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Summary

Positive estimators of the between-group (between-study) variance are proposed.

Explicit variance formulae for the estimators are given and approximate con�dence

intervals for the between-group variance are constructed, as our proposal to a long

outstanding problem. By Monte Carlo simulation, the bias and standard deviation

of the proposed estimators are compared with the truncated versions of the maxi-

mum likelihood (ML) estimator, restricted maximum likelihood (REML) estimator

and a (lately) standard estimator in meta-analysis. Attained con�dence coe�cients

of the constructed con�dence intervals are also presented.

Key words: random e�ects model; positive estimates of the between-group variance;

con�dence intervals on the between-group variance; Patnaik's approximation.

1. Introduction

In the usual random e�ects ANOVA model, the problem of variance component

estimation is widely documented. The traditional one-way ANOVA estimator of

the between-group variance component, also called the between-study variance in

meta-analysis, is unbiased but can assume negative values, Thompson (1962) and

Wang (1967). Even the maximum likelihood (ML) and restricted maximum likeli-
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hood (REML) procedure can give negative estimates which have to be truncated

at zero, cf: Herbach (1959) and Thompson (1962), respectively. In practice, when-

ever unbiased estimators become negative, they are truncated at zero, thus making

them biased and have now a positive probability to take on the value zero which, in

most applications, is not a very useful value and contradicts practical understand-

ing. Such estimators have also a further disadvantage that in concrete situations

their estimates of precision cannot be computed, meaning that con�dence bounds

on the variance components cannot be constructed.

In meta{analysis, the same problem is encountered by using, for example, the Der-

Simonian and Laird (1986) estimator, which of late may be regarded as the stan-

dard estimator of the between-study variance. In fact Hardy and Thompson (1996)

observe that since the DerSimonian-Laird estimator is truncated, there is no possi-

bility of obtaining con�dence intervals on the between-study variance. For work on

con�dence intervals on the between-group variance component for the unbalanced

case but with homogeneous error variances, see for instance, Thomas and Hultquist

(1978), Burdick and Eickman (1986), and Hartung and Knapp (2000). The REML

approach has also been advocated for use in meta-analysis by, cf: for example,

Brown and Kempton (1994) and Normand (1999). However, REML together with

ML procedures are iterative methods and by Searle's (1988) remarks that nothing

is unbiased after iteration (referring speci�cally to REML). For more insightful dis-

cussions refer, for instance, to Hartley and Rao (1967), and Harville (1977) for ML;

and Corbeil and Searle (1976) for REML.

In this paper, we propose �nite positive (almost everywhere) estimators of the

between-study variance in a one-way random e�ects ANOVA and meta{analysis

model. In section 2, we present our working model together with the moments esti-

mator of the between-study variance by DerSimonian and Laird (1986). In section

3, we derive two positive estimators of the between-study variance and give their

explicit variance formulae. Con�dence limits on the between-study variance are also

presented in section 3. Section 4 presents simulation results on the biases and stan-
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dard deviations of the two proposed positive estimators, and the truncated versions

of the DerSimonian-Laird estimator, the ML estimator and the REML estimator.

Reported also in section 4 are results on the attained con�dence coe�cients of the

constructed con�dence bounds.

2. Model

Consider a situation where K studies are available, with the ith study having ni

observations, i = 1 ; : : : ; K;which follow the model

yij = �+ ai + eij; i = 1 ; : : : ; K� 2; j = 1 ; : : : ; ni � 2: (1)

The variables a1; : : : ; aK ; e11; : : : ; eKnK are mutually independent and normally dis-

tributed with ai � (0; �2a); eij � (0; �2ei); �
2
a � 0; �2ei > 0; and � is the common

mean. In the ith study, the estimate of the common mean is given by �̂i = �yi: =Pni
j=1 yij=ni; i = 1 ; : : : ; K:These estimates are also normally distributed with mean

