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Abstract

We distinguish between three types of outliers in a one-way ran-
dom effects model. These are formally described in terms of their
position relative to the main part of the observations. We propose
simple rules for identifying such outliers and give an example which
involves median-based statistics.

1 Introduction

A one-way random effects model assumes for continuous random variables
Y;'j that
Y;j:/L‘i‘Ui—FEij, ’izl,...,g,jzl,...,n. (1)

In applications Y;; may represent the jth measurement taken in the ith lab-
oratory taking part in an interlaboratory testing procedure to investigate
the quantity of a certain ingredient in some given substance. The measure-
ments deviate from the fixed (unknown) quantity p by U; + E;j, where U;
is a normally distributed random effect (‘laboratory effect’) with mean 0

and variance of > 0, i.e. U; ~ N(0,0%),i = 1 ,...,¢. The variablesZ;
are N(0,0%) distributed random variables with 0% > 0. They represent the
individual measurement errors, . =1 ,...,0,j=1,...,n.



The parameters o and o% are called variance components. Note that

model (1) implies that the random vectors Y; = ( ¥,...,Y},,)" are inde-
pendent and follow a multivariate normal distribution with mean p1,, and
covariance matrix o/ J,, + 03I, (cf. Searle (1987)), where 1,, denotes a vec-
tor of ones of length n;, I,, denotes the identity matrix and J,,, the matrix
of ones of order (n; x n;),i=1,...,¢.

Model (1) is invariant under linear transformations

Yy ay + b, a#0. (2)

That is to say, a model of the form (1) is still valid when all data are trans-
formed as in (2).

Figure 1 gives some results from an intercomparison of radon detectors,
described in Kreienbrock et al. (1999). The scatterplot shows 25 measure-
ments of a-energy, emitted by radioactive radon gas, which were taken under
identical conditions. Each detector supplies one measurement after prepara-
tion in a laboratory. Five laboratories took part in this investigation, each
with five detectors.
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Figure 1: Radon measurements from an interlaboratory test



One would expect that the measurements lie close together because the same
quantity was measured and the laboratories used the same standardized an-
alytical technique. Furthermore the variation within each laboratory should
be the same. Therefore model (1) should be appropriate for these data.

But in fact one can observe some types of ‘outliers’. Barnett and Lewis
(1994) “... define an outlier in a set of data to be an observation (or subset
of observations) which appears to be inconsistent with the remainder of that
set of data”. Three types of outliers can be distinguished in random effects
models. These are seen in figure 1 for the following data.

1. There is one observation in each of the laboratories 3 and 5 which
is remarkably small, compared to the other observations of the same
laboratory.

2. Except for the lower outlier laboratory 3 generally supplies larger mea-
surements.

3. Laboratories 1 and 3 differ from the others with respect to the variation
of the data. There is very little variation in laboratory 1, whereas the
data in laboratory 3 show higher variation, even when the lower outlier
is neglected.

If model (1) is satisfied, these outliers are not likely to occur because of the
light tails of the normal distribution and the assumption of homoscedasticity.
Therefore model (1) is considered to describe the ideal situation without
outliers.

Our aim is to set up formal rules that identify these outliers. At first
we will give the term outlier a more precise meaning. We will then consider
one example of robust estimators and predictors, based on medians. Robust
statistics for the one-way random effects model are extensively discussed by
e.g. Stahel and Welsh (1992), Wellmann (1994), and Wellmann (2000).
They are of interest in their own. However, they are only used here to con-
struct rules for the identification of outliers. We will then suggest a general
form for such rules and provide details for a specific example which involves
the median-based estimators discussed before. This method is illustrated
using the data from the introductory example (fig. 1).



