A simulation study on the choice

of transformations in TAGUCHI experiments

M. ERDBRUGGE AND J. KUNERT

University of Dortmund, Department of Statistics,
Vogelpothsweg 87, D-44221, Germany
{Erdbruegge, Kunert}@statistik.uni-dortmund.de

Abstract

In this paper we examine two widely used methods to obtain a transformation in
TAGUCHI experiments, namely the lambda plot and the beta technique. We consider
different situations with contrasts influencing the mean and / or the variance of the
response. Our simulation study reveals that the variation of the §-Method proposed
by KUNERT AND LEHMKUHL (1998) is a good compromise in terms of meeting the

confidence level and identifying active effects.
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1 Introduction

In many technical applications, off-line process control, i. e. design of experiments, is used
in order to optimize processes. TAGUCHI (1986) suggests product array designs, which
carry out an outer array (variation of noise factors) for every design factor combination
of the design, also called inner array. The aim is to determine factor combinations which
lead to a production on target while minimizing the variance of the response. TAGUCHI
(1986) distinguishes among “dispersion effects”, i.e. factors that influence the variance,
“location effects”, i.e. factors that influence the mean, and those which neither effect the
mean nor the variance of the response. Effects influencing the mean but not the variance

are called “adjustment effects”.

Usually a data transformation is carried out to achieve maximum simplicity of the model

and to meet the assumptions of parsimony and separation. This means we want to



identify only a few factors (possibly none) with dispersion effects and a larger number of
factors with location effects on the transformed response. TAGUCHI methods seek for a

transformation accomplishing these assumptions.

We assume a data transformation belonging to the family of so-called Box-Cox-

transformations (compare Box AND CoOX, 1964) which is usually used in this situation

A
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T/\(yij) = (1)
In(y;;) : A=0,
where y;; is assumed to be positive, © = 1 ,... ,ndenotes the design point and j =
1,...,m the replication or the design point of the inner array, respectively.

If A* denotes the true underlying transformation parameter, then 23, = Ty« (y;) is assumed

to follow the underlying model

*
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(compare e. g. the discussion contribution of NAIR AND PREGIBON to the article by
Box, 1988), where k = kP + k! with kP denoting the number of design factors and k!
the number of considered factor interaction contrasts. In this equation the design factors
T1,...,rEp as well as the factor interactions yp,4,..., 7, are assumed to take the two

levels —1 (low level) and +1 (high level).

If the transformation parameter A* is known, model (2) can be used to estimate location
and dispersion effects. Without loss of generality we assume the first s factors to be
factors with dispersion effects. We expect s, the number of dispersion effects, to be very
small, i. e. zero to two. For s = 0, the model simplifies to a linear model with an additive
error term. Furthermore we do not expect all factors to influence the mean, therefore
some of the o, , p=1,..., kare likely to be zero. The number of adjustment effects will
. We

be denoted by r and can then be determined by r = |{@, : a, #0,p > s b1 &

assume r > s unless both are zero.

When using model (2) and for k = kP, an appropriate design would be a screening design
which is not used to optimize the process but to determine the most important variables
among the design factors. If k' > 0, a design to model the process could be used, e.g. a

response surface design.



In the case of unknown transformation parameter A*, this parameter needs to be esti-
mated first. For this situation Box (1988) developed the A-Plot, which is a graphical
method used to achieve an appropriate data transformation. GRIZE (1991) extended the
procedure to unreplicated designs by adapting the variance estimation for the coefficients.
A description of the A\-Plot procedure and different variance estimation methods follows

in Section 2.

On the other hand the mean-variance-plot (compare e.g. Box, HUNTER AND HUNTER,
1978) has been used for TAGUCHI experiments by LOGOTHETIS (1990) resulting in the
f-Method. A generalization suggested by ENGEL (1992), which as well as the original
B-Method possibly leads to inconsistent estimates for the transformation parameter \*,
has been adapted to model (2) by KUNERT AND LEHMKUHL (1998). Section 3 introduces
the original 3-Method by LOGOTHETIS and the generalized version by KUNERT AND
LEHMKUHL.

In Section 4 the simulation study used to compare both methods is described. Section 5

contains a summary of the results, conclusions and further discussion.

2  Description of the A-Plot

To use the A-Plot as a graphical tool, we need to compute two sequences containing the
estimated influences of all the design factors and considered interactions on the mean
and standard deviation of the transformed response. Additionally, an estimate for the
variance of the effects is calculated for each value of A in order to standardize the estimated
effects and obtain t-statistics. Two separate graphics for location and dispersion effects
are created where a curve of these ¢-values is plotted against A\ for each design factor or

interaction.

The standard deviation of the coefficient estimates can be estimated as proposed by Box
(1988). If model (2) is fitted for every value of A, we get

k
E(ZZJ) = CYO+ZOépZL‘p,

p=1

Var (zj) =0 <H7 ) < In Var(zij):annLqulnvq. (3)
q=1



To analyze the means we use a simplification of (2) that neglects the presence of dispersion

effects
(Z1,.. ., %) = (L,a,...,0x) a(A) +e, e ~N(0,01),

where 1= (1,... 1), @i = (&1, ,2in)s @A) = (ag(N\), a1 (\), ... ,ax(N)" and o7 =
%2. If the design is orthogonal, with (1,z1,...,zx) (1, 21,... ,2%) = nI , the parameter

vector a (A\) can then be estimated by

~ 1 _ _
O!()\) = ﬁ (1,ZU1,... 7xk)l(zla"' 7Zn), .