� and variance � 2i = �2a + �2ei=ni = �2a + �2i : The error variances are estimated unbi-

asedly by �̂2ei = s2ei =
Pni

j=1(yij � �yi:)
2=(ni � 1); i = 1 ; : : : ; K:

Let �̂2i = s2ei=ni = �i and de�ne !� =
PK

i=1 !i; !i = 1 =�i; i = 1 ; : : : ; K:For

var(�i) = 2 � �4i =(ni � 1); we can take dvar(�i) = 2 � �2i =(ni � 1) as its estimate or

the best invariant unbiased estimator dvar(�i) = 2 � �2i =(ni + 1) ; cf: Hartung and

Voet (1986). The standard estimate of �2a in meta{analysis is a moment estimator

suggested by DerSimonian and Laird (1986), namely,

�̂2a;DL = max f0; �̂2a;1g;

where

�̂2a;1 =
!�

!2
� �

PK
i=1 !

2
i

8><>:
KX
i=1

!i

0@�yi: � KX
j=1

!j
!�

�yj:

1A2

�K + 1

9>=>; ; (2)

cf: also Mengersen, Tweendie and Biggersta� (1995), Biggersta� and Tweendie

(1997). Other authors have also suggested the ML and the REML estimators.
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However, these estimators are iterative in nature and their di�culties are well doc-

umented in, for example, Brown and Kempton (1994).

3. Proposed Positive Estimators and Con�dence Bounds on �2a

Now, let b = ( b1; : : : ; bK)
0 be weights such that

PK
i=1 bi = 1 ; bi < 1=2; i = 1 ; : : : ; K:

De�ne an unbiased estimate of � by �̂(b) =
PK

i=1 bi �̂i with varf�̂(b)g =
PK

i=1 b
2
i �

2
i ;

and a quadratic form Q(b) by Q(b) =
PK

i=1 
if�̂i� �̂(b)g2; where 
i = b2i =f(1� 2bi) �PK
j=1 bj(1� bj)=(1� 2bj)g:

Lemma 1

The estimator

�̂2a;2 =
1PK

j=1 b
2
j

� fQ(b)�
KX
i=1

b2i �ig (3)

is unbiased for �2a:

Proof

Using Rao et al. (1981),

EfQ(b)g =
KX
i=1


if(1� 2bi)�
2
i +

KX
i=1

b2i �
2
i g

=
1 +

PK
i=1 b

2
i =(1� 2bi)PK

i=1 bi(1� bi)=(1� 2bi)
�

KX
i=1

b2i �
2
i

=
KX
i=1

b2i �
2
i : (4)

Therefore,

E(�̂2a;2) =
1PK

j=1 b
2
j

� EfQ(b)�
KX
i=1

b2i �ig

= �2a:

Now, E(�̂2a;2) = [ EfQ(b)g � E(
PK

i=1 b
2
i �i)]=

PK
j=1 b

2
j ; implying that

E

(
Q(b)PK
j=1 b

2
j

)
= E(�̂2a;2) + E

 PK
i=1 b

2
i �iPK

j=1 b
2
j

!
> E

 PK
i=1 b

2
i �iPK

j=1 b
2
j

!
: (5)
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However, after a realization from a random experiment, EfQ(b)g and E(
PK

i=1 b
2
i �i)

are, respectively, replaced by, say, Q(b) and
PK

i=1 b
2
i �i: This may lead to Q(b) <PK

i=1 b
2
i �i; meaning that the estimate of �2a is negative. This is a problem which

restricts the use of most unbiased estimators of variance components. Usually solu-

tions are given in the name of truncated estimators, cf: Herbach (1959). By using

truncated estimators, apart from losing the desirable property of unbiasedness, in

many applications, it sometimes becomes di�culty to accept zero as an estimate

of the between-study variance when it is well known that there is variation among

groups under consideration. For example, in genetics we know that genetic variation

exists among, say, bulls whose sperms are used for insemination. This and many

other similar situations beg for a positive estimate of the between-group variance.

