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Summary. In geostatistics, spatial data will be analysed that often come
from irregularly distributed sampling locations. Interest is in modelling
the data, i.e. estimating distributional parameters, and then to predict
the phenomenon under study at unobserved sites within the correspond-
ing sampling domain. The method of universal kriging for spatial pre-
diction was introduced to cover the problem of spatial trend e�ects. This
is done by incorporating linear trend models, e.g. polynomial functions
of the spatial co-ordinates. However, universal kriging is sensitive to
additive outliers. An outlier resistant method for spatial prediction is
median polish kriging. Both methods have certain advantages but also
some drawbacks. Here, universal kriging and median polish kriging will
be combined to the robust spatial prediction method called modi�ed
median polish kriging. An example illustrates the method of modi-
�ed median polish kriging along with piezometric-head data from the
Wolfcamp-Aquifer.
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1. INTRODUCTION

Geostatistics was developed to analyse geological and meteorological data in the

sixties (Cressie, 1990a). Now the �eld of applications for geostatistics has wide

spread to such diverse areas like Hydrogeology (Kitanidis, 1997), Biology (Ecker

and Heltshe, 1994), Pedometry (Burrough et al., 1994), and Epidemiology (Webster

et al., 1994) to name a few.



Especially in environmetrics the geostatistical methods for the analysis of spa-

tially continuous phenomena have become standard analytical tools. Many appli-

cations have been published in the literature, recent examples include the mapping

of PM10 exposure in the Pittsburgh region (Cressie, 2000), spatial prediction of

dynamic factor loadings from spatial time series of groundwater levels in the Trans-

danubian Mountains of Hungary (M�arkus et al., 1999), modelling and prediction of

acid deposition in Lower Saxony (Berke, 1999), and modelling the nitrogen pollu-

tion occurrence by nitrogen runo� into surface water in the Midwest and Northern

Plains region (Opsomer et al., 1999).

Kriging is the optimal geostatistical prediction method to interpolate and ex-

trapolate observed spatial data z(s) from regularly or irregularly located sample

sites s1; :::; sn within a certain survey area D. These data are modelled to be a par-

tial realisation from a spatial process or random �eld Z = fZ(s) : s 2 Dg . Kriging

is based on accurately estimating the spatial dependence structure. This is gener-

ally achieved using certain types of spatial structure models (i.e. the exponential

or spherical among other models) that will be �t to an estimated structure func-

tion (e.g. the semivariogram or covariogram). Then, the spatial dependence is used

to optimally weight the observations for predicting the phenomenon under study

at an unobserved site, say s. For mapping purposes, i.e. isopleth maps or three-

dimensional surface plots, the prediction location s will be moved over a collection

of knots forming a �ne grid over the survey area D.

However, estimation of the spatial dependence structure presumes that the

phenomenon under study is ergodic (Cressie, 1993, p. 53). Amongst others, the

mean structure must be constant over D. This is rarely the case in practical appli-

cations. So, generally some kind of trend elimination is used before estimation of the

spatial dependence structure. An exception is intrinsic random function modelling

(Matheron, 1973; Cressie, 1993, p. 299). This method is based on �ltering out the

spatial trend and is the spatial equivalent to integrated time series modelling (Box

and Jenkins, 1970). There are plenty non-parametric methods for smoothing or
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estimation and extraction of the spatial trend out of the data, e.g. splines (Wahba,

1990) or locally weighted regression (Cleveland and Devlin, 1988). The mainly used

geostatistical methods for detrending are the parametric method of trend surface

estimation and the non-parametric median polishing approach. These result in the

prediction methods of universal kriging (Matheron, 1969; Cressie, 1993, p. 151) and

median polish kriging (Cressie, 1986), respectively.

The advantages of kriging in predicting spatial data over competing methods,

such as spline smoothing, are given by theory and practice. Statistical theory states

that (under the condition that an adequate model is �t to the data) the universal

kriging predictions are optimal with respect to the squared loss function. On the

other hand, several comparative studies showed that universal kriging outperforms

other interpolators and never performs worse (Laslett, 1994; Brus et al., 1996).

Furthermore, unlike most of its competitors, kriging allows to quantify the

accuracy of the predictions by means of the mean squared prediction error. But,

the estimate of the mean squared prediction error relies on the estimate of the

structure function and, thus, on an accurate choice of the trend model.

