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Abstract

We distinguish between three types of outliers in a one-way ran-

dom e�ects model. These are formally described in terms of their

position relative to the main part of the observations. We propose

simple rules for identifying such outliers and give an example which

involves median-based statistics.

1 Introduction

A one-way random e�ects model assumes for continuous random variables
Yij that

Yij = �+ Ui + Eij; i = 1 ; : : : ; `; j= 1 ; : : : ; ni: (1)

In applications Yij may represent the jth measurement taken in the ith lab-
oratory taking part in an interlaboratory testing procedure to investigate
the quantity of a certain ingredient in some given substance. The measure-
ments deviate from the �xed (unknown) quantity � by Ui + Eij, where Ui

is a normally distributed random e�ect (`laboratory e�ect') with mean 0
and variance �2

U � 0, i.e. Ui � N(0; �2
U ); i = 1 ; : : : ; ` . The variablesEij

are N(0; �2
E) distributed random variables with �2

E > 0. They represent the
individual measurement errors, i = 1 ; : : : ; `; j= 1 ; : : : ; ni.
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The parameters �2
U and �2

E are called variance components. Note that
model (1) implies that the random vectors Y i = ( Yi1; : : : ; Yini)

0 are inde-
pendent and follow a multivariate normal distribution with mean �1ni and
covariance matrix �2

UJni
+�2

EIni
(cf. Searle (1987)), where 1ni denotes a vec-

tor of ones of length ni, Ini denotes the identity matrix and Jni the matrix
of ones of order (ni � ni); i = 1 ; : : : ; ` .

Model (1) is invariant under linear transformations

y 7! ay + b; a 6= 0 : (2)

That is to say, a model of the form (1) is still valid when all data are trans-
formed as in (2).

Figure 1 gives some results from an intercomparison of radon detectors,
described in Kreienbrock et al. (1999). The scatterplot shows 25 measure-
ments of �-energy, emitted by radioactive radon gas, which were taken under
identical conditions. Each detector supplies one measurement after prepara-
tion in a laboratory. Five laboratories took part in this investigation, each
with �ve detectors.
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Figure 1: Radon measurements from an interlaboratory test
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One would expect that the measurements lie close together because the same
quantity was measured and the laboratories used the same standardized an-
alytical technique. Furthermore the variation within each laboratory should
be the same. Therefore model (1) should be appropriate for these data.

But in fact one can observe some types of `outliers'. Barnett and Lewis
(1994) �. . . de�ne an outlier in a set of data to be an observation (or subset
of observations) which appears to be inconsistent with the remainder of that
set of data�. Three types of outliers can be distinguished in random e�ects
models. These are seen in �gure 1 for the following data.

1. There is one observation in each of the laboratories 3 and 5 which
is remarkably small, compared to the other observations of the same
laboratory.

2. Except for the lower outlier laboratory 3 generally supplies larger mea-
surements.

3. Laboratories 1 and 3 di�er from the others with respect to the variation
of the data. There is very little variation in laboratory 1, whereas the
data in laboratory 3 show higher variation, even when the lower outlier
is neglected.

If model (1) is satis�ed, these outliers are not likely to occur because of the
light tails of the normal distribution and the assumption of homoscedasticity.
Therefore model (1) is considered to describe the ideal situation without
outliers.

Our aim is to set up formal rules that identify these outliers. At �rst
we will give the term outlier a more precise meaning. We will then consider
one example of robust estimators and predictors, based on medians. Robust
statistics for the one-way random e�ects model are extensively discussed by
e.g. Stahel and Welsh (1992), Wellmann (1994), and Wellmann (2000).
They are of interest in their own. However, they are only used here to con-
struct rules for the identi�cation of outliers. We will then suggest a general
form for such rules and provide details for a speci�c example which involves
the median-based estimators discussed before. This method is illustrated
using the data from the introductory example (�g. 1).
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2 Outliers in a one-way random e�ects model