Instead of using complicated numerical algorithms, cf: Hartung (1981, sec. 5), we

will proceed as follows:

Interpret Q1(b) = Q(b)=
PK

j=1 b
2
j as a positive estimate of �2a which requires some

correction and de�ne an estimator of �2a by �̂2a(b) = � � Q1(b); � > 0: For ri =

b2i =
PK

j=1 b
2
j ; the magnitude of the bias of �̂2a(b) is given by

jBiasf�̂2a(b)gj = jEf� �Q1(b)g � �2aj

= j� � �2a + � �
KX
i=1

ri�
2
i � �2aj

=









0B@ � � 1

�

1CA �

0B@ �2aPK
i=1 ri�

2
i

1CA









�









0B@ � � 1

�

1CA







 �








0B@ �2aPK

i=1 ri�
2
i

1CA







 (6)

by the Cauchy-Schwarz inequality, where k(:)k represents the euclidean norm of (:):

According to the uniformly minimum bias principle, cf: Hartung (1981), we have to

minimize (� � 1)2 + �2 for � > 0; giving � = 1
2
:
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Now, to adjust for bias, let �̂2a(�) = � � 1
2
�Q1(b) = � � �̂2a(b) such that

E

(
� � �̂2a(b) + � �

KX
i=1

ri�i

)
= EfQ1(b)g; (7)

giving

� =
EfQ1(b)g

(1=2) � EfQ1(b)g +
PK

i=1 ri�
2
i

;

which can be estimated by

�� =
2 �Q1(b)

Q1(b) + 2 �
PK

i=1 ri�i

and henceforth regarded as �xed. The above arguments lead us to a positive esti-

mator of �2a which is given by

�̂2a(�) = �� �
1

2
�Q1(b) =

Q1(b)

Q1(b) + 2 �
PK

i=1 ri�i
�Q1(b); �

� � 1: (8)

Lemma 2

The variance of �̂2a(�) is given by

varf�̂2a(�)g =
�21

(
PK

j=1 b
2
j)

2
�

"
KX
i=1


2i f(1� 2bi)�
2
i + var(�̂(b))g2

+
KX
i=1

KX
j 6=i=1


i
jfvar(�̂(b))� b2i �
2
i � b2j�

2
j g

2

35 ; (9)

for �1 = Q1(b)=fQ1(b) + 2 �
PK

i=1 ri�ig:

The proof of the above lemma is straight forward by using equation (30) of Rao et

al. (1981).

We see that the proposed estimator of �2a; apart from being �nite and positive, has

an explicit variance formula which can be used, for example, in the construction of

con�dence intervals.

Consider once again the quadratic formQ(b) and de�ne �Q = 2 �[EfQ(b)g]2=varfQ(b)g:

By Patnaik's approximation, cf: Patnaik (1949), the variable �Q �Q(b)=EfQ(b)g is
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distributed approximately as a �2
�Q
: From equation (4) above,

EfQ(b)g =
KX
i=1

b2i �
2
i = �2a �

KX
i=1

b2i +
KX
i=1

b2i�
2
i ;

so that the approximate probability statement

P

"
�2
�Q;�=2

� �Q �
Q(b)

EfQ(b)g
� �2

�Q;1��=2

#
� 1� � (10)

results in an approximate (1� �)100%�con�dence interval on �2a which is given by

CI1(�
2
a) :

24 �̂Q �Q1(b)

�2
�̂Q;1��=2

�
KX
i=1

ri�i ;
�̂Q �Q1(b)

�2
�̂Q;�=2

�
KX
i=1

ri�i

35 ; (11)

where �2
�̂Q;�=2

and �2
�̂Q;1��=2

are, respectively, the lower and upper points of �2
�̂Q
;

and �̂Q = 2 � Q2(b)=dvarfQ(b)g; with dvarfQ(b)g obtained by replacing � 2i by �̂ 2i =

�̂2a(�) + �i; i = 1 ; : : : ; K:Note that if the limits takes on negative values, they are

truncated at zero.