The paper is outlined as follows. In Section 2, the spatial prediction methods

of universal kriging and median polish kriging are summarised and compared to

certain properties. Then, Section 3 outlines the method of modi�ed median polish

kriging. The piezometric-head data set of the Wolfcamp-Aquifer is analysed by use

of di�erent kriging methods in Section 4. The main ideas and results are brought

together and discussed in Section 5.

2. SPATIAL PREDICTION: KRIGING

There are many di�erent kriging methods depending on certain model assumptions.

For completeness, the methods of universal kriging (UK) and median polish kriging

(MPK) will be reviewed in this Section.

Behind the spatial analysis is an assumption that data Z = ( Z(s1); :::; Z(sn))0
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observed at known spatial locations fs1; :::; sng 2 D are a realisation from a spatial

process Z = fZ(s) : s 2 Dg that could be decomposed

Z(s) = �(s) + �(s); s 2 D: (1)

Here, �(�) denotes the large scale variation or deterministic spatial mean com-

ponent of the process, and �(�) is the small scale variation or stochastic residual

component that accounts for all the spatial dependence and random 
uctuations,

i.e.

E(Z(s)) = �(s);

E(�(s)) = 0 ;

Cov(�(s); �(u)) = �(s; u); s; u 2 D:

The decomposition of data into large and small scale variation is not unique and

depends on how much variation is attributed to the trend or the residual component.

For example, someone may have knowledge about the phenomenon under study

and wants to explain as much of the variation through the trend component �(�)

as possible. Someone else, on the other hand, follows the principle of parsimony

and prefers smaller or less complex models. The latter approach results in larger

residuals, but is allied with smaller statistical errors from unknown model parameter

estimations. In the end, the choice of the model to be �t to the data is subjective

and may be more important than the choice of the �tting algorithm.

For simple kriging (Cressie, 1993, p. 359), the large scale variation �(s) is

assumed to be known at any location s 2 D. This is, however, unlikely in practice,

so for UK the large scale variation is assumed to be an unknown linear combination

of known functions of exploratory variables �(s) =
Pp+1

j xj�1(s)�j�1. On the other

hand, MPK allows for an unknown and variable spatial mean as well. The mean is

not explained externally through exploratory variables but rather than by variation

of the data itself. This is done via a main e�ect and several row and column e�ects,

which will be introduced later in Section 2.2. Unlike UK, MPK is based on an outlier
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resistant estimation of the spatial trend. In addition, UK is statistically optimal but

operationally more di�cult than MPK.

Both methods give predictions that do not di�er drastically, but the mean

squared prediction errors do. Indeed, an important distinction between UK and

MPK is that in practise the MSPE for UK is estimated, whereas for MPK it is

approximated. Lastly, the frequently used polynomial trend models in UK are not


exible enough to model local characteristics of the mean function. On the other

hand, median polishing may result in an over �tting of the spatial mean function,

making the median polish surface rough, and, its arti�cial appearence can be visually

extracted from the prediction map, compare the Figures 2 and 3 latter in this article.

2.1 Universal Kriging

Matheron (1969) introduced UK to overcome the problem associated with spatially

predicting a process in
uenced by a trend. This is achieved by modelling the trend

via a linear combination of functions of explanatory variables associated with the

sampling locations s1; :::; sn and any prediction location s 2 D under study. Gener-

ally, the trend is given by low order polynomials in the spatial co-ordinates. However,

explanatory variables, other than the co-ordinates are often useful. See Cressie and

Majure (1997) for an example. For this purpose, the spatial process Z is modelled

by the two component model (1) with linear trend component

�(s) =
p+1X
j=1

xj�1(s)�j�1:

The covariogram �(h; �), where h measures the spatial translation between two

points in D, models the spatial dependence structure exhibited by the residual pro-

cess and is generally estimated by use of the semivariogram. To use the linear model

theory to receive the best linear unbiased predictor (BLUP), i.e. the UK predictor,

the spatial process Z = fZ(s) : s 2 Dg is put into the form of a spatial linear model.