2.1 Outlier regions

For univariate data Davies and Gather (1993) have de�ned so called outlier
regions. These are tail regions of the target distribution. For a normal
N(�; �2) distribution with mean � and variance �2 > 0, the �-outlier region
with respect to N(�; �2) is

outL(�; �; �) =
�
x : jx� �j > z1��=2�

	
; (3)

where � 2 (0; 1) is some given number and zq is the q-quantile of the normal
distribution. The outlier region is chosen to be symmetric about � because
of the symmetry of the normal distribution. We note that a random variable
X from N(�; �2) will be located in outL(�; �; �) with probability �,

Pr (X 2 outL(�; �; �)) = �: (4)

A real number x is called �-outlier with respect to N(�; �2) if x 2 outL(�; �; �)
(Davies, Gather (1993)). Here we will consider three types of outlier re-
gions in order to describe the above mentioned types of outliers in a one-way
random e�ects model.

The region outL(�; 0; �E) corresponds to outliers in the E's, i.e. outliers
within the classes. We call a real number y a location-�-outlier within the

ith class if it is an observation of Yij and the corresponding unobservable
random variable Eij is realized in outL(�; 0; �E). More conveniently we may
call any real number y a location-�-outlier within the ith class if it belongs
to

OUT(�; �; �E; Ui) =
�
y : jy � �� Uij > z1��=2�E

	
i = 1 ; : : : ; `: (5)

This outlier region depends on a random e�ect and is therefore a random set.
But it could as well have been formulated with the unobservable realizations
of the random e�ects.

Globally larger or smaller observations in some class correspond to an
outlier in the U 's, which is described by outL(�; 0; �U). When a random
e�ect Ui; i = 1 ; : : : `;is observed in outL(�; 0; �U) we call the corresponding
class a location-�-outlier within the random e�ects.

Extremely large or small variation within one class may be re�ected in
corresponding values of an estimator of scale s. The statistic s is called a
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scale estimator if it is location invariant and scale equivariant. That is to
say, if y is the vector of observations, then

s(ay + b1) = jajs(y) � 0 (6)

for any scalar constants a 6= 0 and b, cf. Lax (1985). We de�ne an outlier
region corresponding to an estimator of scale s to be a set of vectors y
which lead to s(y) su�ciently far away from �E and choose this region to be
symmetric about ln(�E) on a logarithmic scale as

outS(�; �E; s) = fy 2 R
m : j ln(s(y))� ln(�E)j > c�g : (7)

The constant c� is chosen to satisfy

Pr (Y 2 outS(�; �E; s)) = � (8)

for a multivariate normal random vector Y with a covariance matrix of the
form �2

UJm+�2
EIm as in model (1). We will apply this concept to observations

of the vectors Y i = ( Yi1; : : : ; Yini)
0; i = 1 ; : : : ; ` , but we call any vectory in

outS(�; �E ; s) a scale-�-outlier with respect to s.
The scale estimator s should be resistant against outliers in order to

reduce confusion between high variation and low variation plus single outliers
within the class.

The outlier region outS is invariant under the transformation (2) in the
sense that a transformed vector of observations ayi + b1ni is a scale-outlier
if and only if yi is a scale-outlier in the original dataset. Analogous results
hold true for the other outlier regions, which involve the unobservable ran-
dom variables Ui and Eij, where we adopt the following interpretation of
invariance. Motivated by equation (1) we think of the transformed observ-
able random variables aYij+b as the sum of the new `true value' a�+b, class
e�ects aUi and measurement errors aEij; i = 1 ; : : : ; `; j= 1 ; : : : ; ni. This
convention is consistent with the assumption that the unobservable random
variables have zero means.

Two further types of outliers could be considered. The outlier region

out� =

�
y : jy � �j > z1��=2

q
�2
U + �2

E

�
corresponds to observations far away from �. The region

outL+S =

(
y 2 R

ni :

Pni
j=1(yj � �y�)

2

�2
E

+
ni(�y� � �)2

�2
E + ni�2

U

< �1��

)
;
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where �1�� denotes the (1 � �)-quantile of the central �2-distribution with
ni degrees of freedom and �y� =

Pni
j=1 yi=m, considers observations of Y i; i =

1; : : : ; ` , as outliers which lie outside the smallest ellipsoid with probability
mass 1�� under the ideal model (1). Thus location and spread of the classes
are considered simultaneously.