Remark 1

The condition that bi < 1=2; i = 1 ; : : : ; K;helps to avoid the tendency of one of the

studies dominating the estimation process, an observation already made by Cochran

(1954).

Corollary 1

Let �i = wi=w�; w� =
PK

i=1wi; wi = 1 =�2i ; see also �̂2a;1 in equation (2) above.

Another positive estimator of �2a is given by

�̂2a(�2) =
�2

1�
PK

i=1 �
2
i

�
KX
i=1

�i

0@�yi: � KX
j=1

�j�yj:

1A2

; (12)

where

�2 =

PK
i=1 !i

�
�yi: �

PK
j=1 b

�
j �yj:

�2
2(K � 1) +

PK
i=1 !i

�
�yi: �

PK
j=1 b

�
j �yj:

�2 ; b�i =
!i
!�

:

This estimator is obtained by using arguments similar to those that lead to �̂2a(�)

above.
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Corollary 2

The variance of �̂2a(�2) is given by

varf�̂2a(�2)g =
�22

(1�
PK

i=1 �
2
i )

2
�

24 KX
i=1

�2
i

(
(1� 2�i)�

2
i +

KX
i=1

�2
i �

2
i

)2

+
KX
i=1

KX
j 6=i=1

�i�j

 
KX
i=1

�2
i �

2
i � �2

i �
2
i � �2

j �
2
j

!2
35 : (13)

This corollary follows from considerations similar to those of lemma 2 above.

If we now set Q(�) =
PK

i=1 �i
�
�yi: �

PK
j=1 �j �yj:

�2
; then it can be shown that

EfQ(�)g = �2a � (1�
KX
i=1

�2
i ) +

KX
i=1

(�i � �2
i ) � �

2
i :

Therefore, an approximate (1��)100%�con�dence interval on �2a can be constructed

along the lines of CI1(�
2
a): That is, for r

�
i = ( b�i � b�2i )=(1�

PK
i=1 b

�2
i );

CI2(�
2
a) :

24 �̂Q� �Q(b�)

(1�
PK

i=1 b
�2
i ) � �

2
�̂Q� ;1��=2

�
KX
i=1

r�i �i ;
�̂Q� �Q(b�)

(1�
PK

i=1 b
�2
i ) � �

2
�̂Q� ;�=2

�
KX
i=1

r�i �i

35 ;
(14)

where Q(b�) =
PK

i=1 b
�
i

�
�yi: �

PK
j=1 b

�
j �yj:

�2
and �̂Q� = 2 � Q2(b�)=dvarfQ(�)g; and

dvarfQ(�)g is obtained by replacing � 2i by �̂ 2i = �̂2a(�2) + �i; i = 1 ; : : : ; K:Here also,

the limits are truncated at zero if they takes on negative values.

4. Simulation Results and Discussion

A simulation study, with patterns shown in Table I below, was used to judge the

performance of the proposed positive estimators of the between-study variance with

respect to their bias and standard deviation. For comparison we have also included

the corresponding results of the bias and standard deviation of the DerSimonian-

Laird, ML and REML estimator in their truncated form (see Table II and III). The

simulations are conducted using S-Plus 4.5 under windows NT with the procedure
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VARCOMP used to obtain ML and REML estimates. For groups of size K = 3 ;

Table II, and K = 6 ;Table III, 1,000 runs were made for each pattern in Table I

with the between-group variances set at �2a = 0 :0;0:05; 0:5; 1:0; 5:0; and 10.0.