2 Qutliers in a one-way random effects model

2.1 Outlier regions

For univariate data Davies and Gather (1993) have defined so called outlier
regions. These are tail regions of the target distribution. For a normal
N (u,0?) distribution with mean p and variance o® > 0, the d-outlier region
with respect to N(u,o?) is

outr, (8, u,0) = {z |z — p| > 21520}, (3)

where § € (0,1) is some given number and z, is the g-quantile of the normal
distribution. The outlier region is chosen to be symmetric about p because
of the symmetry of the normal distribution. We note that a random variable
X from N(u, o?) will be located in outy(d, u, o) with probability 6,

Pr (X € outy(d,pu,0)) = 4. (4)

A real number x is called §-outlier with respect to N(u, 0?) if x € outy,(6, u, o)
(Davies, Gather (1993)). Here we will consider three types of outlier re-
gions in order to describe the above mentioned types of outliers in a one-way
random effects model.

The region outy(d,0,0p) corresponds to outliers in the E’s, i.e. outliers
within the classes. We call a real number y a location-0-outlier within the
ith class if it is an observation of Yj; and the corresponding unobservable
random variable E;; is realized in outy (6,0, 0x). More conveniently we may
call any real number y a location-d-outlier within the sth class if it belongs
to

OUT((S)MJUEJUZ):{?J |y_/'L_U7,| >Z1*5/20E} 1=1 77£ (5)

This outlier region depends on a random effect and is therefore a random set.
But it could as well have been formulated with the unobservable realizations
of the random effects.

Globally larger or smaller observations in some class correspond to an
outlier in the U’s, which is described by out(d,0,01). When a random
effect U;,i =1 ,...¢,is observed in outy(d,0,0y) we call the corresponding
class a location-0-outlier within the random effects.

Extremely large or small variation within one class may be reflected in
corresponding values of an estimator of scale s. The statistic s is called a



scale estimator if it is location invariant and scale equivariant. That is to
say, if y is the vector of observations, then

s(ay +b1) = [als(y) = 0 (6)

for any scalar constants a # 0 and b, cf. Lax (1985). We define an outlier
region corresponding to an estimator of scale s to be a set of vectors y
which lead to s(y) sufficiently far away from oy and choose this region to be
symmetric about In(og) on a logarithmic scale as

outg(d,0m;s) = {y € R" : |In(s(y)) — In(og)| > ¢} - (7)
The constant c; is chosen to satisfy
Pr(Y € outg(d,op;5)) =6 (8)

for a multivariate normal random vector Y with a covariance matrix of the
form 07 J,,+0%],, as in model (1). We will apply this concept to observations
of the vectors Y; = ( ¥i,...,Ys,,) ;i =1,...,¢, but we call any vectory in
outs (9, 0p; s) a scale-6-outlier with respect to s.

The scale estimator s should be resistant against outliers in order to
reduce confusion between high variation and low variation plus single outliers
within the class.

The outlier region outg is invariant under the transformation (2) in the
sense that a transformed vector of observations ay; + bl,, is a scale-outlier
if and only if y, is a scale-outlier in the original dataset. Analogous results
hold true for the other outlier regions, which involve the unobservable ran-
dom variables U; and FEj;, where we adopt the following interpretation of
invariance. Motivated by equation (1) we think of the transformed observ-
able random variables aY;; 40 as the sum of the new ‘true value’ ap+b, class
effects alU; and measurement errors aF;;,7 = 1 ,...,¢,j= 1 ,...,» This
convention is consistent with the assumption that the unobservable random
variables have zero means.

Two further types of outliers could be considered. The outlier region

out, = {y Dy — pl > zisspan/0h +U%}

corresponds to observations far away from p. The region

i 7.2 = 2
. i—1\Y Ye ni(Ye —
outy s = {y e R" : ZJ 1 32 ) + éy Ml < 51—6},
oy on +niog



where & _s denotes the (1 — §)-quantile of the central y?-distribution with
n; degrees of freedom and y, = Z;”:l y;/m, considers observations of Y;,i =
1,...,¢, as outliers which lie outside the smallest ellipsoid with probability
mass 1 — ¢ under the ideal model (1). Thus location and spread of the classes
are considered simultaneously.

Further aspects of outliers and robustness in the one-way random effects
model are discussed in Davies (1991). We do not discuss these approaches
any further.