(4)

The corresponding covariance matrix for this estimate is

~ 1 - B
Cov[a(A)] = ﬁ(l,xl,... cap) Covl(z1,...,2,)" | (L4, ... )
= ﬁ(laxla---yxk),EUZI(l,xl,...,xk)
L,
= —o°1.
e (5)

It can be estimated by

1 =
COU[&(A)]:%SZZI,

where S? denotes the within-runs sums of squares based on n(m — 1) degrees of freedom

n m

2L zij — 7)°
Sz_n(m_l)ZZ(lj 1)'

i=1 j=1
The vector of t-values for the location effects can then be computed by

) =Y a0, (6)

The estimation of dispersion effects is based on equation (3). To estimate In v,, ¢ =

1,...,s, we use the following model

(InS,,...,InS, ) =(1,4,...,74) Iny(\) +ea, ey~ N(0,051)

for the logarithm of standard deviations for n design points, where Invy(\) =
(Ino(X), Invyi(A), ... ,lnyk()\))' and most of the entries In~vy;(A),...,In(A\) are as-

sumed to be zero. The vector In~v (\) can be estimated by

— 1
Iny(\) = - (L,z1,...,2)(InS,,,... ,InS, ) . (7)



To achieve the variance of this estimate, we need to compute the variance of In.S first.
It is well known that Var(S?) = 20*/(m — 1), because (m — 1) S?/o? ~ X2, , and
therefore by using the delta method

Var f(Y) ~ [f(EY)] VarY, (8)

for Y = 52, we get

4
Var(InS) = [T?SQ)} Var (S?) = ﬁ
The covariance matrix of In~y (A) then becomes
Cov [ITIT}/()\)] R~ %(l,xl,... , o) Cov[(InS,,,...,InS, )] (L, a4,...,xx)
= %(l,xl,... , o) =1 I (1,2q,...,7)
- 2n(nlb_1)1’ ®)

compare Box (1988). Therefore the vector of ¢-values for dispersion effects can be com-

puted according to

55\ =+/2n(m—1) Iny()). (10)

To identify active effects for a given value of A, we test the hypotheses

Ho o max [E(t(V),) =0 vs.  Ha: max [E(t()),)]>0

p=1,....,k p=1,...,
and  Hpg: IIllan|E(tD()\)p)|:0 vs.  Happ: nllaxk|E(tD()\)p)| >0.
b=1,..., p=1,...,
Assuming Hy := “Hy; and Hyy, both hold”, the vectors of t-values for location and

dispersion effects given in (6) and (10) are both approximately multivariate standard

normal. Heading for a confidence level CL, the critical value ¢; can then be achieved by
Py, < Ir%axk|tB°X()\)p| > 01> < 1- CL
p: LA

1+\*”/CL>

:>Clzq)1< 5

Factors or interactions with corresponding values exceeding the critical value are called

active effects. If more than one effect is present, this proceeding is conservative!

Not only in unreplicated experimental designs, but also in replicated situations the stan-

dard deviation estimator can also be based on the estimated factor and interaction effects



as done for the scaled A\-Plot introduced by GRIZE (1991). Again assuming H, := “Hy,;
and Hy, both hold”, we get for a () and In~y (A) given in (4) and (7):

1
a(\) ~ N(o,—aﬂ)
n
— a . ]_
and Iny()) A N(o,—(fgI), if n>1.
n

Median-based variance estimation by

3
r =t (|8,0])
3 , —
nd sop = g uelian, ([, 00])

will be approximately unbiased because
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This leads to vectors of t-values

(A = (11)
S0,L
Iny (A

and ) = Y (12)
S0,D

When using these t-values, critical values ¢y for testing both hypotheses (Ho; and Hps)
can be achieved by numerical approximation. This has been done by KNUTH (1994),

selected values are given in Table A.1.

The estimators s¢ 1, and sy p can be used even under the alternative of active effects as long
as the parsimony assumption holds, i.e. most of the coefficients @, (\) and ITIT}/I, (A), p=
1,...,k, have expectation zero. But clearly in this case the variance estimation increases

and will not be unbiased.

The median-based variance estimation has been improved by several authors. LENTH
(1989) also suggested the pseudo standard error (PSE) which is defined as follows

3
PSE; = = median ( ‘ ap()\)D
2 Jap() <258
=17...,k
3 —
and PSEp = 2 median ‘ Invy, () D :

‘EEP ) ‘ <2550
k

yeee



The results of the A-Plot using the estimators suggested by Box (1988) and the PSE
suggested by LENTH (1989) has been compared for some known examples by GRIZE
(1991).