Further aspects of outliers and robustness in the one-way random e�ects
model are discussed in Davies (1991). We do not discuss these approaches
any further.

2.2 Model assumptions and outliers

The element of surprise which the outliers provoke depends on what one
expects to observe, or in other words, on the ideal model that one assumes
before the data are available. A model similar to our ideal model (1), which
could also be appropriate for the data in our introductory example, is the
�xed e�ects model

Yij = �+ �i + Eij; i = 1 ; : : : ; `; j= 1 ; : : : ; ni; (9)X̀
i=1

�i = 0 ; Eij � N(0; �2
i ); �i > 0:

The special case of this model with �1 = � � � = �` = �E is even more similar
to (1).

Both models assume a normal distribution for the data. The normal
distribution implies that the data are crowded together because of the light
tails of this distribution. A Cauchy distribution, for example, will generate
aberrant values much more easily.

Furthermore, outliers in the E 0s can be considered in the �xed e�ects
model as well as in the random e�ects model.

But the �xed e�ects model per se gives no reason to identify location-
outliers in the class e�ects, since these are arbitrary parameters in this model.
The random e�ects model, on the other hand, states that the class e�ects
stem from a common source and therefore should not di�er too much.

However, the �xed-e�ects model allows a test for the hypothesis H0 :
�1 = � � � = �` = 0 or a multiple testing procedure to compare individual class
e�ects. But this hypothesis seems to be more restrictive (though not directly
comparable) than the assumption of model (1) about the class e�ects, where
some variation is allowed. A less restrictive hypothesis on the �s in model (9)
could be formulated, but then one has to decide how much variation in the
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class e�ects should be allowed. This is also true for the random e�ects model,
but there this decision is assisted by the assumption of the distribution of
the random class e�ects.

Searching for unusual variation of the data within the classes can be
based on a heteroscedastic model like (9), or the analogous model with ran-
dom class e�ects, by a test for the hypotheses �1 = � � � = �`. Again, less
restrictive hypotheses can be formulated for the scale parameters or one can
take the viewpoint of outlier identi�cation as described above and search for
unusual realizations of the random variables s(Y i); i = 1 ; : : : ; `;under a ho-
moscedastic model. Note however that our approach may be of limited use in
a situation where a common scale parameter for all classes is not reasonable.

In more structured models further aspects of outliers may occur; see Ter-
beck and Davies (1999) for a discussion of the two-way analysis of variance.

2.3 Standardization of outlier regions

Following the ideas of Davies and Gather (1993) we use outlier regions with
� = �n depending on a prespeci�ed � 2 (0; 1) and n =

P`
i=1 ni such that

Pr (9 i; j : Yij 2 OUT(�n; �; �E; Ui)) = � (10)

under model (1). This can be achieved by taking �n = 1 � (1 � �)1=n. We
use in the same way �` = 1� (1� �)1=` in order to get

Pr (9 i : Ui 2 outL(�`; 0; �U)) = �; (11)

or
Pr (9 i : s(Y i) 2 outS(�`; �E; s)) = �; (12)

respectively, under this model. Thus the identi�cation of outliers in the
one-way random e�ects model, as it is considered in this paper, aims at the
identi�cation of

1. location-�n-outliers within the classes, that means observations yij in
OUT(�n; �; �E; Ui),

2. location-�`-outliers within the random e�ects, i.e. observations of the
Ui in outL(�`; 0; �U),

3. scale-�`-outliers, i.e. observations of the vectors Y i = ( Yi1; : : : ; Yini)
0

which lie in outS(�`; �E; s), i = 1 ; : : : ; ` , for a robust scale estimator
s. Here the median absolute deviation (MAD) is used (see below).
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3 Median-based estimators and predictors

The above mentioned outlier regions depend on the unknown parameters
�; �2

U ; and �2
E as well as on the unobservable random e�ects U1; : : : ; U`. In

order to identify outliers we need estimates of these parameters and predictors
of the random e�ects. Experience with univariate data shows that robust
procedures are preferable and especially median based statistics are a good
choice to avoid a masking e�ect in outlier detection rules (Davies, Gather
(1993)).