The spatial linear model for the sample variable vector is of the form

Z = X� + �; � � N (0; �(�)); (2)
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whereX is an n�(p+1) matrix whose (i; j)th element is xj�1(si), � = ( �0; �1; :::; �p)0

is the unknown vector of trend parameters and � = ( �(s1); :::; �(sn))0 is the vector

of the residual process at the sampling locations. Furthermore, the spatial linear

model is assumed to hold for all sites s 2 D

Z(s) = x
0� + �; � � N (0; �2); (3)

where x is a p-vector of functions of the explanatory variables connected with site

s and � = �(s) is the corresponding residual with variance �2 determined from the

covariogram or the sill value of the semivariogram, respectively: �2 = �(0) = 
(1).

Within the setup of the spatial linear model (2) and (3), the trend surface

estimator is given by

b�(s) = x
0 b�; s 2 D;

based on the general least squares estimator of the unknown trend parameter

b� = ( X0��1
X)�1X0

�
�1
Z;

with � = �(�) denoting the covariance matrix of the sample vector based on know-

ledge of spatial structure parameter �. Then, the UK predictor is expressed by

bZuk(s) = x
0 b� + �0

�
�1(Z �Xb�); s 2 D;

where � = ( �(s� s1); :::; �(s� sn))0. The mean squared prediction error of the UK

predictor bZuk(s), also called kriging variance which depends only on the sampling

network con�guration and the spatial dependence structure, is given for any site

s 2 D by

MSPE(Z(s); bZuk(s)) = �2uk(s)

= �2 ��0
�

�1� + ( x�X
0
�

�1�)0(X0
�

�1
X)�1(x�X

0
�

�1�):

A special case of UK is called ordinary kriging (OK) and is concerned with spatial

prediction in the case of an unknown but constant spatial mean structure, i.e.

�(s) � �; s 2 D:
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OK is used in connection with the MPK approach that is reviewed in the following

subsection.

2.2 Median Polish Kriging

Cressie (1986) introduced the MPK method which is based on the median polish

approach for two-way tables (Tukey, 1977; Emerson and Hoaglin, 1983) to extract

a mean surface from spatial data and then to use OK for spatially predicting the

residual process. MPK is described in more detail in Cressie (1993), along with

applications to such di�erent types of data like regular or irregular distributed geo-

statistical data as well as regional count data. There are two advantages of MPK

over UK. Firstly, the mean component of model (1) is estimated by the outlier resis-

tant method of median polishing, which gives less biased residuals for estimating the

structure function (Cressie and Glonek, 1984). And secondly, the spatial structure

function, i.e. the variogram, is not assumed to be known a priori.

In this work, MPK with irregularly distributed geostatistical data is achieved

as follows. With respect to the network of sample sites de�ne a p � q rectangular

grid to be laid over the investigation area. Furthermore, the sample data Z(si); i =

1; :::; n, are allied to the closest grid knots skl; k = 1 ; :::; p; l= 1 ; :::; q, and the co-

ordinates of the sample sites si are converted to that of the corresponding gridlines

skl. For multiple data allied with a single grid knot, the data is replaced by an

appropriate summary, i.e. the median. Now, the edited sample data, say Y (skl),

have the structure of a two-way table and are suitable for median polishing.

Median polishing proceeds by repeated extraction of the row and column me-

dians until convergence, with respect to a stopping criterion to be chosen by the

investigator. A mathematical formulation of the median polish algorithm is given

in Cressie et al. (1990). For data fy(skl) : k = 1 ; :::; p; l= 1 ; ::; q; skl 2 Dg , the

median polish algorithm gives as an estimate of the mean component �y(�),

b�y(skl) = ba+ brk + bcl;
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where ba is an over all e�ect, brk is the kth row e�ect and bcl is the lth column e�ect.

After having obtained the median polish estimates of the spatial trend compo-

nent, then some kind of spatial inter- or extrapolation is needed to calculate mean

component estimates at the sampling locations as well as at desired prediction loca-

tions, i.e. grid knots of a �ne meshed regular lattice. Cressie (1986) proposes spline

smoothing for this purpose. Suppose an estimate is needed at location s = ( u; v) any-

where inside the region bounded by the grid lines, say s = ( u; v) with uk � u < uk+1

and vl � v < vl+1, where k 2 f 1; :::; p� 1g and l 2 f 1; :::; q� 1g. Then, the

interpolation of the spatial trend is given by splines

b�mp(s) = ba+ brk +
 

u� uk

uk+1 � uk

!
(brk+1 � brk) + bcl +

 
v � vl

vl+1 � vl

!
(bcl+1 � bcl):