2.2 Model assumptions and outliers

The element of surprise which the outliers provoke depends on what one
expects to observe, or in other words, on the ideal model that one assumes
before the data are available. A model similar to our ideal model (1), which
could also be appropriate for the data in our introductory example, is the
fixed effects model

Y;j:/L‘i‘@i—i‘Eij, ’izl,...,f,jzl,...,n, (9)

ZeiZO,EjNN(O,O'?),O'i > 0.

=1

The special case of this model with 0y = --- = 0, = o is even more similar
to (1).

Both models assume a normal distribution for the data. The normal
distribution implies that the data are crowded together because of the light
tails of this distribution. A Cauchy distribution, for example, will generate
aberrant values much more easily.

Furthermore, outliers in the E’s can be considered in the fixed effects
model as well as in the random effects model.

But the fixed effects model per se gives no reason to identify location-
outliers in the class effects, since these are arbitrary parameters in this model.
The random effects model, on the other hand, states that the class effects
stem from a common source and therefore should not differ too much.

However, the fixed-effects model allows a test for the hypothesis Hy :
0, = --- =0, =0 or a multiple testing procedure to compare individual class
effects. But this hypothesis seems to be more restrictive (though not directly
comparable) than the assumption of model (1) about the class effects, where
some variation is allowed. A less restrictive hypothesis on the fs in model (9)
could be formulated, but then one has to decide how much variation in the



class effects should be allowed. This is also true for the random effects model,
but there this decision is assisted by the assumption of the distribution of
the random class effects.

Searching for unusual variation of the data within the classes can be
based on a heteroscedastic model like (9), or the analogous model with ran-
dom class effects, by a test for the hypotheses o1 = --- = o,. Again, less
restrictive hypotheses can be formulated for the scale parameters or one can
take the viewpoint of outlier identification as described above and search for
unusual realizations of the random variables s(Y;),i =1 ,...,f,under a ho-
moscedastic model. Note however that our approach may be of limited use in
a situation where a common scale parameter for all classes is not reasonable.

In more structured models further aspects of outliers may occur; see Ter-
beck and Davies (1999) for a discussion of the two-way analysis of variance.

2.3 Standardization of outlier regions

Following the ideas of Davies and Gather (1993) we use outlier regions with
d = «, depending on a prespecified a € (0,1) and n = Zle n; such that

Pr(34,5:Y;; € OUT (o, p, 08, U;)) = (10)

under model (1). This can be achieved by taking o, = 1 — (1 — a)'/™. We
use in the same way oy = 1 — (1 — a)"* in order to get

Pr(3i:U; € outy(ay,0,01)) = (11)

or
Pr(3i:s(Y;) € outg(ay, op;s)) = a, (12)

respectively, under this model. Thus the identification of outliers in the
one-way random effects model, as it is considered in this paper, aims at the
identification of

1. location-ay,-outliers within the classes, that means observations y;; in
OUT(CYn, W,0g, Uz),

2. location-ay-outliers within the random effects, i.e. observations of the
U; in outy,(cy, 0, 0y),

3. scale-ag-outliers, i.e. observations of the vectors Y; = ( ¥,...,Y,.)
which lie in outs(ay,0g;s), i=1,...,¢, for a robust scale estimator
s. Here the median absolute deviation (MAD) is used (see below).



3 Median-based estimators and predictors

The above mentioned outlier regions depend on the unknown parameters
p, 0%, and 0% as well as on the unobservable random effects Uy, ..., Up. In
order to identify outliers we need estimates of these parameters and predictors
of the random effects. Experience with univariate data shows that robust
procedures are preferable and especially median based statistics are a good
choice to avoid a masking effect in outlier detection rules (Davies, Gather
(1993)).
Given data y;;, let