Given data yij, let

medi = median (yi1; : : : ; yini) =
1

2

�
yi;([(ni+1)=2]) + yi;([ni=2]+1)

�
be the median of the observations in the ith class, where yi;(1) � : : : � yi;(ni)
are the ordered observations yi1; : : : ; yini in the ith class, and [�] denotes
rounding o� to the nearest integer. Let

madi = median (jyi1 �medij; : : : ; jyini �medij)

denote the median absolute deviation within class i. The normalized median
absolute deviation

si = e(ni) �madi; i = 1 ; : : : ; `;

is used to describe the variation within the classes. The factor e(m) has been
found by Croux and Rousseeuw (1992) and ensures that the median abso-
lute deviation of m stochastically independent normally distributed random
variables is an approximately unbiased estimator for the underlying stan-
dard deviation. This normalizing factor equals e(m) = 1 :4826b(m). The
factor 1.4826 is the reciprocal of the MAD of the N(0; 1)-distribution and is
multiplied by b(m), where

m = 2 3 4 5 6 7 8 9

b(m) = 1.196 1.495 1.363 1.206 1.200 1.140 1.129 1.107

and b(m) = m=(m� 0:8) for m > 9. We use

�̂ = median (med1; : : : ;med`) ; (13)c�2
U = eUmedian

�
(med1 � �̂)2; : : : ; (med` � �̂)2

�
(14)c�2

E = eEmedian
�
s21; : : : ; s

2
`

�
(15)

8



as estimators of �; �2
U ; and �2

E respectively. The factor eE in (15) is given by

eE = 0 :9797 + 1:1188
`� 3:5592

n

and achieves that the estimator c�2
E becomes approximately unbiased under

model (1).

The estimator c�2
U is constructed following the form of the estimator of

Hartung (1981) for �2
U in the balanced case, i.e. when n1 = � � � = n` = m,

say. This estimator is proportional to the sum of squares of the class averages.
It is always non-negative, but biased, it's mean equals �2

U + �2
E=m. This is

equal to the variance of the average of the observations from one class. Our
estimator is proportional to the MAD of the class medians. The variance of
the ith class-median medi is

Var(Ui +median(Ei1; : : : ; Ein`)) = �2
U + v(ni)�

2
E; i = 1 ; : : : ; `; (16)

where v(m) denotes the variance of the median of m independent N(0; 1)
random variables. Cadwell (1952) gives approximations for v(m). By means
of simulations we found the factor

eU =
`

`+ 1 :56
e(`)2

to achieve that the mean of (14) is approximately equal to this variance in
the balanced case, i.e. �2

U + v(m)�2
E.

The above reasoning suggests that

f�2
U = c�2

U � v(m)c�2
E (17)

is unbiased for �2
U . Note that

f�2
U can become negative. A simple remedy of

this defect is to replace negative values of this estimator by zero,

�2
U = max

nf�2
U ; 0
o
; (18)

but this will again introduce a bias, cf. Verdooren (1980). Problems of this
kind are well known in classical estimation theory of variance components,
see e.g. LaMotte (1973).

The factors eU and eE approximate the reciprocals of simulated means
of the uncorrected estimators under model (1). They have been simulated
in the balanced case for several values of ` and m. We use them in the
unbalanced case as well.
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The estimators de�ned above don't take account of the number of obser-
vations per class. Therefore it should be possible to improve these estimators,
especially in the unbalanced situation, by considering appropriate weights for
each class. We do not follow up this issue further.

Predictors for the random e�ects Ui are constructed similar to the non-
robust `best linear unbiased predictors', cf. Searle (1987),

bui = nic�2
Uc�2

E + nic�2
U

(medi � �̂) ; i = 1 ; : : : ; `: (19)

4 Identi�cation of outliers

Let �̂;c�2
U and c�2

E be estimators of �; �2
U and �2

E respectively and let bui be
a predictor of the unobservable random e�ect Ui; i = 1 ; : : : ; ` . We also need
robust estimates of scale si = s(yi); i = 1 ; : : : ; ` . We restrict our attention
to nonnegative estimators of the variance component �2

U . This excludes for
example the estimator (17), but admits its truncated version (18). Common
estimators for �2

E are nonnegative with probability one. Note however that
the MAD becomes zero when half of the data are identical.