For the choice of weights bi; i = 1 ; : : : ; K;to avoid domination of a single study (in

line with remark 1 above), we used the following procedure: Let ci = !i=!� > 0 be

a positive estimate of bi; i = 1 ; : : : ; K;and ' a constant such that 0 < ' < 1
2
� 1

K
;

then

bi =

8>>>>>><>>>>>>:

ci; if ci �
1
2
� '; i = 1 ; : : : ; K;

1

2
� '; for i = i0 with ci0 = maxfcj : cj >

1

2
� 'g;

(1
2
+ ') � ci=

KP
i0 6=i=1

ci; i0 6= i = 1 ; : : : ; K:

(15)

If (15) gives bi �
1

2
� '; i = 1 ; : : : ; K;then stop, otherwise, put ' = '=2 and start

(15) once again, etc.. In our simulations, we have chosen ' = K�3:

Table IV reports results on attained con�dence coe�cients for the con�dence bounds

CI1(�
2
a) and CI2(�

2
a) in section 3 above for K = 3 and K = 6 with 10,000 runs for

each pattern. These results are for a two-sided con�dence interval with � = 0 :05:

Table I: Sample designs for K = 3 ;6 for the simulation results

in Table II, III and IV.

Study K = 3 K = 6

i 1 2 3 1 2 3 4 5 6

ni 20 20 20 20 20 20 20 20 20

A1 �2ei 4 4 4 4 4 4 4 4 4

ni 20 20 20 20 20 20 20 20 20

A2 �2ei 1 3 5 1 3 5 1 3 5

ni 10 20 30 10 20 30 10 20 30

B1 �2ei 4 4 4 4 4 4 4 4 4

ni 10 20 30 10 20 30 10 20 30

B2 �2ei 1 3 5 1 3 5 1 3 5

ni 10 20 30 10 20 30 10 20 30

B3 �2ei 5 3 1 5 3 1 5 3 1
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Table II: Bias (B) and Standard Deviation (SD) for the �ve betwen-study

variance estimators, K = 3 :