. 1
med; = median (y;1, - - -, Yin,) = 2 (yi,([(ni—l—l)/Z]) + yi,([ni/2]+1))

be the median of the observations in the ith class, where y; 1) < ... < y; ;)
are the ordered observations ¥;i,...,¥i,, in the ith class, and [e] denotes
rounding off to the nearest integer. Let

mad; = median (|y;; — med;], ..., |yin, — med;|)

denote the median absolute deviation within class 7. The normalized median
absolute deviation

s; = e(n;) - mad;, i=1,...,¢,

is used to describe the variation within the classes. The factor e(m) has been
found by Croux and Rousseeuw (1992) and ensures that the median abso-
lute deviation of m stochastically independent normally distributed random
variables is an approximately unbiased estimator for the underlying stan-
dard deviation. This normalizing factor equals e(m) = 1 .4826b(m). The
factor 1.4826 is the reciprocal of the MAD of the N(0, 1)-distribution and is
multiplied by b(m), where

m = 2 3 4 5 6 7 8 9
b(m)= 1.196 1.495 1.363 1.206 1.200 1.140 1.129 1.107

and b(m) =m/(m — 0.8) for m > 9. We use

4 = median (medy, ..., medy), (13)
51\2} = epmedian ((med; — )%, ..., (med, — f1)?) (14)
(;% = epmedian (s7,...,s7) (15)

8



as estimators of u, 0%, and 0% respectively. The factor ey in (15) is given by

¢ — 3.5592
n

eg =0.9797 + 1.1188

and achieves that the estimator 0% becomes approximately unbiased under
model (1). .

The estimator o7 is constructed following the form of the estimator of
Hartung (1981) for o7 in the balanced case, i.e. when ny = -+- = ny = m,
say. This estimator is proportional to the sum of squares of the class averages.
It is always non-negative, but biased, it’s mean equals o7 + 0% /m. This is
equal to the variance of the average of the observations from one class. Our
estimator is proportional to the MAD of the class medians. The variance of
the ¢th class-median med; is

Var(U; + median(E;q, . .., Ei,)) = op +v(ni)os, i=1,...,¢, (16)

where v(m) denotes the variance of the median of m independent N (0, 1)
random variables. Cadwell (1952) gives approximations for v(m). By means
of simulations we found the factor

E 2
v =7 7.56°0

to achieve that the mean of (14) is approximately equal to this variance in
the balanced case, i.e. o 4+ v(m)o.
The above reasoning suggests that

—~ o~ —~

0% = ot —v(m)os (17)

is unbiased for of,. Note that o7 can become negative. A simple remedy of
this defect is to replace negative values of this estimator by zero,

%:max{gg,O}, (18)

but this will again introduce a bias, cf. Verdooren (1980). Problems of this
kind are well known in classical estimation theory of variance components,
see e.g. LaMotte (1973).

The factors ey and e approximate the reciprocals of simulated means
of the uncorrected estimators under model (1). They have been simulated
in the balanced case for several values of ¢/ and m. We use them in the
unbalanced case as well.



The estimators defined above don’t take account of the number of obser-
vations per class. Therefore it should be possible to improve these estimators,
especially in the unbalanced situation, by considering appropriate weights for
each class. We do not follow up this issue further.

Predictors for the random effects U; are constructed similar to the non-
robust ‘best linear unbiased predictors’, cf. Searle (1987),

2
@:%(medi—ﬂ), 1=1,...,0 (19)

2 2
op +nioy

4 Identification of outliers

o~ o~

Let ji,0% and 0% be estimators of u, 07 and o% respectively and let @; be

a predictor of the unobservable random effect U;,i = 1,...,¢. We also need
robust estimates of scale s; = s(y;),i =1 ,...,¢. We restrict our attention
to nonnegative estimators of the variance component o7. This excludes for
example the estimator (17), but admits its truncated version (18). Common
estimators for 0% are nonnegative with probability one. Note however that
the MAD becomes zero when half of the data are identical.

The identification rules proposed below need estimators oy and o for
oy and og. When only estimators for the variance components are available,
we simply take their square roots.

There are numerous suggestions in the literature on how to identify out-
liers in univariate data (Barnett and Lewis (1994), Hawkins (1980)).  Ap-
propriate modifications of these procedures can be applied to the @; to find
location-outliers within the random effects, to the s; to identify scale-outliers
(especially procedures for non-negative data) or to the (y;; — @;) to identify
location-outliers within the classes, e =1,...,¢,j=1,...,n.