The identi�cation rules proposed below need estimators c�U and c�E for
�U and �E. When only estimators for the variance components are available,
we simply take their square roots.

There are numerous suggestions in the literature on how to identify out-
liers in univariate data (Barnett and Lewis (1994), Hawkins (1980)). Ap-
propriate modi�cations of these procedures can be applied to the bui to �nd
location-outliers within the random e�ects, to the si to identify scale-outliers
(especially procedures for non-negative data) or to the (yij � bui) to identify
location-outliers within the classes, i = 1 ; : : : ; `; j= 1 ; : : : ; ni.

Our de�nition of the task of identifying outliers in one-way random e�ects
models reads: Find all points in the outlier regions de�ned in section 2.1.
Therefore we de�ne empirical versions of these regions. These are given
by procedures which identify outliers when appropriately de�ned residuals
exceed a critical value. These values may depend on estimators b
 of the
unknown ratio 
 = �U=�E.

1. Identify yij to be a location-�n-outlier within the ith class, if

jyij � �̂� buij > cE(�;b
)c�E: (20)
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2. The ith random e�ect is identi�ed as location-�`-outlier within the
random e�ects, if

c�U > 0 and jbuij > cU(�;b
)c�U : (21)

When c�U = 0 , which may occur with positive probability for some
estimators, e.g. the truncated estimator (18), we take this as a hint
that there are in fact no random e�ects (cf. Searle (1971), p. 407). In
this case one would not look for outlying random e�ects either.

3. The ith class is identi�ed as scale-�`-outlier, if

j ln(si)� ln(c�E)j > cS(�;b
); i = 1 ; : : : ; `: (22)

These identi�cation rules should be invariant under linear transformations
of the data. This is ful�lled whenever the location estimator is location
and scale equivariant and the scale estimators as well as the predictors are
location invariant and scale equivariant, which is commonly requested for
such statistics.

The functions cU ; cE; and cS should be chosen to achieve that under the
assumptions of model (1), where outliers are not likely to occur, there is only
a small probability, � 2 (0; 1) say, to detect any outlier,

Pr

�
9 i; j :

jYij � �̂� buijc�E > cE(�; b
)� = �; (23)

Pr

�c�U > 0 and 9 i :
jbuijc�U > cU(�; b
)� = �; (24)

Pr (9 i : j ln(si)� ln(c�E)j > cS(�;b
)) = �; i = 1 ; : : : ; `: (25)

These normalizing constraints are close to (10)�(12) and thus allow indeed to
interpret these procedures as rules for the identi�cation of �n- or �`-outliers,
respectively.

Of course such rules should detect as many true �n-, �`-outliers as pos-
sible, i.e. they should maximize some criterion like the expected number of
detected �-outliers. For this purpose we look for procedures which avoid the
so called masking and the swamping e�ect. This means that an identi�ca-
tion rule is misled by the outliers themselves and detects too few or too many
outliers, cf. Davies and Gather (1993).
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5 An identi�cation rule based on medians

We investigate identi�cation rules as outlined in section 4, using the estima-
tors and predictors of section 3. Approximations to the functions cE; cU , and
cS ((20)�(22)) are found by simulating critical values for di�erent values of

 that satisfy conditions (23)�(25) with b
 replaced by 
.

The simulated values for cS(�; 
) seem to be constant in 
. This is also
true for the critical values for location-outliers in the random e�etcs, when
the identi�cation rule (21) is simpli�ed to the rule which identi�es the ith
class as �`-location-outlier if

c�U > 0 and jmedi � �̂j > cU(�)c�U ; i = 1 ; : : : ; `: (26)

But the cE depent on 
. Nonlinear functions were �tted to the simulated
values for cE; cU , and cS, yielding

cE(�; 
) �fcE(�; 
) = z1��n=2 +
`+ �E1

n
+ �E2

�




 + �E3

�2

(27)

cU(�; 
) �fcU(�; 
) = z1��`=2 + �U1 (`� �U2)
�U3 (28)

cS(�; 
) � ecS(�; 
) = �S1 +
�S2`

(`+ �S3)(m + �S4)
: (29)

Here m equals n=`, rounded to the nearest integer. The quantiles z1��n=2
and z1��`=2 would be the correct critical values if the model parameters were
known. Note that the �tted functions converge to these values or the constant
�S1, respectively, when n and 
 in (27), ` in (28) with �U3 < 0, and m and/or
` in (29) are growing. The �'s depend on � and on whether ` or m is even
or odd. They are tabulated in the appendix.