Another possibility of estimating the variance has been proposed by DoNG (1993). These

estimators are again based on sy and defined by

1.08
. ~ 9
S1,L - E Qp

|ap|<2.56 59 1,
p=1,....k

1.08 —
and s1p = —_— g Invy,?,
mp
|mp|52.5630’L,
p=1,....k

with

— ‘{@p Dy <256 80,1 }pt,.

and mp = ‘{EIT}/I): mp§2.56507D}p:1,,,,,k ,

respectively. The estimators given here, slightly differ from the ones proposed by DonG
(1993), see KUNERT (1997).

The t-values therefore will be computed by

o= SO (13)
e Iy ()
and 0 = et (14)

Simple critical values for identifying location and dispersion effects can be achieved by the
( [1 + CL 1/"] /2) -100 % Quantile of the t-distribution with 0.69-% degrees of freedom
(for motivation of df, compare KUNERT, 1997).

In this study we use the estimators suggested by Box and DONG as well as the

Median-based estimators sg z, and sg p.

When using the A-Plot procedure in practice, one decides by eye which transformation
to choose. Usually a simple transformation like the logarithm (A = 0), the square root

(A =.5) or the reciprocal (A = —1) is used, as long as one of these leads to possibly none



active dispersion effect and a few location effects. For the simulation study and especially
to permit the comparison with the 3-Method, the A-Plot procedure needs to be formalized.
The formalization scheme used in our study has been suggested by LEHMKUHL (1998).

First the values of A that do not lead to any active dispersion effect are considered
(Step 1.0) and ordered by the size of the sum of unsigned dispersion effect estimates.
The first transformation which identifies active location effects, is chosen (Step 2). If
there is no transformation to meet these criterions, we take step by step all values for
A which lead to one or more dispersion effects, into account (Step 1.1 to Step 1.k-1).
Then the order of consideration depends on the t-value of the smallest active dispersion
effect, which will be maximized. This procedure also ends as soon as a transformation
is found that leads to at least one location effect (again Step 2). If the A-Plot does not
suggest a transformation, the conclusion would be to use the original data and check only
for dispersion effects. The formalized procedure is explained more precisely by the flow

chart in Figure A.1.

Because the A-Plot uses a sequence of transformations (i. e. more than one value for A) and
especially seeks for active location effects, we expect this procedure to identify location

effects in more than (1 — CL) - 100 % of experiments without active effects.

3  Description of the 3-Method

The 3-Method as described by LOGOTHETIS (1990) uses a different viewpoint and leads
to another procedure for the choice of transformation, but again corresponds to the model

assumptions made in Section 1.

LOGOTHETIS (1990) considers the situation where a functional relationship between the
mean /i, and the standard deviation o, of the untransformed response of the following

kind can be assumed

Oy = g(uy) :

Now the aim is to find a transformation 7, that leads to a constant variance, say

Var T, (y) = ¢ The delta method (8) yields to the rough approximation

Var (T.(y) ~ [T.(E )] Var (y),

c

8



which can be used to determine an appropriate data transformation:

: 2 Var (Tly) ¢
NE (Hy)] ~ Var (y) - g(uy)Z

= T.(y) = /T;y)du.

If we assume a special kind of functional relationship, namely

oy = g(iy) =0 1y, (15)

then the transformation attained by this procedure will be proportional to the Box-Cox-

transformation stated in equation (1),

c 1-8 .
T M SR
T, ()~ { 01=0)"7 x T (1) |
5 In(py) > p=1

with A =1 — 3 (compare also Box, HUNTER AND HUNTER, 1978).

This motivates another common way to identify an appropriate data transformation based
on the estimation of the parameter 3 using equation (15). By taking the logarithm we

get
Ino, =Ind + 3 1np,
and fit the linear model
In(S,)=Ind+ B In(y)+es, ez~ (0,031), (16)

with S, = (§,,...,5,,) and § = (G1,... , n) -

ENGEL (1992), however, pointed out that this procedure leads to inconsistent estimates

if dispersion effects are present. In this case, equation (15) can be extended to
S
oy zéug qu:rq,
q=1
which leads to an analysis of covariance model with In (7) being the covariate

In(S,) =Ino+p ln(gj)+2qunuq+e4, ey ~ (0,031) .

q=1

We expect the number of dispersion effects to be at most two, according to the parsimony

assumption. For the case s =1, the appropriate model becomes
In(S,) =Iné 4+ B9 In(§) + x, Invy +es, e5~ N(0,02). (17)

9



This model is fitted for each x;, ¢ = 1 ,...,k The factor or interaction accomplishing
the largest measure of fit R? is denoted by z,. The use of the model containing -
implies the consideration of the factor or interaction with the largest estimated effect on
the variability. Therefore the estimation of 3 also depends on ¢*, which is indicated by the
notation 37" (compare KUNERT AND LEHMKUHL, 1998). We do not extend the model

to s = 2 here.

If a data transformation is needed, usually a plot of the logarithm of the mean responses
versus the logarithm of the standard deviations for every design factor combination is
drawn. The so-called mean-variance-plot can give visual help in deciding which of the
models (16) and (17) to use, or whether even a model considering more than one dispersion
effect is needed. If there is no active dispersion effect, the points are approximately falling

on a straight line with slope =1 — A. No transformation is necessary if 3 = 0.