Our definition of the task of identifying outliers in one-way random effects
models reads: Find all points in the outlier regions defined in section 2.1.
Therefore we define empirical versions of these regions. These are given
by procedures which identify outliers when appropriately defined residuals
exceed a critical value. These values may depend on estimators 7 of the
unknown ratio v = oy /op.

1. Identify y;; to be a location-ay,-outlier within the ith class, if

lyij — i — | > ep(0,7)o5. (20)

10



2. The ¢th random effect is identified as location-ay-outlier within the
random effects, if

oy >0 and || > cy(o,7)oy. (21)

When o7 = 0, which may occur with positive probability for some
estimators, e.g. the truncated estimator (18), we take this as a hint
that there are in fact no random effects (cf. Searle (1971), p. 407). In
this case one would not look for outlying random effects either.

3. The ith class is identified as scale-ay-outlier, if

|In(s;) — In(og)| > cs(a, ), i=1,...,0 (22)

These identification rules should be invariant under linear transformations
of the data. This is fulfilled whenever the location estimator is location
and scale equivariant and the scale estimators as well as the predictors are
location invariant and scale equivariant, which is commonly requested for
such statistics.

The functions ¢y, cg, and cg should be chosen to achieve that under the
assumptions of model (1), where outliers are not likely to occur, there is only
a small probability, a € (0, 1) say, to detect any outlier,

Y= ji— R
Pr <E| iy M > cE(a,fy)> = a, (23)
OF
Pr (5(\] >0 and Ji: @ > cU(a,/i)) = a, (24)
ou

Pr(3i:|In(s;) —In(og)| > cs(a, 7)) = a, i=1,...,0.(25)

These normalizing constraints are close to (10)—(12) and thus allow indeed to
interpret these procedures as rules for the identification of «,,- or a,-outliers,
respectively.

Of course such rules should detect as many true «,-, a,-outliers as pos-
sible, i.e. they should maximize some criterion like the expected number of
detected a-outliers. For this purpose we look for procedures which avoid the
so called masking and the swamping effect. This means that an identifica-
tion rule is misled by the outliers themselves and detects too few or too many
outliers, cf. Davies and Gather (1993).

11



5 An identification rule based on medians

We investigate identification rules as outlined in section 4, using the estima-
tors and predictors of section 3. Approximations to the functions cg, ¢y, and
cs ((20)—(22)) are found by simulating critical values for different values of
7 that satisfy conditions (23)—(25) with 7 replaced by ~.

The simulated values for ¢g(«,y) seem to be constant in . This is also
true for the critical values for location-outliers in the random effetcs, when
the identification rule (21) is simplified to the rule which identifies the ith
class as ay-location-outlier if

op >0 and |med; — ji| > cy(a)oy, i=1,...,¢0. (26)

But the cg depent on . Nonlinear functions were fitted to the simulated
values for cg, ¢y, and cg, yielding

_ (+0 ?
CE(aafY) ~ CE(aa ’7) - Zlfan/Z + n l + 0E2 < +’Y ) (27)

Y+ O3
CU(aa 7) ~ E\[;(Oé, 7) = Zl-q,/2 T 01 (Z - 9U2)9U3 (28)
~ Osol
CS(a7 7) ~ CS(a7 7) = 951 + (Z + 953)5&%”1 + 954) * (29)

Here m equals n/¢, rounded to the nearest integer. The quantiles z;_,, /2
and 21_q,/2 would be the correct critical values if the model parameters were
known. Note that the fitted functions converge to these values or the constant
01, respectively, when n and «y in (27), ¢ in (28) with §y3 < 0, and m and/or
¢ in (29) are growing. The 6’s depend on « and on whether ¢ or m is even
or odd. They are tabulated in the appendix.

In practice 7 is unknown and is therefore replaced by the estimator 7 =
oy/og in (27). Simulations confirm that conditions (10-12) are satisfied
in general when proceeding as above. However, the identification rule for
outliers within the classes seems to be somewhat conservative or liberal in
some situations, depeding on the combination of ¢ and m. This may be
partly due to the fact that the critical values depend on an estimate of ~.