K = 3

�̂2a(�) �̂2a(�2) �̂2a;DL MLE REML

�2a Plan B SD B SD B SD B SD B SD

0.00 A1 0.099 0.17 0.089 0.13 0.074 0.15 0.033 0.28 0.081 0.16

A2 0.053 0.09 0.061 0.09 0.052 0.11 0.028 0.08 0.063 0.14

B1 0.093 0.18 0.096 0.15 0.081 0.17 0.031 0.10 0.081 0.19

B2 0.062 0.11 0.060 0.09 0.051 0.10 0.014 0.05 0.038 0.09

B3 0.061 0.12 0.078 0.13 0.069 0.14 0.052 0.14 0.115 0.23

0.05 A1 0.086 0.23 0.076 0.19 0.065 0.22 0.007 0.13 0.076 0.22

A2 0.034 0.14 0.043 0.13 0.039 0.15 -0.009 0.10 0.039 0.17

B1 0.082 0.25 0.085 0.21 0.075 0.24 0.009 0.15 0.091 0.26

B2 0.051 0.16 0.050 0.14 0.045 0.16 -0.019 0.08 0.024 0.15

B3 0.051 0.18 0.059 0.17 0.054 0.19 0.024 0.15 0.101 0.26

0.50 A1 0.031 0.73 0.012 0.64 0.044 0.69 -0.197 0.43 0.025 0.66

A2 0.002 0.78 0.000 0.66 0.031 0.69 -0.199 0.41 0.007 0.62

B1 0.012 0.76 -0.001 0.64 0.027 0.69 -0.184 0.45 0.060 0.71

B2 -0.022 0.73 -0.030 0.61 -0.002 0.64 -0.225 0.42 -0.012 0.65

B3 -0.014 0.76 -0.014 0.67 0.014 0.70 -0.161 0.44 0.070 0.67

1.00 A1 -0.086 1.21 -0.056 1.10 0.004 1.16 -0.386 0.80 0.004 1.22

A2 0.032 1.47 0.001 1.21 0.053 1.25 -0.413 0.73 -0.057 1.11

B1 -0.030 1.49 -0.061 1.21 -0.002 1.26 -0.362 0.85 0.056 1.30

B2 -0.040 1.13 -0.045 1.10 0.008 1.14 -0.449 0.73 -0.086 1.11

B3 -0.079 1.41 -0.081 1.23 -0.033 1.27 -0.304 0.84 0.108 1.27

5.00 A1 0.114 6.53 -0.005 5.65 0.014 5.69 -1.760 3.43 -0.046 5.15

A2 -0.284 6.20 -0.207 5.26 -0.115 5.28 -1.687 3.42 0.041 5.12

B1 -0.286 5.71 -0.256 4.91 -0.120 4.95 -1.748 3.42 -0.006 5.13

B2 -0.199 6.20 -0.172 5.24 -0.076 5.27 -1.829 3.22 -0.132 4.87

B3 -0.465 6.40 -0.402 5.57 -0.308 5.60 -1.672 3.35 0.063 5.03

10.00 A1 -0.119 12.96 -0.364 10.75 -0.215 10.78 -3.628 6.38 -0.345 9.57

A2 0.259 12.43 0.260 10.33 0.366 10.35 -3.218 7.20 0.247 10.79

B1 -0.104 12.94 -0.415 10.46 -0.255 10.49 -3.279 6.71 0.206 10.07

B2 -0.037 12.29 0.195 10.83 0.306 10.84 -3.638 6.47 -0.346 9.70

B3 0.152 14.21 0.250 12.47 0.361 12.49 -3.678 7.20 -0.447 10.80
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Table III: Bias (B) and Standard Deviation (SD) of �ve betwen-study variance

estimators, K = 6 :