It is also possible to estimate s, the number of dispersion effects. LEHMKUHL (1998)
presents a formalized stepwise procedure for determining factors or interactions that effect
the variability when using the 3-Method. In this study we only consider the two models

addressed above, where s is equal to zero or one.

Once the parameter [ has been estimated, the estimate for the transformation parameter
A will be determined by A=1 —B or A=1 —B(q*). The data transformation is carried out
according to the chosen value and the transformed data is examined relative to dispersion
and location effects among the factors and considered interactions. Again, critical values
are depending on the variance estimation method used to standardize the factor effects. To
attain comparable results, we use the Median-based estimators (¢-values given in equation
(11) and (12)), the estimator proposed by DoNG (1993, compare equations (13) and (14)),
as well as the estimators used by Box (1988, compare (6) and (10)).

4 Design of the Simulation study

A simulation study has been done to compare the two procedures A-Plot and 3-Method
specified in sections 2 and 3. In particular we focus on the case where neither dispersion
nor location effects are present, to see whether the methods introduce artificial signif-

icances, i.e. we have random data following the normal distribution. In addition we

10



examine a smaller number of data sets with effects on the mean and variance of the

outcome. The seven scenarios that will be considered, are summarized in Table 1.

Table 1: Number of contrasts influencing the mean and variation of the outcome - Exam-
ined scenarios

Dispersion Effects (DE)
Location Effects (LE)
Adjustment Effects

o O O
— = O
w Ww O w
Ot Ot O | W=~
N W = | Ot
=~ Ot = | O
w Ot N

The design used for our simulation study is a 16-run fractional factorial design with 15
factors on two levels each, namely a 2>~ design. No noise factor array (outer array) has
been carried out, but the estimation of location and dispersion effects is based on four

replicates for every design factor combination.

Values for the observed response y;; are sampled from a normal distribution with mean 10
and variance 1 to achieve only positive outcomes, i. e. y;; ~ N(10, 1), with 1 <4 < 16 and
1 < j < 4. Consequently A is set to 1 in equation (1), which implies no transformation.
Thus the underlying model for scenario 1 where neither dispersion nor location effects are

present, is given by
Z;kj = T)\* (ylﬂ) = Yij — 1 =9+ €ij, with €ij ~ N(O, 1) 5

compare equation (2).

For the remaining six situations mentioned above, the data sets are simulated as follows:
We assume that every factor with a dispersion effect will also influence the mean of the
outcome. In order to attain comparable results, the transformation parameter \* is again

set to 1 and ap = 9.

Comparing equations (5) and (9), the coefficients «q,...,qr and Ilnvy,... Invy, can
be estimated with variance 1/64 or approximately 1/96, respectively. The values «;
used in the simulation study for factors assumed to have location effects, are chosen to
start at five times the standard deviation of the estimate, increasing by one standard
deviation for each additional effect. In analogy, values for In-~; will be taken as multiples
of \/% ~ 1/10. Furthermore, factors with dispersion effects are randomly selected

among the factors with location effects.

11



As an example, the model for the fifth scenario, i.e. one dispersion effect which also
influences the mean and two additional adjustment effects (compare Table 1), is given
below:

0D 1 e D e {1}
Z.. = — — - — X _.xra ei’)
i g 1T T g TR J

where e;; ~ N(0,1) and x,, € { 4, %2, x5} is chosen at random.

10000 runs are simulated for the first scenario and 5000 runs for each of the scenarios two
to seven. A total of 13 of these data sets has been replaced because of negative entries, but
this will not change the results by much. For every data set the transformation parameter

A is estimated according to the A\-Plot procedures and the two versions of the 3-Method.

As a basis to test for active effects, three ways to estimate the variance of the coefficients
have been presented in Section 2. The formalized A\-Plot procedure is carried out at 37
equidistanced points between -8 and 10 to estimate A, compare Figure A.1. In general,
different variance estimation methods do not yield the same estimate for the transfor-
mation parameter. On the other hand the transformation parameter achieved by using
the 8-Method does not depend on the variance estimation used. But the original version
assuming the model stated in equation (16) and the improved procedure that assumes

one dispersion effect as described in model equation (17) will lead to different results.

After the choice of transformation, vectors of t-values for dispersion and location effects are
computed and active effects are determined to the confidence level CL= 0.95. To allow
further comparison, we also compute the resulting vectors for the true transformation

parameter A\* = 1.

We expect the original 3-Method to meet the given confidence level for both, dispersion
and location effects, while the assumption of one dispersion effect in advance (s=1) could
possibly lead to a higher proportion of identified dispersion effects. As mentioned earlier,
the A-Plot on the contrary is anticipated to identify more location effects because of the

used formalization scheme.

We will see that there are great differences in proportions of identified effects, depending

on the method and the variance estimators used.
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5 Simulation Results

In this section the results of the simulation study are summarized. It is divided into
three subsections that deal with the estimation of the transformation parameter \ (sec-
tion 5.1), the percentage of contrasts identified to effect the mean or variation of the
outcome (section 5.2) and some additional remarks, explanations and recommendations

(section 5.3).