For sites outside the region bounded by the grid lines, extrapolation of the spatial

trend estimates are needed. This is done by use of the following extrapolating

splines. For s = ( u; v) with u < u1 and v1 � vl � v < vl+1 � vq, calculate

b�mp(s) = ba+ brk +
 

u� uk

uk+1 � uk

!
(brk+1 � brk) + bc1 + �

v � v1

v2 � v1

�
(bc2 � bc1):

For s = ( u; v) with u1 � uk � u < uk+1 � up and v < v1, calculate

b�mp(s) = ba+ br1 + �
u� u1

u2 � u1

�
(br2 � br1) + bcl +

 
v � vl

vl+1 � vl

!
(bcl+1 � bcl):

For s = ( u; v) with u < u1 and v < v1, calculate

b�mp(s) = ba+ br1 + �
u� u1

u2 � u1

�
(br2 � br1) + bc1 + �

v � v1

v2 � v1

�
(bc2 � bc1):

Similar extrapolation formulas apply to the cases where u > up and/or v > vq.

Lastly, the MPK prediction is the sum of the median polish surface plus the

surface obtained from OK of the residual process �(s); s 2 D:

bZmpk(s) = b�mp(s) + b�ok(s);
where b�ok(s) = b�� + �0

��
�1

� (� � 1 b��); s 2 D
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� = Z� b�mp

are the OK predictions of the residual process and the estimated trend residuals,

respectively. Furthermore,

b�� = ( 1
0
�

�1

� 1)�110��1

� �

denotes the GLSE of the constant mean for the residual process �(�) based on the

spatially structured covariance matrix of the residual vector ��.

Lastly, the MSPE for the MPK preditctor is approximated by the MSPE of

the OK predictor for the residual process, i.e.:

MSPE(Z(s); bZmpk(s)) �MSPE(�(s); b�mpk(s))

= �2 � �0

��
�1

� �� + (1� �0

��
�1

� 1)(10��1

� 1)�1(1� �0

��
�1

� 1)0; s 2 D:

3. MODIFIED MEDIAN POLISH KRIGING

The method of modi�ed median polish kriging (MMPK) is a modi�cation of the

MPK method introduced by Cressie (1986) and outlined above. The modi�cation

is concerned with the estimation of the mean function, i.e. the mathematical spline

interpolation is replaced by the geostatistical approach of UK.

In MMPK, the spatial mean function �(�) is again estimated in a �rst step by

the median polish procedure

b�y(skl) = ba+ bck + brl;
where the estimation locations skl are the grid knots of the two-way table layout

connected with the network of sample sites, and the index Y is used to indicate

the case where multiple data are connected to the same grid knot and hence, are

replaced by the corresponding median.

These mean estimates b�y(skl) give a low resolution map of the mean function.

To predict the phenomenon under study to unobserved sites, a high resolution map

based on a much �ner grid is needed. Therefore, some kind of interpolation technique
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is needed in a second step to produce a high resolution map from the low resolution

map. In MPK, this is done by use of (extra- and) interpolating splines of degree 1.

The modi�cation proposed here is to just use UK instead. This gives a smooth and

robust estimate of the mean function b�mmp(s) at any location s in the investigation

area D. This is due to the fact that spline technology is built for surfaces that are

"deterministic" or "deterministic plus white noise" (Cressie, 1990b), but from model

(1), it is clear that the residual component is spatially correlated. Therefore, kriging

will be superior to splining in this case.

Doing this improves the UK and MPK methods as follows:

� The mean function has a parametric interpretation alike to UK but unlike

MPK, which is a useful feature for example in spatiotemporal modelling ap-

proaches (Berke, 1998).

� The mean function is smoother than with the original MPK approach, because

it avoids the arti�cial angular shape of the estimated mean surface and the

prediction surface but retains its local 
exibility which outperforms low order

polynomial trend surfaces used with UK.

� The mean function is an outlier resistant algorithm alike to MPK, since it is

based on the median polish estimates of �(�) at the low resolution grid knots.

If the structure function is modelled without nugget e�ect, the trend surface

estimates from MPK are equal to the MMPK estimates at the low resolution

grid knots, since UK is an exact interpolation method in this case.