K = 6

�̂2a(�) �̂2a(�2) �̂2a;DL MLE REML

�2a Plan B SD B SD B SD B SD B SD

0.00 A1 0.092 0.12 0.082 0.09 0.058 0.10 0.014 0.03 0.036 0.07

A2 0.034 0.05 0.045 0.04 0.032 0.05 0.013 0.03 0.031 0.06

B1 0.085 0.12 0.088 0.09 0.065 0.11 0.015 0.04 0.041 0.09

B2 0.058 0.08 0.052 0.05 0.035 0.06 0.008 0.03 0.021 0.05

B3 0.022 0.03 0.042 0.04 0.031 0.05 0.023 0.06 0.052 0.11

0.05 A1 0.122 0.18 0.112 0.14 0.053 0.14 -0.023 0.06 0.009 0.10

A2 0.041 0.12 0.057 0.09 0.0256 0.10 -0.028 0.05 -0.002 0.09

B1 0.102 0.19 0.108 0.13 0.068 0.16 -0.024 0.06 0.013 0.11

B2 0.062 0.13 0.062 0.10 0.024 0.10 -0.034 0.04 -0.013 0.08

B3 0.022 0.10 0.050 0.09 0.022 0.09 -0.013 0.08 0.028 0.14

0.50 A1 0.011 0.50 -0.014 0.41 0.026 0.46 -0.197 0.22 0.025 0.33

A2 -0.041 0.62 -0.040 0.42 -0.003 0.63 -0.348 0.21 -0.243 0.33

B1 -0.031 0.50 -0.035 0.4 -0.0003 0.45 -0.357 0.22 -0.240 0.35

B2 -0.001 0.58 -0.026 0.42 0.033 0.60 -0.366 0.22 -0.261 0.34

B3 -0.017 0.68 -0.016 0.46 0.019 0.48 -0.320 0.24 -0.196 0.37

1.00 A1 -0.042 0.89 -0.066 0.74 0.028 0.78 -0.689 0.39 -0.490 0.60

A2 0.046 1.29 -0.016 0.81 0.082 1.50 -0.690 0.38 -0.499 0.58

B1 -0.079 0.95 -0.084 0.75 -0.009 0.99 -0.710 0.38 -0.510 0.58

B2 -0.036 1.04 -0.065 0.74 0.016 1.06 -0.743 0.32 -0.563 0.49

B3 0.016 1.32 -0.037 0.88 0.015 0.89 -0.655 0.41 -0.442 0.62

5.00 A1 -0.124 3.81 -0.111 3.37 0.038 3.39 -3.447 1.70 -2.600 2.56

A2 0.092 6.29 -0.023 4.16 0.065 4.17 -3.360 1.77 -2.476 2.65

B1 -0.254 4.28 -0.212 3.42 -0.060 3.44 -3.403 1.79 -2.509 2.70

B2 -0.026 4.93 -0.088 3.52 0.017 3.56 -3.458 1.70 -2.599 2.56

B3 0.166 5.76 -0.027 4.43 0.051 4.44 -3.421 1.66 -2.558 2.49

10.00 A1 -0.135 7.33 -0.213 6.16 -0.047 6.18 -6.859 3.32 -5.181 4.99

A2 -0.344 10.39 -0.249 7.18 -0.156 7.19 -6.638 3.57 -4.859 5.37

B1 0.032 9.10 -0.039 6.95 0.131 5.97 -7.010 3.31 -5.385 4.98

B2 0.089 9.99 -0.133 6.87 -0.020 6.88 -6.714 3.42 -4.949 5.14

B3 -0.386 11.94 -0.246 8.18 -0.164 11.95 -6.873 3.27 -5.200 4.91
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All the �ve estimators have nonnegative bias for �2a = 0 which decreases with increas-

ing K; see Table II and III. For �2a = 0 :05;�̂2a(�); �̂
2
a(�2) and �̂

2
a;DL have nonnegative

bias whereas the REML estimator has nonnegative bias for K = 3 which sometimes

becomes negative for K = 6 :The ML estimator has, largely, negative bias. In gen-

eral, all the �ve estimators seem to underestimate �2a for �2a � 0:5: For example,

for K = 6 and �2a = 10 :0;the underestimation is between 1.5% and 4% for �̂2a(�);

between 0.4% and 2.5% for �̂2a(�2); between 0.2% and 2% for �̂2a;DL; between 66%

and 71% for ML estimator and between 48% and 54% for REML estimator. In

other words, the underestimation is more pronounced for the ML estimator followed

by the REML estimator. A similar trend is true for K = 3 with lower levels of

underestimation for ML and REML estimator.

The standard deviations of the �ve estimators increase with �2a and decrease with

K: The ML estimator has smaller standard deviation than the other four estimators.

However, it can generally be said that the di�erences in magnitude of the standard

deviations of the �ve estimates is not dramatic.

The results in Table IV above indicate that for K = 3 ; CI1(�
2
a) sometimes overstates

the nominal con�dence coe�cient but, in general this interval can be regarded as

attaining acceptable con�dence coe�cients. An almost similar trend is manifested

for K = 6 :Notice that for K = 6 in the unbalanced case when smaller sample sizes

are paired with larger variances (Plan B3), the interval always attains con�dence

coe�cients of over 96.0% .

For K = 3 ;the interval CI2(�
2
a) attains con�dence coe�cients which are always

� 95%; except plan A1 for �2a = 1 :0:However, the con�dence coe�cients are gen-

erally close to 95%: For K = 6 ;the interval attains con�dence coe�cients near the

nominal con�dence coe�cient.

On comparing CI1(�
2
a) and CI2(�

2
a); it can be said that both intervals attains ac-

ceptable con�dence coe�cients but CI1(�
2
a) tends towards being more conservative

when the value of �2a become large.

12



Table IV: Attained con�dence coe�cients for the con�dence intervals of the

between-study variance for K = 3 ; 6 and � = 0 :05:

Estimates of (1� �)100%

K = 3 K = 6

�2a Plan CI1(�
2

a) CI2(�
2

a) CI1(�
2

a) CI2(�
2

a)

