

Now, to adjust for bias, let 62(n) =n- 5 - Q1(b) =1 - 62(b) such that
B{n-020) 41306} = PLQ0). )

giving
E{Q:(b)}
(1/2) - E{Q:(b)} + £iZ, iy

’[’]:

which can be estimated by

Qu(b) +2- XK, ri&

and henceforth regarded as fixed. The above arguments lead us to a positive esti-

mator of o2 which is given by

Q1(b)

52(n) = n* - = . b) = . b), n* < 1. 8
O—a(n) 77 2 Ql( ) Ql(b) +22£1T7,§z Ql( )7 77 — ( )
Lemma 2
The variance of 62(n) is given by
)\2
var{oe(n)} = =g Z%Z{ (1 — 20;)77 +var(ja(b))}*
(Z] lb]) =1
K K '|
+> > vivlvar(a(b) — 077 — T} 2J , (9)
i=1 j£i=1

for )\1 = Ql(b)/{Ql (b) +2- Zfil ngz}

The proof of the above lemma is straight forward by using equation (30) of Rao et
al. (1981).

We see that the proposed estimator of o2, apart from being finite and positive, has
an explicit variance formula which can be used, for example, in the construction of

confidence intervals.

Consider once again the quadratic form Q(b) and define vg = 2 -[E{Q(b) }]?/var{Q(b)}.
By Patnaik’s approximation, cf: Patnaik (1949), the variable vg - Q(b)/E{Q(b)} is

6



distributed approximately as a X?/ . From equation (4) above,
E{Q(0)} = Zb2 =0, Zb2+2bz o7,

so that the approximate probability statement

Qb
P lXiQ;n/Z Svg- % < X%Q;1_n/2] ~l—k (10)

results in an approximate (1 — £)100%—confidence interval on o which is given by

CI(c2): [M - 2 ri&i s VQ ) ZH&] ; (11)

UQil—k/2 i=1 VQ,H/Q i=1

where XgQ;nn and X%Q§1*ﬁ/2 are, respectively, the lower and upper points of XEQ,
and vg = 2 - Q*(b)/var{Q(b)}; with var{Q(b)} obtained by replacing 77 by 77 =
62(n) + &, 1 =1,..., K.Note that if the limits takes on negative values, they are

truncated at zero.
Remark 1

The condition that b; < 1/2, ¢ =1,..., K helps to avoid the tendency of one of the
studies dominating the estimation process, an observation already made by Cochran

(1954).

Corollary 1

2

Let 8; = wi/ws, wy = X5, w;, w; =1 /¢, see also 62, in equation (2) above.

Another positive estimator of o2 is given by

=1

K 2
&Z()‘Z) = 62 ZBZ (yz Zﬁjyf) ) (12)
=1 ]:1

where
\ YR w (Qi. — Y by ) W
2 = 29 i = -
2K = 1)+ XK wi (5 — £, b5 9 ) ws

This estimator is obtained by using arguments similar to those that lead to 2(n)

above.



Corollary 2

The variance of 62()\;) is given by

2

A K =
var{6:(\y)} = = 2!2(1 FBE . [Z 87 {(1 — 2817+ > iZTiZ}
i=1Di i=1 i=1

K K K 2
+> > Bib (Z Bire = Biri — 6fo> ] . (13)

i=1 j#i=1 i=1
This corollary follows from considerations similar to those of lemma 2 above.

2
If we now set Q(3) = =K, 3 (gi, - ZJK:1 ngj,) , then it can be shown that

.Manzﬁ-u—gpﬁ+;wrﬂbvi

Therefore, an approximate (1—x)100%—confidence interval on o2 can be constructed
along the lines of C'T,(02). That is, for rf = (§ — b;2) /(1 — 215, b:?),

i=1"

Cly(0?) - Vg Q(b') Yo k.| U B S

(1 - i[il bfZ) ) XZﬁQ*;lfn/Z i=1 (1 - i[il bfZ) ) XQﬁQ*;n/Z i=1

(14)

2 ——
where Q(b*) = T, 07 (5 — £/ 0795.) and g = 2 - Q*(b")/var{Q(B)}, and
var{Q(3)} is obtained by replacing 72 by 72 = 62(\2) + &, t =1, ..., K.Here also,

the limits are truncated at zero if they takes on negative values.