� In contrast to UK, the MMPK approach avoids problems arising in connection

with poor network design, i.e. sampling sites that are bad leverage points

(Martin, 1992).

After the short explanation of the modi�cation of MPK to MMPK and the

resulting bene�ts, the method of MMPK is now outlined step by step.
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Firstly, median polish the data. Therefore, de�ne a grid G with possibly un-

equal spacings to which the sample variables Z = ( Z(s1); :::; Z(sn))0 are connected.

For regular networks, the grid is given in a natural way. For irregular networks,

the resolution of the grid and the grid orientation are choices to be made. Cressie

(1993, p. 193) recommends to maintain the same co-ordinate directions as the orig-

inal map and to use a grid with approximately one observation per grid knot if

possible. However, one should avoid empty cells in the two-way table and take care

of anisotropical behaviour of the phenomenon. If there is more than one observation

per grid knot, calculate the median of this data and use the medians along with the

median polish algorithm. This means, the sample Z(si); i = 1 ; :::; n, will be replaced

by Y (skl); k = 1 ; :::; p; l= 1 ; :::; q. Next, choose a stopping criterion for median pol-

ishing. Perform median polish to receive the overall, row and column e�ects. Check

whether the residuals contain cross-product trend, i.e. row and column interaction.

Calculate the mean e�ects at the grid knots, i.e.

b�y(skl) = ba+ brk + bcl; skl 2 G

Secondly, predict the median polish estimates by UK onto a �ne grid. For this,

take median polish estimates as new observations and calculate the corresponding

spatial structure model (for example a semivariogram 
y(h; �)). Now, choose a �ne

meshed grid M, �ne enough for the mapping purposes. Identify an appropriate

linear trend model E(Y (s)) = X�y and perform UK with the identi�ed trend model

X�y and structure model 
y(h; b�y) for each grid knot of the �ne grid M. The UK

predictions, fby(s) : s 2 Mg = fb�mmp(s) : s 2 Mg , now de�ne the smoothed spatial

trend of the originally sampled process Z from the MMPK approach.

Thirdly, calculate the trend residuals for further analysis. Predict the trend

surface at the sampling locations, i.e. calculate (b�mmp(s1); :::; b�mmp(sn))0, and then

take the di�erences (z(s1)� b�mmp(s1); :::; z(sn)� b�mmp(sn))0 to receive the residual

vector (b�(s1); :::; b�(sn))0.
Fourthly, investigate the spatial dependence structure in the residuals. Fit an
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appropriate structure function (e.g. �t a semivariogrammodel 
�(h; b��)) and use this
for OK of the residual process along with the �ne grid M of prediction locations:

fb�ok(s) : s 2 Mg .

Fifthly, sum up the predictions of the trend and residual processes to receive a

prediction of the original phenomenon bZmmpk(s) = b�mmp(s) + b�ok(s), where s 2 M .

These predictions may then be used for mapping.

Finally, approximate the mean squared prediction error by

EMSPE(Z(s); bZmmpk(s)) = EMSPE(�(s); b�ok(s));
where EMSPE(�(s); b�ok(s)) is the estimated or empirical mean squared predic-

tion error connected with OK of the residual process, similar to the original MPK

approach.

4. APPLICATION: THE WOLFCAMP-AQUIFER DATA

When the Wolfcamp-Aquifer data were collected, there was an interest in a potential

high-level nuclear-waste site in Texas. For this reason, the directions of groundwater


ow were investigated. The data were reported and geostatistically analysed in

Harper and Furr (1986) and Cressie (1989, 1993). The data show a clear downwards

trend from south-west to north-east. Harper and Furr (1986) modelled this trend

by use of a linear trend surface, whereas Cressie (1993) used the median polish

approach. Another geostatistical approach is reported in Cressie (1989), where the

power model for the structure function is used to �lter out the trend using intrinsic

random function kriging. In Figure 1, the spatial sampling network is presented. The

dashed lines correspond to the low resolution grid to be used for median polishing

in this work and the dotted lines indicate the border of the cells which belong to

the grid knots. Thus, one can easily identify the rows and columns used along

with median polishing. An open circle around one of the sampling locations at the

western border of the investigation area indicates site 78 which is of interest in the

following.
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By use of the Wolfcamp-Aquifer data, the three spatial prediction methods

UK, MPK and MMPK will be compared. At �rst, some speci�cs to the mod-

elling approaches are given followed by visual display of the trend surfaces, the

prediction surfaces, the error maps and normal probability plots for standardised

cross-validation residuals.