6 An Example

Table 1 lists the data of the introductory example, along with some auxiliary
statistics which help to calculate the statistics introduced above. The seventh

12



Table 1: Results from radon intercomparison

Lab. measurements statistics

i in Becquerel /m? med; |med; — i mad, S

1 166 166 167 167 179 167 6 1 1.788

2 156 161 167 154 165 161 0 5 8.940

3 145 237 259 208 272 237" 76 29 51.852

4 186 161 166 134 145 161 0 16 28.608

5 148 144 143 135 97t 143 18 5 8.940
some medians i = 161 6 8.940

estimates of variance components (;(\2] = 87.723 ;% = 83 .456

L outliers identified at a = 0 .05

column lists the within laboratory medians med;, their median is used as
estimator of the location parameter yu, i.e. i = 161.

Columns 8 and 10 show the absolute residuals |med; — fi| and the scale
estimates s; = e(5)mad;, which are needed to identify outliers in the random
effects and scale-outliers, respectively. Here e(5) = 1.4826 - 1.206 = 1.788.
Squaring the medians of these quantities and multiplying them with e;; and
ew, resp., gives the estimates of the variance components. Here, ey = 5(5 +
1.56)(1.4826 - 1.206)? = 2 .4367and ep = 0 .9797 + 1.1188(5— 3.5592)/25 =
1.0442. Note that taking medians and squaring of positive numbers is inter-
changeable.

For the identification of outliers critical values according to (27)—(29) are
calculated. At first, a estimate of 7 is obtained as /87.723/83.456 = 1.0252.
Using the parameters for o = 0 .05from the appendix gives cg = 4 .561¢cp =
5.066, cs = 1 .834.The lowest observations from laboratories 3 and 5 differ
more than cgog = 4 .561-9.135 = 41.665 from the corresponding median and
are therefore identified as within class outliers. The median value of lab. 3
is more than cyoy = 5 .066- 9.366 = 47.448 greater than the overall median
jt = 161, therefore the ith laboratory is identified as outlier in the random

effects. No scale-outlier is identified, since none of the In(s;) deviates more
than ¢g = 1 .834from In(og) = 2 .212.

7 Discussion

Figure 1 exemplifies several patterns of departure from the assumptions of
model (1). These patterns are described to a great extent by our definition

13



of outliers. The procedures of sections 3, 4, and 5 translate these concepts
into easily applicable statistical methods.

In our example, the procedure identifies the most obvious outliers from
laboratories 3 and 5. However, no scale-outlier is identified, despite the great
variability among the scale estimates within the laboratories.

It can be expected that the methods can be improved by using more
efficient and robust estimators and predictors and by adapting stepwise pro-
cedures for the detection of outliers in univariate data.
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lations for balanced designs with ¢,m = 3(1)12, 15(3)30, v = 0, 1/10, 1/4,
1/3,1/2,2/3,3/4,1,2,4,7,10, « = 0 .01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15,
and 0.2. The averages and maxima of the absolute relative deviation of the
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Table 2: Approximation for cg(«, )

abs. rel. dev.

Q l m 01 0o fps | average  max
0.01 even even | 43.2945 0.2168 0.0983 0.013 0.050
odd 98.7835 0.0000 0.4675 0.063 0.272

odd even | 66.7645 1.6639 5.2218 0.050 0.433

odd | 149.7464 0.0000 0.0000 0.134 0.584

0.025 even even | 28.7092 0.1976 0.0811 0.013 0.058
odd 67.3591 0.0841 1.3156 0.046 0.208

odd even | 43.9021 0.4244 1.3694 0.030 0.269

odd 90.4922 2.3905 499517.3 0.072 0.376

0.05 even even | 20.0756 0.1701 0.0826 0.013 0.062
odd 46.8162 0.1144 0.3953 0.035 0.156

odd even | 29.2568 0.2408 0.4617 0.023 0.165

odd 59.8869 0.3051 6.7851 0.046 0.259

0.075 even even | 15.1429 0.1546 0.0861 0.014 0.063
odd 35.7368 0.1304 0.2639 0.029 0.138