In practice 
 is unknown and is therefore replaced by the estimator b
 =c�U=c�E in (27). Simulations con�rm that conditions (10�12) are satis�ed
in general when proceeding as above. However, the identi�cation rule for
outliers within the classes seems to be somewhat conservative or liberal in
some situations, depeding on the combination of ` and m. This may be
partly due to the fact that the critical values depend on an estimate of 
.

6 An Example

Table 1 lists the data of the introductory example, along with some auxiliary
statistics which help to calculate the statistics introduced above. The seventh
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Table 1: Results from radon intercomparison
Lab. measurements statistics

i in Becquerel/m3 medi jmedi � �̂j madi si
1 166 166 167 167 179 167 6 1 1:788

2 156 161 167 154 165 161 0 5 8:940

3 1451 237 259 208 272 2371 76 29 51:852

4 186 161 166 134 145 161 0 16 28:608

5 148 144 143 135 971 143 18 5 8:940

some medians �̂ = 161 6 8:940

estimates of variance components c�2
U = 87:723 c�2

E = 83 :456
1
outliers identi�ed at � = 0 :05

column lists the within laboratory medians medi, their median is used as
estimator of the location parameter �, i.e. �̂ = 161.

Columns 8 and 10 show the absolute residuals jmedi � �̂j and the scale
estimates si = e(5)madi, which are needed to identify outliers in the random
e�ects and scale-outliers, respectively. Here e(5) = 1:4826 � 1:206 = 1:788.
Squaring the medians of these quantities and multiplying them with eU and
eE, resp., gives the estimates of the variance components. Here, eU = 5(5 +
1:56)(1:4826 � 1:206)2 = 2 :4367and eE = 0 :9797 + 1:1188(5� 3:5592)=25 =
1:0442. Note that taking medians and squaring of positive numbers is inter-
changeable.

For the identi�cation of outliers critical values according to (27)�(29) are
calculated. At �rst, a estimate of 
 is obtained as

p
87:723=83:456 = 1:0252.

Using the parameters for � = 0 :05from the appendix gives fcE = 4 :561;fcU =
5:066; ecS = 1 :834:The lowest observations from laboratories 3 and 5 di�er
more thanfcEc�E = 4 :561�9:135 = 41:665 from the corresponding median and
are therefore identi�ed as within class outliers. The median value of lab. 3
is more than fcUc�U = 5 :066� 9:366 = 47:448 greater than the overall median
�̂ = 161, therefore the ith laboratory is identi�ed as outlier in the random
e�ects. No scale-outlier is identi�ed, since none of the ln(si) deviates more
than ecS = 1 :834from ln(c�E) = 2 :212.

7 Discussion

Figure 1 exempli�es several patterns of departure from the assumptions of
model (1). These patterns are described to a great extent by our de�nition
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of outliers. The procedures of sections 3, 4, and 5 translate these concepts
into easily applicable statistical methods.

In our example, the procedure identi�es the most obvious outliers from
laboratories 3 and 5. However, no scale-outlier is identi�ed, despite the great
variability among the scale estimates within the laboratories.

It can be expected that the methods can be improved by using more
e�cient and robust estimators and predictors and by adapting stepwise pro-
cedures for the detection of outliers in univariate data.

Acknowledgement

Research was supported by Deutsche Forschungsgemeinschaft (DFG), Son-
derforschungsbereich 475, and DFG Grants DA 237/1-2 and GA 338/2-2.
The authors are grateful to Prof. Laurie Davies for stimulating discussions.

References

Barnett, V., and T. Lewis. Outliers in Statistical Data. John Wiley & Sons,
New York, third edition, 1994.