5.1 Estimation of \

First we focus on the transformation parameter A that indicates the transformation chosen
by each of the procedures. The (3-Method on one hand always suggests transformation
parameters, but these are not restricted to a certain range. The results of the A\-Plot
procedures on the other hand depend on the considered A-sequence which is presumed
to contain the 'real’ transformation parameter. Therefore the A-sequence needed for the
15 1oL, 19

A-Plot procedure has been chosen as {—8, —2 ' 5 o

SN 10} in accordance

to the range of values achieved by the #-Method in former simulations.

Histograms are drawn to visualize the empirical distributions for transformation param-
eter estimations suggested by each of the methods. Density estimations are added where
suitable (dark: density of normal distribution with estimated parameters, bright: density

estimation by smoothing).

Figure 1 compares suggested transformation parameters for data sets containing neither
effects. The empirical distributions of values suggested by the S-Methods almost seem to

be normal, with smaller variance for the original version (a).

The A-Plot procedure does not necessarily suggest a transformation. If no transformation
parameter leads to location effects, the original data set is used. This procedure coincides
with using A = 1, which results in identifying the true transformation parameter for about
80 - 90 % of the simulated data sets.

In Figure 1 only the data sets for which a transformation has been suggested, are consid-

ered in the graphs for the A-Plot, (c¢) to (e). We should keep in mind that these figures

13



Figure 1: Estimated A-values for data sets containing neither dispersion nor location effect
(Scenario 1)

(a) B-Method (Original) (b) #-Method (s = 1)
E itk 9
[=] SY e ‘:<
\ v b
O A S
(c) A-Plot (so) (d) A-Plot (Box) (e) A-Plot (DoNG)
e

only represent about 10 - 20 % of the data sets, and imagine very high peaks at A\ = 1,
i.e. add 1.62, 1.79 and 1.69 to the corresponding bars.

Consequently the A-Plot yields very good results in identifying the true transformation

parameter, especially the procedure based on the suggestion by BoOX.

For the case of three effects influencing the mean of the response, the suggested transfor-
mation parameters are compared in Figure 2. Obviously the Original $-Method attains
best results, while the $-Method assuming one dispersion effect as well as the A-Plot
by Box also yield reasonable results. (Here the proportion of data sets with A=1is

comparable.)

Histograms covering Scenarios 2 and 4 are given in the appendix (Figure B.1 and Figure
B.2). Altogether, in the situation of data without dispersion effects, the estimation of A

evidently improves with increasing number of location effects.

Different outcomes are attained in the case of one effect influencing the variation (and

also the mean) and additional adjustment effects. Figure 3 summarizes the results for

14



Figure 2: Estimated A-values for data sets containing three location effects (Scenario 3)

(a) B-Method (Original) (b) f-Method (s = 1)
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Scenario 5 with two additional adjustment effects. The case of four additional effects on

the mean is covered in Figure B.3.

Both figures reveal that only the #-Method that assumes one dispersion effect in advance,
attains consistent estimates for the true parameter \* = 1. Estimates resulting from the
original 3-Method are biased, and the empirical distributions realized when using the
A-Plot procedures with Median-based variance estimator or the one proposed by DONG,
have their modus at A = 1 due to the formalization scheme. This implies that, for about

half of these cases, we identify none of the location effects.

The results for the last examined scenario, the situation of two dispersion effects (also
influencing the mean) and three additional adjustment effects are shown in Figure 4. Both
(-Methods lead to biased estimates, but the version assuming one dispersion effect yields
much better results. None of the A-Plot procedures leads to satisfying outcomes. Again,
for about 3/4 of the data sets forming the peaks in figures (¢) and (e), no location effect

is found.
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Figure 3: Estimated A-values for data sets containing one dispersion effect and two addi-
tional adjustment effects (Scenario 5)
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Figure 4: Estimated A-values for data sets containing two dispersion effects and three
additional adjustment effects (Scenario 7)
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To allow further comparison among the suggested transformations, summary statistics of

the empirical distributions are given in Table B.2 of the appendix.

5.2 Identification of active contrasts

We now want to concentrate on determining design factor effects on the mean and varia-

tion of the response after carrying out the suggested transformation.

Percentages of data sets with wrongly identified effects on mean and variation are repre-
sented in Figure 5 to Figure 8. We distinguish between results determined when using
the true underlying transformation parameter A\* = 1 (reference) and the three methods
Original #-Method, #-Method with one dispersion effect and A-Plot. All possible combina-
tions of these four procedures (including the reference) with the three variance estimation

methods explained in Section 2 and the seven scenarios of Table 1, are considered.

Figure 5: Percentage of data sets with wrongly identified effects for the true transformation
parameter \* = 1, depending on the variance estimation method
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For Figure 5 no transformation has been carried out. When using the Median-based
variance estimation or the estimation proposed by DONG, the percentage of data sets
for which effects have been wrongly identified to be active, does not exceed 5% for any
scenario. In contrary the estimation method suggested by BoxX leads to very high propor-
tions of contrasts wrongly ascribed to influence the variation and still proportions mostly

above 5% with wrongly identified effects on the mean.
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Figure 6: Percentage of data sets with wrongly identified effects, transformation parameter

A estimated by Original $-Method, depending on the variance estimation method
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Figure 6 illustrates the according proportions in case of A being estimated by the Original
B-Method. Again, the variance estimation method based on the Median and the sugges-
tion by DONG attain results meeting the required level. The estimation used by Box
performs even worse than before, especially for Scenarios 5 to 7, that include effects on

the variation. (Note that the proportion for scenario 7 using the method by Box is 58 %.)