A �rst order polynomial trend model is chosen for UK. For MPK, an equally

spaced 7 � 6 low resolution grid is used. In MMPK, the same grid was used in

the �rst step followed by �tting a �rst order trend polynomial to the median polish

estimates. In all cases, isotropic spherical structure models are estimated by use of

the robust semivariogram estimator (Cressie and Hawkins, 1980).

The Figures 2a, 2b and 2c show the resulting trend surfaces for UK, MPK and

MMPK, respectively. With respect to the problem under consideration, i.e. ground-

water level modelling and prediction, one might expect that the mean function of

the spatial distribution somehow follows the elevation of the earth surface. Thus,

the planar or angular surfaces in Figure 2a and 2b look arti�cial whilst Figure 2c

shows a more realistic �t obtained by the modi�ed median polish approach. Fur-

thermore, unlike median polishing or low order polynomial trend surface modelling,

the modi�ed median polish approach in Figure 2c shows the property of smooth

interpolation combined with high local 
exibility.

The spatial prediction maps resulting from UK, MPK and MMPK are given in

Figures 3a, 3b and 3c. The UK and MMPK prediction maps are extremely similar.

The map resulting from OK lets the map reader identify the underlying median

polish �t, i.e. the arti�cial angular behaviour of the median polish surface is still

visible in the prediction map.

The error maps corresponding to the three spatial prediction methods are

given by Figures 4a, 4b and 4c. Again, the results from UK and MMPK are visually

equivalent. Although the errors from OK are in contrast much smaller, the MSPE

from OK are known to be underestimated.

For comparison of the three �tted models, the following Figures 5a, 5b and 5c
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show normal probability plots of internally standardised cross-validation residuals

resulting from each of the three spatial prediction methods UK, MPK and MMPK,

respectively. The term "internally" standardised is used because the cross-validation

residuals,

b"int
�i =

Z(si)� bZ int(s�i)b�(si) ;

are standardised by the �tted model b� and b� based on the whole sample Z including

Z(si), whereas bZ int(s�i) denotes the cross-validation predictor p(Z(si)jZ�i; b�; b�) of
Z(si) based on the reduced sample information Z�i = ( :::; Z(si�1); Z(si+1); :::)0.

Furthermore, b�(si) denotes the root mean squared prediction error estimated from

the whole sample information Z and based on b�. What is seen in Figure 5 is that

all three spatial models give an excellent �t to the data. Furthermore, the data are

Gaussian and are not contaminated by additive outliers. Therefore, it is preferable

to use the BLUP method, i.e. UK. The robust methods MPK and MMPK are of no

value in this situation.

To gain more insight, an error of 300 is added to the observation at site No.

78 to introduce an outlier:

eZ(s78) = Z(s78) + 300 = 3571 + 300 = 3871:

Sample site No. 78 is indicated in Figure 1 by an open-circle around the site locating

bullet. The normal probabilty plots of internally standardised cross-validation resid-

uals based on the outlier contaminated sample eZ = ( Z(s1); :::; eZ(s78); :::; Z(sn))0 for
all three methods UK, MPK and MMPK are shown in Figure 6. It follows that the

single outlier has no e�ect on the predictions from MPK and MMPK but on the UK

predictions.

Lastly, the model �tting procedures will be compared using normal probability

plots of the externally standardised cross-validation residuals

b"ext
�i =

Z(si)� bZext(s�i)b�(si) :

Here, the term "externally" standardised is used to indicate that the mean vector

at the prediction site and the rest of the sample sites is now externally speci�ed
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from eZ�i, i.e. the sample information without Z(si): b��i; and
bZext(s�i) denotes the

cross-validation predictor p(Z(si)jeZ�i; b��i;
b�) of Z(si).