4. Simulation Results and Discussion

A simulation study, with patterns shown in Table I below, was used to judge the
performance of the proposed positive estimators of the between-study variance with
respect to their bias and standard deviation. For comparison we have also included
the corresponding results of the bias and standard deviation of the DerSimonian-
Laird, ML and REML estimator in their truncated form (see Table IT and III). The

simulations are conducted using S-Plus 4.5 under windows NT with the procedure



VARCOMP used to obtain ML and REML estimates. For groups of size K = 3,
Table II, and K = 6 ,Table III, 1,000 runs were made for each pattern in Table I
with the between-group variances set at o2 = 0 .0,0.05, 0.5, 1.0, 5.0, and 10.0.

For the choice of weights b;, i =1 ,..., K,to avoid domination of a single study (in

line with remark 1 above), we used the following procedure: Let ¢; = w;/ws > 0 be

a positive estimate of b;, : =1 ,..., K,and ¢ a constant such that 0 < ¢ < % - %,
then
Ciy ife; <t —p,i=1,... K,
b, = % -, for i = iy with ¢;, = maxz{c; : ¢; > % — ¢}, (15)
K
(349 ¢/ X a, ioAi=1,... K.
ioAi=1

If (15) gives b; < % —¢,i=1,...,K,then stop, otherwise, put ¢ = ¢/2 and start

(15) once again, etc.. In our simulations, we have chosen ¢ = K3,
Table IV reports results on attained confidence coefficients for the confidence bounds

CI(c?) and CI(0?) in section 3 above for K = 3 and K = 6 with 10,000 runs for

a

each pattern. These results are for a two-sided confidence interval with x = 0 .05.

Table I: Sample designs for K = 3,6 for the simulation results
in Table II, IIT and IV.

Study K=3 K=6
i 1 2 3|1 2 3 4 5 6
n; 20 20 20|20 20 20 20 20 20
Al o2 4 4 414 4 4 4 4 4

€i
n; 20 20 20120 20 20 20 20 20
A2 o? 13 51 3 5 1 3 5

n; 10 20 30|10 20 30 10 20 30
B1 o2 4 4 414 4 4 4 4 4

n; 10 20 30|10 20 30 10 20 30
B2 a2 1 3 51 3 5 1 3 5

€i

n; 10 20 30|10 20 30 10 20 30
B3 o? 5 3 115 3 1 5 3 1

€i




Table II:

Bias (B) and Standard Deviation (SD) for the five betwen-study

variance estimators, K = 3.

K=3
62(n) 52(A2) 62 o MLE REML

o2 | Plan| B SD B SD B SD B SD| B SD
0.00 | Al | 0.099 0.17 | 0.089 0.3 | 0.074 0.15 | 0.033 0.28 | 0.081 0.16
A2 | 0.053 0.09 | 0.061 0.09 | 0.052 0.1 | 0.028 0.08 | 0.063 0.14

Bl | 0.093 0.18 | 0096 0.15 | 0.081 0.7 | 0.031 0.10 | 0.081 0.19

B2 | 0.062 0.1 | 0.060 0.09 | 0.051 0.0 | 0.014 0.05 | 0.038  0.09

B3 | 0.061 0.12 | 0.078 0.13 | 0.069 0.4 | 0.052 0.14 | 0.115 0.23

005 | A1l | 0.086 023 | 0076 0.19 | 0.065 0.22 | 0.007 0.13 | 0.076 0.22
A2 | 0.034 0.4 | 0.043 0.3 | 0.039 0.5 |-0.009 0.10 | 0.039 0.17

Bl | 0.082 025 | 0.085 021 | 0.075 024 | 0.009 0.15| 0.091 0.26

B2 | 0.051 0.6 | 0.050 0.14 | 0.045 0.6 |-0.019 0.08 | 0.024 0.15

B3 | 0.051 0.18 | 0059 0.17 | 0.054 0.19 | 0.024 0.15| 0.101  0.26
050 | Al | 0.031 073 | 0.012 0.64 | 0.044 0.69 | -0.197 0.43 | 0.025 0.66
A2 | 0.002 0.78 | 0.000 0.66 | 0.031 069 |-0.199 041 | 0.007 0.62