Using the 3-Method that assumes one dispersion effect in advance to estimate the trans-
formation parameter A\, the proportion of data sets with wrongly identified effects on the
variation increases for all scenarios that do not contain such effects and tends to the 5%
level for the remaining. Only the results attained by the estimation method used by Box

exceed this level by much (compare Figure 7).

Figure 8 shows the results attained by estimating the transformation parameter via A-
Plot. In this case the proportion of wrongly identified effects on the variation almost
reduces to zero for all scenarios but the first, when using the variance estimators “M”
and “D”. The procedure suggested by BoxX does again not meet the required 5% level,
neither for dispersion nor for location effects. Focusing on the wrongly identified mean

effects, both other methods lead to satisfying results for at least one location effect.
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Figure 7: Percentage of data sets with wrongly identified effects, transformation parameter
A estimated by S-Method assuming one dispersion effect (s=1), depending on the variance
estimation method
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Figure 8: Percentage of data sets with wrongly identified effects, transformation parameter
A estimated by A-Plot, depending on the variance estimation method
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Figure 9 covers identified effects on the variation. Therefore only the last three scenarios
that include such influences, are considered. In (a) and (b) it is only possible to identify
one or none effect (“correct” or “zero”), and the S-Method assuming one dispersion effect
clearly yields the best results. In (c) only the Original S-Method performs much worse
than the other two methods.

All these graphics reveal that the variance estimation method suggested by Box does
always lead to higher proportions of correctly (as well as wrongly) identified dispersion
effects. The other two methods in comparison tend to identify zero or not all effects rather

than all of the underlying or even wrong ones.

Finally Figure 10 summarizes the proportions of data sets for which factors with location
effects are identified correctly. All scenarios which include influences on the mean, are
considered. For the first scenario (a), the A\-Plot performs best, but for all other scenarios
both of the 3-Method procedures attain larger proportions of correctly identified effects,
regardless of the variance estimation method used. If dispersion effects are present, the
B-Method with s = 1 exceeds the Original 3-Method in terms of correctly identified
location effects. We observe again that the variance estimation method used by Box
attains higher proportions of correctly identified effects than the other two methods. The
proportion of data sets for which at least one of the underlying effects on the mean has

been revealed, is largest for the A-Plot procedure in almost all of the considered cases.

In addition, tables containing the proportions visualized in this section are given in the
appendix (Table B.3 to Table B.7).
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(ii) A from Original

(i) A = 1 (reference)
(iv) A from A-Plot

1

(iii) A from B-Method with s

Figure 10: Identified effects on the mean,
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5.3 Remarks, Explanations and Conclusions

In conclusion, the expectations expressed earlier are partly met. When using the Orig-
inal (#-Method, active dispersion as well as location effects are identified for about
(1 —CL) - 100 = 5% of the data sets as long as the variance estimation suggested
by DONG or the Median-based estimation is used. The 3-Method procedure proposed
by KUNERT AND LEHMKUHL (1998), which assumes the presence of one dispersion ef-
fect, attains a higher proportion of active dispersion effects, but still almost meets the
required 5 % level for location effects when using “M”or “D”. Still focusing only on these
two variance estimation methods, the A-Plot procedures on the contrary leads to higher

proportions of data sets for which location effects are identified for Scenario 1.

5.3.1 Variance estimation suggested by Box

Surprisingly, the variance estimators used by BoX lead to higher proportions of data
sets with wrongly identified contrasts in almost all of the considered combinations of
determined values for A, scenarios and location or dispersion effects. To further examine
and possibly explain this result, the ¢-values achieved when using the true transformation
parameter \* = 1 have been evaluated with regard to active dispersion and location
effects. To do so, all three considered variance estimation methods have been used as

described in Section 2. To allow visual impressions, histograms of ¢-values are drawn.

Figure 11: Empirical Distribution of Standardized Effects, t-values computed by using
the Median-based variance estimator, A set to 1
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Figure 11 summarizes the ¢-values attained when using the Median-based variance esti-

mators. The higher proportions of entries in the classes containing the values —% and %,
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is caused by the fact that one entry of the vector of t-values will always be standardized

to either —2 or 2. This coincides with equations (11) and (12).

Figure 12: Empirical Distribution of unsigned maximum Standardized t-values, computed
with variance estimators suggested by Box, A set to 1
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Figure 12 summarizes the empirical distribution of the unsigned maximum of ¢-values
standardized by the variance estimators computed according to the suggestion given by
Box. These t-values have been approximated by the standard normal distribution, there-
fore the corresponding density function for the unsigned maximum of 15 standard normal
variables is added to the plots. In addition, the density function resulting from the more
appropriate t-distribution with 48 degrees of freedom is presented. Evidently the ¢-values
for dispersion as well as location effects differ from standard normal. This implies that the
critical values that have been used for the estimation suggested by BoX, are not appro-
priate. For location effects we should use the t-distribution instead of the approximated

normal distribution.