odd even | 22.4798 0.1939 0.3233 0.021 0.123

odd 45.2405 0.1852 1.9774 0.035 0.208

0.1 even even | 11.8195 0.1424 0.0923 0.015 0.070
odd 28.7363 0.1355 0.2151 0.025 0.126

odd even | 18.0670 0.1693 0.2694 0.020 0.104

odd 36.2594 0.1606 0.9856 0.029 0.163

0.125 even even 9.4091 0.1316 0.1006 0.016 0.074
odd 23.9408 0.1339 0.2078 0.022 0.117

odd even | 14.8461 0.1538 0.2436 0.020 0.096

odd 29.9873 0.1542 0.6556 0.025 0.141

0.15 even even 7.5064 0.1224 0.1103 0.016 0.076
odd 20.3330 0.1300 0.2105 0.020 0.108

odd even | 12.3927 0.1397 0.2351 0.021 0.096

odd 25.3297 0.1469 0.5351 0.021 0.124

0.2 even even 4.5492 0.1062 0.1262 0.017 0.082
odd 14.5664 0.1227 0.2069 0.016 0.094

odd even 8.7006 0.1194 0.2333 0.021 0.091

odd 18.6299 0.1342 0.4301 0.017 0.097
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Table 3: Approximation for ¢y («, )
abs. rel. dev.

o 14 01 02 fys | average  max
0.01 even | 22.1191 1.7531 -0.8739 0.019 0.143
odd | 38.0453 2.5403 -1.0935 0.038 0.238
0.025 even | 14.7482 0.9919 -0.8284 0.013 0.079
odd | 19.1942 2.4546 -0.9435 0.023 0.176
0.05 even | 11.5456  -0.2643 -0.8212 0.010 0.068
odd | 10.9473 2.3549 -0.8344 0.016 0.144
0.075 even | 11.5518  -1.9997 -0.8608 0.009 0.051
odd 7.6956 2.2635 -0.7732 0.012 0.094
0.1 even | 13.4682 -4.3361 -0.9282 0.008 0.053
odd 5.8465 2.1881 -0.7278 0.010 0.099
0.125 even | 21.6681  -8.2832 -1.0666 0.007 0.049
odd 4.6777 2.1073 -0.6938 0.010 0.103
0.15 even | 44.9717 -13.7962 -1.2527 0.007 0.038
odd 3.8730 2.0134 -0.6676 0.009 0.082
0.2 even | 45.0000 -19.4365 -1.2523 0.008 0.044
odd 2.8178 1.7854 -0.6282 0.008 0.075
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The model for cg was actually

Ogs ol gy 1
cs(o,y) =01 + o <( 520 )> + 2 <( o2l ) )

4 0g30)(m ~+ Os4 04 0g31)(m + 0s41)

with g = 1 for m even, xy = 0 otherwise and z; = 1 — xy. This results
in a unique parameter fs; for both m odd and even and therefore a unique
asymptotic critical value for growing m. As a consequence the absolute
relative deviation can not be distinguished for odd and even m.

Table 4: Approximation for cg(c, )

abs. rel. dev.

«Q m 05, Oso Os3 fs4 | average max
even 158189 2.5456 0.1735

0.01 Jqq | 04477 153799 23991 -0.9559 | 0-021 0.088
even 144837 3.1908  0.2629

0.025 Jqa | M2 140051 3.0530 -0.9204 | 0020 0.077
even 135444 3.9216  0.3426

0.05 Jqq | 93832 199677 3.7308 -0.8865 | 0020 0.095
even 12.0185 44797 0.3627

0.0 Jqq | 03663 19 3496 49342 08680 | 0019 0.096
even 124912 4.9454  0.3879

0.1 Jad | 93932 119512 47216 -0.8481 | 0-019 0.105
even 122155 54184 0.4213

0125 Jqq | 93426 11 6554 5.1678 -0.8325 | 0019 0.112
even 11.9883 58711  0.4410

0-15 oqa | 93336 11 4599 56300 -0.8162 | OV18 0115
even 116439 6.6663 0.5010

0.2 Jaa | 93185 11 0477 64034 -0.7937| 0019 0.129
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