0.00 A1 94.3 94.1 94.4 94.3

A2 95.6 94.0 95.9 94.3

B1 95.0 94.2 94.6 94.5

B2 94.8 94.0 94.1 94.3

B3 94.7 94.2 96.2 95.3

0.05 A1 94.9 94.3 94.8 94.6

A2 96.1 94.7 96.0 94.5

B1 95.1 94.4 95.4 94.8

B2 95.1 94.6 95.8 94.3

B3 95.7 94.0 96.3 94.0

0.50 A1 94.6 94.5 95.6 94.8

A2 96.0 95.0 96.2 95.4

B1 96.1 94.7 95.2 94.8

B2 95.7 94.9 95.6 94.7

B3 95.9 94.7 96.5 94.9

1.00 A1 95.8 95.1 95.1 94.7

A2 96.3 94.9 96.3 94.7

B1 96.3 95.0 95.6 94.8

B2 96.0 94.5 95.2 94.8

B3 95.8 94.4 96.6 94.8

5.00 A1 96.0 94.9 95.6 95.2

A2 96.1 94.8 96.5 95.4

B1 95.6 95.0 95.8 95.8

B2 96.4 94.8 96.6 95.4

B3 96.0 94.8 97.0 95.6

10.00 A1 95.8 94.8 96.1 95.2

A2 96.3 95.0 97.0 95.8

B1 95.9 94.4 96.4 95.3

B2 95.7 94.9 97.4 95.3

B3 96.1 94.8 96.5 96.0
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5. Example

To demonstrate how the methods we have presented in the preceding sections can be

used in practical situations, we take a classical example from Snedecor and Cochran

(1967, p. 290), the data are presented in Table V below. In research on arti�cial

insemination of cows, a series of semen samples from a bull are sent out and tested

for their viability. The data show the percentages of conceptions obtained from

samples of six bulls.

From the data above we calculated the weights as b1 = 0 :153; b2 = 0 :178; b3 =

0:283; b4 = 0 :053; b5 = 0 :139; b6 = 0 :194; so thatci = bi <
1

2
� ' = 0 :495; i=

1; : : : ; 6: That is, no single group (bull) can be said to be dominating the others.

The estimators and their estimates are given in Table VI. The con�dence intervals

at a con�dence coe�cient of 95% are obtained as:

CI1(�
2
a) : [ �0:424;189:875]

^
= [0 ;189:875]; and CI2(�

2
a) : [17:518; 230:479]:

We see that all the estimates given in Table VI lie within the two con�dence bounds,

CI1(�
2
a) and CI2(�

2
a):

Table V: Data on arti�cial insemination of cows, taken from

Snedecor and Cochran (1967, p. 290).

Percentages of conceptions to services

Bull for successive samples Sample size Mean Variance

1 46, 31, 37, 62, 30 5 41.2 175.7

2 70, 59 2 64.5 60.5

3 52, 44, 57, 40, 67, 64, 70 7 56.3 132.9

4 47, 21, 70, 46, 14 5 39.6 505.3

5 42, 64, 50, 69, 77, 81, 87 7 67.1 270.5

6 35, 68, 59, 38, 57, 76, 57, 29, 60 9 53.2 249.4
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Table VI: Estimators and estimates of the between-study variance

for the data in Table IV.

Estimator �̂2a;DL �̂2a;2 �̂2a(�) �̂2a(�2) MLE REMLE

Estimate 64.938 31.866 30.834 58.557 54.822 76.746

6. Conclusion

Two positive estimators of the between-group variance component have been de-

rived. Their biases and standard deviations have been shown to be near those of the

DerSimonian-Laird estimator, a popular estimator of the between-study variance

in meta-analysis. Unlike the ML and REML estimator which have biases which

increase at a relatively faster rate with �2a; the proposed estimators have relatively

stable biases. Therefore, one is most likely to be closer to the true parameter by

using the proposed estimators than by using the ML and REML estimator. More

so, given the well documented di�culties in the use of iterative estimators, the pro-

posed estimators are �nite and easier to implement.

The new estimators have the advantages associated with the DerSimonian-Laird

estimator with one important added advantage, namely, that it is possible to con-

struct explicit con�dence intervals, thus contributing in solving a long outstanding

problem.
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