Figure 13: Empirical Distribution of Standardized Effects, ¢-values computed with vari-
ance estimator proposed by DONG, A set to 1
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In Figure 13 the unsigned maximum of ¢-values standardized by using the method pro-
posed by DONG are presented. The ¢ distribution with 0.69 - k£ degrees of freedom is as-
sumed to yield to conservative critical values, therefore the corresponding density function
for the unsigned maximum of 15 variables is added to the plots. The empirical distribu-
tion obviously differs from the density function achieved by the ¢ distribution. For the

most interesting right tail, the density in fact approximates the empirical distribution.

To allow further comparison between the assumed critical values and empirical values
resulting from our study, the empirical 95% Quantile of the distribution of unsigned
maximum ¢-value is computed for each of the three methods. Table 2 opposes the critical

values computed respectively given in Table A.1 (see Section 2), and the empirical values.

Table 2: Critical Values (¢) and Quantiles of unsigned maximum ¢-values (95 %)

RO ) |0 ) [ e

c 3.669  3.669 | 2.928  2.928 | 3.776 3.776
95 % | 3.662  3.597 | 3.071 3.532 | 3.767 3.715

When analyzing Table 2 we should recall that the numerators of ¢-values needed to identify
location effects are normal, while the numerators of t-values for dispersion effects are
only approximately normal. For the methods “M”and “D”, the empirical 95 % quantiles
of unsigned maximum ¢-values are not far below the critical values. For the variance

estimation method used by Box both the empirical values exceed the critical value.

We presume that the application of the delta method is the reason for the large difference
between critical value and empirical quantile for dispersion effects. The variance of these
effects is underestimated systematically, which can also be noticed in Figure 12. The
discrepancy for location effects is due to the normal approximation and can be avoided

by using the t-distribution.

5.3.2 Conclusions

When analyzing data and searching for an appropriate transformation, the advantages of
using the A\-Plot as suggested by BoX are obvious. It is much more convenient to examine

a plot and choose a transformation by eye than just using a computed transformation.
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In addition, the A-Plot gives more information about the behaviour of design factor and
interaction effects for various values of \. On the other hand the variance approximation
for dispersion effects made by Box (1988) appears not to be appropriate, and therefore
this procedure might lead to wrongly identified effects. Furthermore, the fact that a

sequence of \-values is considered, might introduce artificial location effects.

A good alternative to the A-Plot is given by the S-Method as used by KUNERT AND
LEHMKUHL (1998). This method allows for one dispersion effect to estimate the trans-
formation parameter. Consequently, it leads to better results if such effects are present,
but still yields satisfying outcomes for situations without influences on the variation of

the response.

We conclude that using this method combined with the use of the variance estimator
proposed by DONG (1993) to estimate the variance of effects on the variation, and the
estimator suggested by Box (1988) to estimate the variance of influences on the mean,
yields a good compromise in terms of transformation parameter estimation and the num-

ber of data sets with wrongly as well as correctly identified effects.
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Appendix A: Description of Methods

Critical Values

Table A.1: Critical values for identifying active effects when using the Median-based
variance estimation

CL=0.9 CL=0 .95 CL =0.99
7 3.09933 3.87517 6.21262

15 3.15836 3.66889 4.96019

31 3.22513 3.59241 4.43574

63 3.31978 3.60575 4.23010
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A-Plot Formalization

For the description of the formalized A-Plot in figure A.1 the following sets are required:

Dy = {X:tp(\) does not lead to active dispersion effects },
Dy = {X:tp(\) leads to exactly one dispersion effect },
Dr 1 = {X:tp()\) leads to exactly k — 1 dispersion effects }
and DE(A) = {p:tp()), implies Dispersion Effect },—; _ ,
LEpg (A\) = {p:tr(A), implies Location Effect },—; ., \ DE()).

Figure A.1: Flow-chart for the Formalized A-Plot procedure

S END
Step 1.0 No tep 2 Yes | . u
Dy =0 7 — IXe Dy: — | X = arg min Z|tD()\)|p
LEDE()‘)#w? AE Dy :

LEpp(A) #0 P~

l Yes / No

Step 2 END
No Yes A
SDteI: a.: =D\ c D1 . )\1 = a;\rg IBI&X |tD(>\)| (k]
=0 LEpgs (A) # 0 7 LEpp() # 0
l Yes /NO
Step 1.2 No
D, =07
Step 2 END
- No Yes ]
Step 1.k-1 , INED, - —— | M1 = argmax |tp(A)[y
Dk_lz(b? 2 ANEDp_q:
LEpg (A) #0 LEpg(A) # 0
l Yes /No

END
no real suggestion,
use original data (A = 1),
check for dispersion effects
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Appendix B: Tables and Figures

Estimation of A\

Figure B.1: Estimated A-values for data sets containing one location effect (Scenario 2)