Cadwell, J. H. The distribution of quantiles of small samples. Biometrika,
39:207�211, 1952.

Croux, C., and P. J. Rousseeuw. Time-e�cient algorithms for two highly
robust estimators of scale. In Y. Dodge and J. Whittaker, editors,
Computational Statistics, volume 1, pages 411�428. Physika-Verlag,
Heidelberg, 1992.

Davies, P. L. A stochastic model for interlaboratory tests. Computational

Statistics & Data Analysis, 12:201�209, 1991.

Davies, P. L. and U. Gather. The identi�cation of multiple outliers. Invited
paper with discussion and reply. Journal of the American Statistical

Association, Theory and Methods, 88:782�792, 1993.

Hartung, J. Nonnegative minimum biased invariant estimation in variance
component models. The Annals of Statistics, 9:278�292, 1981.

Hawkins, D. M. Identi�cation of Outliers. Chapman and Hall, London,
1980.

14



Kreienbrock, L., A. Po�jn, M. Tirmache, M. Feider, A. Kies, and S. C.
Darby. Intercomparisons of passive radon-detectors under �eld condi-
tions in epidemiological studies. Health Physics, 76(5):558�563, 1999.

LaMotte, L. R. On non-negative quadratic unbiased estimation of variance
components. Journal of the American Statistical Association, 68:728�
730, 1973.

Lax, D. A. Robust estimators of scale: Finite-sample performance in long-
tailed symmetric distributions. Journal of the American Statistical

Association, Theory and Methods, 80:736�741, 1985.

Searle, S. R. Linear Models. John Wiley & Sons, New York, 1971.

Searle, S. R. Linear Models for Unbalanced Data. John Wiley & Sons, New
York, 1987.

Stahel, W. A., and A. Welsh. Robust estimation of variance components.
Technical report, ETH Zürich, Switzerland, 1992.

Terbeck, W., and P. L. Davies. Interactions and outliers in the two-way
analysis of variance. Annals of Statistics, 26:1279�1305, 1998.

Verdooren, L. R. On estimation of variance components. Statistica Neer-

landica, pages 83�106, 1980.

Wellmann, J. Robuste statistische Verfahren und Ausreiÿeridenti�kation beim
Modell der Einfachklassi�kation mit zufälligen E�ekten. PhD thesis,
Department of Statistics, University of Dortmund, 1994.

Wellmann, J. Robustness of an S-Estimator in the One-Way Random E�ects
Model. Biometrical Journal, 42(2):215�221, 2000.

A Approximation of critical values

The results for the critical values cE; cU , and cS are based on 10,000 simu-
lations for balanced designs with `;m = 3(1)12, 15(3)30, 
 = 0 , 1/10, 1/4,
1/3, 1/2, 2/3, 3/4, 1, 2, 4, 7, 10, � = 0 :01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15,
and 0.2. The averages and maxima of the absolute relative deviation of the
simulated critical values ĉ from the �tted curve ~c, de�ned as (jĉ� ~cj) =ĉ, are
tabulated too.
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Table 2: Approximation for cE(�; 
)

abs. rel. dev.