The outlier can be easily identi�ed from Figure 6a for the modelling approach

used along with UK. The same holds for the robust methods of MPK and MMPK,

but now the outlier is smaller. Nevertheless, an additional negative outlier could be

detected from Figure 6b and 6c. This is due to the fact that the �rst column e�ect

in median polishing is externally estimated based on just one of two observations,

including the outlier sample eZ(s78). Thus, the column e�ect is both overestimated

and underestimated one time each. If the outlier would be introduced at an other

site, i.e. where the sampling in the rows and columns is more dense, the residuals

will be considerably downweighted by median polishing.

5. DISCUSSION

The aim of this work is to present a new method for geostatistical prediction called

modi�ed median polish prediction (MMPK) and to demonstrate its performance in

comparison to median polish kriging (MPK). The comparison with universal kriging

(UK) is presented mainly to show the results from the (perhaps) best or optimal

prediction method for the Wolfcamp-Aquifer data, in the case of no outliers. And,

unlike MPK, UK and MMPK result in visually equal prediction and error maps.

However, when outliers occur in the given data set, MPK is recommended over UK

but MMPK may be an even better choice for the purpose of spatial prediction.

So, the MPK and the MMPKmethods are compared with respect to the results

from UK. This is to distinguish from a comparison of all three prediction algorithms

used along with certain trend models. Here, UK is based on the linear polynomial

trend model, whereas MPK and MMPK start with a linear trend model given by

trend = all e�ect + row e�ects + column e�ects:
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It is possible to use this trend model along with UK as well. For this de�ne

�(s) = �0 +
pX

k=1

rk(s)�k +
qX

l=1

cl(s)�l; s 2 D

where �0 is the all e�ect, �k; k = 1 ; :::; p, are the row e�ects and�l; l = 1 ; :::; q, are

the column e�ects. Furthermore, rk(s), k = 1 ; :::; p, andcl(s), l = 1 ; :::; q, denote

indicator variables with rk(s) = 1 if s 2 D is a site in the k-th row and 0 otherwise,

and cl(s) for the columns respectively. This gives surely a more 
exible trend model

for UK (see e.g. Cressie and Majure, 1997, for an example) and is similar to the mean

polish approach followed by OK described in Cressie (1993, p. 187). Nevertheless,

the polynomial trend model is more parsimonious and hence preferred, to show what

may be the unknown truth in this application.

The proposed modi�cation of MPK is simply the replacement of the spline

interpolation step with an UK step. This is done to smooth the resulting trend sur-

face and prediction map. Another possibility would be to use higher order splines

instead of splines of degree 1 in MPK. This would considerably smooth the median

polish surface. However, here, the statistical optimal smoothing method, i.e. UK,

is preferred. This is due to the fact that UK is the appropriate technique to inter-

polate spatially correlated data. Nonetheless, there are similarities between spline

interpolation and kriging, which is largely debated in the literature (Cressie, 1990b;

Laslett, 1994; Kent and Mardia, 1994).

Another possibility to interpolate the median polish estimates is to use the

traditional geostatistical approach of trend surface estimation. However, the use

of UK is adopted here for the following reasons. Firstly, the aim is to interpolate

the estimated mean values from median polishing and not to re-estimate the spatial

mean function from previously obtained estimates. Secondly, trend surfaces are too

smooth to allow for local 
exibility in the mean surface. And lastly, UK may result

in a direct interpolation of the median polish estimates if the corresponding structure

function does not contain a nugget e�ect, i.e. b�y(skl) = b�mmp(s); s = skl 2 G.

The main advantage of MMPK is the robust �t of the smooth and 
exible trend
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surface. But, this is achieved at the expense of an additional variogram modelling

step. Furthermore, in the present example, the error map from MMPK is close to

the one from UK, whereas the error map from MPK is biased downwards. The

reasons for this have not yet been investigated.
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Figure 1. Map of the Wolfcamp-Aquifer sampling network.
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Figure 2. Trend surfaces from UK, MPK and MMPK.
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Figure 3. Prediction surfaces from UK, MPK and MMPK.
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Figure 4. Error maps from UK, MPK and MMPK.
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Figure 5. Normal probability plots for internally standardised

cross-validation residuals from UK, MPK and MMPK.
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Figure 6. Normal probability plots for internally standardised cross-validation

residuals from UK, MPK and MMPK based on the mean shift outlier data.
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Figure 7. Normal probability plots for externally standardised cross-validation

residuals from UK, MPK and MMPK based on the mean shift outlier data.
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