Bl | 0.012 0.76 |-0.001 064 | 0.027 069 |-0.184 045 | 0.060 0.71

B2 |-0.022 0.73 |-0.030 0.61 |-0.002 0.64 |-0.225 0.42|-0.012 0.65

B3 |-0.014 0.76 |-0.014 0.67 | 0.014 070 |-0.161 0.44 | 0.070 0.67

1.00 | Al |-0.086 121 |-0.056 1.10 | 0.004 1.16 |-0.386 0.80 | 0.004 1.22
A2 | 0032 147 | 0001 121 | 0.053 125 |-0.413 0.73 | -0.057 1.11

Bl |-0.030 149 |-0.061 1.21 |-0.002 126 |-0.362 0.85 | 0.056 1.30

B2 |-0.040 1.13 |-0045 1.10 | 0.008 1.14 | -0.449 0.73 | -0.086 1.11

B3 |-0079 141 |-0081 123 |-0.033 127 |-0.304 084 | 0.108 1.27

500 | Al | 0.114 653 |-0.005 565 | 0.014 569 |-1.760 3.43 | -0.046 5.15
A2 |-0284 620 |-0207 526 |-0.115 528 |-1.687 342 | 0.041 5.12

Bl |-0.286 571 |-0256 4.91 |-0.120 4.95 |-1.748 3.42|-0.006 5.13

B2 |-0.199 6.20 |-0.172 5.24 |-0.076 527 |-1.829 3.22 | -0.132 4.87

B3 |-0465 6.40 |-0402 557 |-0.308 560 |-1.672 3.35 | 0.063 5.03
10.00 | Al |-0.119 12.96 | -0.364 10.75 | -0.215 10.78 | -3.628 6.38 | -0.345  9.57
A2 | 0.259 1243 | 0.260 10.33 | 0.366 10.35 | -3.218 7.20 | 0.247 10.79

Bl |-0.104 12.94 |-0415 1046 | -0.255 10.49 | -3.279 6.71 | 0.206 10.07

B2 |-0.037 1229 | 0.195 10.83 | 0.306 10.84 | -3.638 6.47 | -0.346  9.70

B3 | 0.152 14.21 | 0.250 1247 | 0.361 1249 | -3.678 7.20 | -0.447 10.80
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Table III: Bias (B) and Standard Deviation (SD) of five betwen-study variance

estimators, K =6 .

K=6
52(n) 52(\2) 62 pr MLE REML

o2 |Plan| B SD B SD B SD B SD| B SD
0.00 | A1 | 0.092 0.2 | 0.082 0.09 | 0.058 0.10 | 0.014 0.03 | 0.036 0.07
A2 | 0.034 005 | 0045 0.04| 0.032 005 | 0.013 0.03| 0.031 0.06

Bl | 0085 0.12 | 0.088 0.09 | 0.065 0.11 | 0.015 0.04 | 0.041 0.09

B2 | 0058 0.08 | 0.052 0.05| 0.035 0.06 | 0.008 003 | 0.021 0.05

B3 | 0022 0.03 | 0.042 0.04 | 0031 005 | 0023 006 | 0.052 0.11

005 | Al | 0122 0.8 | 0.112 0.14 | 0.053 0.14 | -0.023 0.06 | 0.009 0.10
A2 | 0.041 0.2 | 0.057 0.09 | 0.0256 0.10 |-0.028 0.05 | -0.002 0.09

Bl | 0102 0.19 | 0.108 0.13 | 0.068 0.16 |-0.024 0.06 | 0.013 0.11

B2 | 0062 0.13 | 0.062 0.10 | 0.024 0.10 | -0.034 0.04 | -0.013 0.08

B3 | 0022 010 | 0.050 0.09 | 0.022 0.09 |-0.013 0.08| 0.028 0.14

0.50 | A1 | 0.011 050 |-0.014 041 | 0.026 046 |-0.197 0.22 | 0.025 0.33
A2 |-0.041 062 | -0.040 042 | -0.003 0.63 |-0.348 021 | -0.243 0.33