� ` m �E1 �E2 �E3 average max

0.01 even even 43.2945 0.2168 0.0983 0.013 0.050

odd 98.7835 0.0000 0.4675 0.063 0.272

odd even 66.7645 1.6639 5.2218 0.050 0.433

odd 149.7464 0.0000 0.0000 0.134 0.584

0.025 even even 28.7092 0.1976 0.0811 0.013 0.058

odd 67.3591 0.0841 1.3156 0.046 0.208

odd even 43.9021 0.4244 1.3694 0.030 0.269

odd 90.4922 2.3905 499517.3 0.072 0.376

0.05 even even 20.0756 0.1701 0.0826 0.013 0.062

odd 46.8162 0.1144 0.3953 0.035 0.156

odd even 29.2568 0.2408 0.4617 0.023 0.165

odd 59.8869 0.3051 6.7851 0.046 0.259

0.075 even even 15.1429 0.1546 0.0861 0.014 0.063

odd 35.7368 0.1304 0.2639 0.029 0.138

odd even 22.4798 0.1939 0.3233 0.021 0.123

odd 45.2405 0.1852 1.9774 0.035 0.208

0.1 even even 11.8195 0.1424 0.0923 0.015 0.070

odd 28.7363 0.1355 0.2151 0.025 0.126

odd even 18.0670 0.1693 0.2694 0.020 0.104

odd 36.2594 0.1606 0.9856 0.029 0.163

0.125 even even 9.4091 0.1316 0.1006 0.016 0.074

odd 23.9408 0.1339 0.2078 0.022 0.117

odd even 14.8461 0.1538 0.2436 0.020 0.096

odd 29.9873 0.1542 0.6556 0.025 0.141

0.15 even even 7.5064 0.1224 0.1103 0.016 0.076

odd 20.3330 0.1300 0.2105 0.020 0.108

odd even 12.3927 0.1397 0.2351 0.021 0.096

odd 25.3297 0.1469 0.5351 0.021 0.124

0.2 even even 4.5492 0.1062 0.1262 0.017 0.082

odd 14.5664 0.1227 0.2069 0.016 0.094

odd even 8.7006 0.1194 0.2333 0.021 0.091

odd 18.6299 0.1342 0.4301 0.017 0.097
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Table 3: Approximation for cU(�; 
)
abs. rel. dev.

� ` �U1 �U2 �U3 average max

0.01 even 22.1191 1.7531 -0.8739 0.019 0.143

odd 38.0453 2.5403 -1.0935 0.038 0.238

0.025 even 14.7482 0.9919 -0.8284 0.013 0.079

odd 19.1942 2.4546 -0.9435 0.023 0.176

0.05 even 11.5456 -0.2643 -0.8212 0.010 0.068

odd 10.9473 2.3549 -0.8344 0.016 0.144

0.075 even 11.5518 -1.9997 -0.8608 0.009 0.051

odd 7.6956 2.2635 -0.7732 0.012 0.094

0.1 even 13.4682 -4.3361 -0.9282 0.008 0.053

odd 5.8465 2.1881 -0.7278 0.010 0.099

0.125 even 21.6681 -8.2832 -1.0666 0.007 0.049

odd 4.6777 2.1073 -0.6938 0.010 0.103

0.15 even 44.9717 -13.7962 -1.2527 0.007 0.038

odd 3.8730 2.0134 -0.6676 0.009 0.082

0.2 even 45.0000 -19.4365 -1.2523 0.008 0.044

odd 2.8178 1.7854 -0.6282 0.008 0.075
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The model for cS was actually

cS(�; 
) = �S1 + x0

�
�S2;0`

(`+ �S3;0)(m+ �S4;0)

�
+ x1

�
�S2;1`

(`+ �S3;1)(m+ �S4;1)

�
;

with x0 = 1 for m even, x0 = 0 otherwise and x1 = 1 � x0. This results
in a unique parameter �S1 for both m odd and even and therefore a unique
asymptotic critical value for growing m. As a consequence the absolute
relative deviation can not be distinguished for odd and even m.

Table 4: Approximation for cS(�; 
)

abs. rel. dev.

� m �S1 �S2 �S3 �S4 average max

0.01
even

0.4477
15.8189 2.5456 0.1735

0.021 0.088
odd 15.3729 2.3991 -0.9559

0.025
even

0.4125
14.4887 3.1908 0.2629

0.020 0.077
odd 14.0051 3.0530 -0.9224

0.05
even

0.3832
13.5444 3.9216 0.3426

0.020 0.095
odd 12.9677 3.7308 -0.8865

0.075
even

0.3663
12.9185 4.4797 0.3627

0.019 0.096
odd 12.3486 4.2342 -0.8680

0.1
even

0.3532
12.4912 4.9454 0.3879

0.019 0.105
odd 11.9512 4.7216 -0.8481

0.125
even

0.3426
12.2155 5.4184 0.4213

0.019 0.112
odd 11.6554 5.1678 -0.8325

0.15
even

0.3336
11.9883 5.8711 0.4410

0.018 0.115
odd 11.4529 5.6309 -0.8162

0.2
even

0.3185
11.6439 6.6663 0.5010

0.019 0.129
odd 11.0477 6.4034 -0.7937
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