Bl |-0.031 050 |-0.035 0.4 [-0.0003 045 |-0.357 022 ]-0.240 0.35

B2 | -0.001 0.58 | -0.026 0.42 | 0.033 0.60 |-0.366 0.22 | -0.261 0.34

B3 | -0.017 0.68 | -0.016 0.46 | 0.019 048 |-0.320 0.24 | -0.196 0.37

1.00 | Al |-0.042 0.89 [-0.066 0.74 | 0.028  0.78 | -0.689 0.39 | -0.490 0.60
A2 | 0.046 129 | -0.016 0.81 | 0.082 1.50 |-0.690 0.38 | -0.499 0.58

Bl |-0.079 0.95 | -0.084 0.75 [ -0.009 0.99 | -0.710 0.38 | -0.510 0.58

B2 |-0.036 1.04 | -0.065 0.74 | 0.016 1.06 | -0.743 0.32 | -0.563 0.49

B3 | 0016 1.32 | -0.037 0.88 | 0.015 0.89 | -0.655 0.41 | -0.442 0.62

500 | Al |-0.124 381 |-0.111 3.37 | 0.038 3.39 | -3.447 1.70 | -2.600 2.56
A2 | 0.092 629 |-0.023 4.16 | 0.065 4.17 |-3.360 1.77 | -2.476 2.65

Bl |-0.254 4.28 |-0.212 3.42 | -0.060 3.44 |-3.403 1.79 | -2.509 2.70

B2 | -0.026 4.93 | -0.088 3.52 | 0.017  3.56 | -3.458 1.70 | -2.599 2.56

B3 | 0.166 576 | -0.027 443 | 0.051 444 |-3.421 1.66 | -2.558 2.49
10.00 | A1 [-0.135 7.33 |-0.213 6.16 | -0.047 6.18 | -6.859 3.32 | -5.181 4.99
A2 |-0.344 1039 | -0.249 7.18 | -0.156 7.19 |-6.638 3.57 | -4.859 5.37

Bl | 0032 910 [-0039 6.95| 0.131 597 |-7.010 3.31|-5.385 4.98

B2 | 0089 9.99 |-0.133 6.87 | -0.020 6.88 | -6.714 3.42|-4.949 5.14

B3 | -0.386 11.94 | -0.246 8.18 | -0.164 11.95 | -6.873 3.27 | -5.200 4.91
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All the five estimators have nonnegative bias for 02 = 0 which decreases with increas-
ing K, see Table IT and II1. For o) = 0.05,5.(n), 6, ()\2) and 6, ;,;, have nonnegative
bias whereas the REML estimator has nonnegative bias for K = 3 which sometimes
becomes negative for K = 6 .The ML estimator has, largely, negative bias. In gen-
eral, all the five estimators seem to underestimate o2 for o2 > 0.5. For example,
for K = 6 and o2 = 10 .0,the underestimation is between 1.5% and 4% for 62(n),
between 0.4% and 2.5% for 67(\s), between 0.2% and 2% for 67 11, between 66%
and 71% for ML estimator and between 48% and 54% for REML estimator. In
other words, the underestimation is more pronounced for the ML estimator followed
by the REML estimator. A similar trend is true for K = 3 with lower levels of
underestimation for ML and REML estimator.

2

- and decrease with

The standard deviations of the five estimators increase with o
K. The ML estimator has smaller standard deviation than the other four estimators.
However, it can generally be said that the differences in magnitude of the standard
deviations of the five estimates is not dramatic.

The results in Table IV above indicate that for K = 3, C(c?) sometimes overstates
the nominal confidence coefficient but, in general this interval can be regarded as
attaining acceptable confidence coefficients. An almost similar trend is manifested
for K = 6 .Notice that for K = 6 in the unbalanced case when smaller sample sizes
are paired with larger variances (Plan B3), the interval always attains confidence
coefficients of over 96.0% .

For K = 3 ,the interval C'I,(0?) attains confidence coefficients which are always
< 95%, except plan Al for 02 = 1 .0.However, the confidence coefficients are gen-
erally close to 95%. For K = 6 ,the interval attains confidence coefficients near the
nominal confidence coefficient.

On comparing CT;(c?) and Cly(0?), it can be said that both intervals attains ac-

ceptable confidence coefficients but CI;(0?) tends towards being more conservative

when the value of o become large.
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Table IV: Attained confidence coefficients for the confidence intervals of the

between-study variance for K =3 ,6 and x = 0 .05.

Estimates of (1 — k)100%
K=3 K=6
02 | Plan | CLi(c2) CL(o?) | CLi(02) Clx(0?)
0.00 Al 94.3 94.1 94.4 94.3
A2 95.6 94.0 95.9 94.3
B1 95.0 94.2 94.6 94.5
B2 94.8 94.0 94.1 94.3
B3 94.7 94.2 96.2 95.3
0.05 Al 94.9 94.3 94.8 94.6
A2 96.1 94.7 96.0 94.5
B1 95.1 94.4 95.4 94.8
B2 95.1 94.6 95.8 94.3
B3 95.7 94.0 96.3 94.0
0.50 Al 94.6 94.5 95.6 94.8
A2 96.0 95.0 96.2 954
B1 96.1 94.7 95.2 94.8
B2 95.7 94.9 95.6 94.7
B3 95.9 94.7 96.5 94.9
1.00 Al 95.8 95.1 95.1 94.7
A2 96.3 94.9 96.3 94.7
B1 96.3 95.0 95.6 94.8
B2 96.0 94.5 95.2 94.8
B3 95.8 944 96.6 94.8
5.00 Al 96.0 94.9 95.6 95.2
A2 96.1 94.8 96.5 95.4
B1 95.6 95.0 95.8 95.8
B2 96.4 94.8 96.6 954
B3 96.0 94.8 97.0 95.6
10.00 | A1l 95.8 94.8 96.1 95.2
A2 96.3 95.0 97.0 95.8
B1 95.9 944 96.4 95.3
B2 95.7 94.9 97.4 95.3
B3 96.1 94.8 96.5 96.0
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5. Example

To demonstrate how the methods we have presented in the preceding sections can be
used in practical situations, we take a classical example from Snedecor and Cochran
(1967, p. 290), the data are presented in Table V below. In research on artificial
insemination of cows, a series of semen samples from a bull are sent out and tested
for their viability. The data show the percentages of conceptions obtained from

samples of six bulls.

From the data above we calculated the weights as b, = 0 .153,$ = 0 .178,$ =
0.283, b4 = 0 .053,h = 0 .139, p = 0 .194; so thate; = b; < £+ — ¢ = 0 .495, i=
1,...,6. That is, no single group (bull) can be said to be dominating the others.

The estimators and their estimates are given in Table VI. The confidence intervals

at a confidence coefficient of 95% are obtained as:
CL(0?) : [ —0.424,189.875] £ [0,189.875], and CI,(0?) : [17.518, 230.479).

We see that all the estimates given in Table VI lie within the two confidence bounds,

011(0'2) and C]Z(O—Z).

Table V: Data on artificial insemination of cows, taken from

Snedecor and Cochran (1967, p. 290).

Percentages of conceptions to services
Bull for successive samples Sample size | Mean | Variance
1 46, 31, 37, 62, 30 ) 41.2 175.7
2 70, 59 2 64.5 60.5
3 52, 44, 57, 40, 67, 64, 70 7 56.3 132.9
4 47, 21, 70, 46, 14 5 39.6 505.3
5 42, 64, 50, 69, 77, 81, 87 7 67.1 270.5
6 35, 68, 59, 38, 57, 76, 57, 29, 60 9 53.2 2494
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Table VI: Estimators and estimates of the between-study variance

for the data in Table IV.

Estimator | 67 o, | 02y | 02(n) | 02(X2) | MLE | REMLE

a

Estimate | 64.938 | 31.866 | 30.834 | 58.557 | 54.822 | 76.746

6. Conclusion

Two positive estimators of the between-group variance component have been de-
rived. Their biases and standard deviations have been shown to be near those of the
DerSimonian-Laird estimator, a popular estimator of the between-study variance
in meta-analysis. Unlike the ML and REML estimator which have biases which
increase at a relatively faster rate with o2, the proposed estimators have relatively
stable biases. Therefore, one is most likely to be closer to the true parameter by
using the proposed estimators than by using the ML and REML estimator. More
so, given the well documented difficulties in the use of iterative estimators, the pro-
posed estimators are finite and easier to implement.

The new estimators have the advantages associated with the DerSimonian-Laird
estimator with one important added advantage, namely, that it is possible to con-
struct explicit confidence intervals, thus contributing in solving a long outstanding
problem.
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