(a) B-Method (Original) (b) B-Method (s = 1)
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Figure B.2: Estimated \-values for data sets containing five location effects (Scenario 4)
(a) B-Method (Original) (b) B-Method (s = 1)
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Figure B.3: Estimated A-values for data sets containing one dispersion effect and four
additional adjustment effects (Scenario 6)

(a) B-Method (Original) (b) B-Method (s = 1)
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Table B.2: Parameters characterizing the empirical distribution of estimates for the trans-
formation parameter \

estimation of \ | (0,00 (0,00 (0,1) (0,3) (05 | (1,3) (1,5 ] (25)
Original Mean 1.054 1.017 1.033 1.001 1.008 | -0.826 0.015 | -1.080
5-Mothod Median | 1.051 1.016 1.037 1.006 1.010 | -0.808 0.033 | -1.071

Std. Dev. || 2.682 2.667 1.581 0.849 0.591 | 0.966 0.677 | 0.746
5-Method Mean 1.017 0.994 1.032 0.998 0.998 | 0.736 0.914 | -0.317
with s — 1 | Median || 1.081 1.004 1.031 1.007 1.001 | 0.931 0.984 | -0.164

Std. Dev. || 3.137 3.094 1.975 1.007 0.700 | 1.373 0.784 | 1.047

Mean 1.005 0.997 1.089 1.081 1.089 |-0.500 0.591 | 0.119
A-Plot (sg) Median 1.000 1.000 1.000 1.000 1.000 |-0.500 0.500 | 0.500
Std. Dev. || 2.199 2.190 3.386 2.069 1.345 | 2.390 1.804 | 2.609
Mean 1.013 1.020 1.080 1.014 1.023 | 1.364 1.660 | 1.106
A-Plot (Box) | Median 1.000 1.000 1.000 1.000 1.000 | 2.000 2.000 | 1.500
Std. Dev. || 0.972 0.928 2.103 1.238 0.896 | 2.792 1.847 | 2.254
Mean 1.046 1.038 1.194 1.291 1.191 |-0.654 0.745 | 0.270
A-Plot (DoNG) | Median 1.000 1.000 1.000 1.000 1.000 |-0.500 0.500 | 0.500
Std. Dev. || 2.169 2.195 4.494 3.477 1.823 | 2.500 2.161 | 2.776
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Identified Location and Dispersion Effects

In Table B.3 and Table B.4 the data sets for Scenario 1 are divided into two parts with
5000 data sets each. The small differences between the results for both parts justify the

number of data sets used in the simulation for all other scenarios.

We should keep in mind that the number of correctly identified effects in scenarios with at
least two present effects on either the mean or the variation would be higher, if descending
critical values for more than one effect would have been used. The critical values are

conservative in such situations.

Table B.3: Percentage of data sets with wrongly identified dispersion effects

A/ A | (0,0) (00 (1) (03 (05 ] (1,3 (15)] (2,5)
S0 4.42 4.68 4.80 4.58 4.32 2.72 2.62 0.78
A=1 Box 18.30 18.60 18.74 17.76 19.02 | 17.94 15.78 7.86
DonNa 4.48 4.82 4.78 4.70 4.20 3.62 3.44 1.12
S0 4.56 4.70 5.24 4.68 4.28 2.46 2.18 1.82

A from Original

B-Method Box 18.62 19.08 17.96 15.42 16.82 | 30.20 22.80 | 42.06

Dona 4.6 472 532 486 4.66 | 3.48 3.20 | 2.92
S0 6.72 686 858 7.68 696 | 3.88 3.36| 2.08
Box 26.36 26.24 24.00 2212 23.50 | 199 15.82 | 16.92
DonaG 6.98 746 924 8.00 7.68 | 548 450 | 240
Sp 398 426 096 028 0.18| 096 0.64| 0.82
Box 1772 1786 12.84 1090 12.44 | 13.94 11.62 | 11.48
Dona 412 446 082 014 032] 0.86 1.00 | 1.06

A from
B-Method (s = 1)

\ from
A-Plot

Table B.4: Percentage of data sets with wrongly identified location effects

A/ A | 0,0 (0,0 (01 (03) (05 | (1,3) (15 ] (25)
S0 5.00 4.82 246 0.36 0.06 | 0.48 0.00 | 0.04
A=1 Box 7.40 730 6.66 298 190 | 3.26 1.72 | 1.86
DonNaG 5.22 458 3.60 094 0.36 | 1.24 0.28 | 0.06
S0 4.44 4.6 238 044 0.00| 0.74 0.08 | 0.02

A from Original

B-Method Box 736 742 7.06 440 3.18 | 832 4.58 | 6.62

DonaG 4.68 474 382 122 038 | 1.92 0.34| 0.08
S0 490 494 264 038 0.02| 040 0.04| 0.02
Box 7.62 746 7.02 456 3.62| 538 290 | 4.72
DonaG 5.20 5.1 392 1.18 040 | 146 0.34 | 0.12
S0 19.12 1864 298 0.72 0.08 | 1.32 0.10 | 0.08
Box 10.68 10.74 712 524 3.84| 8.80 6.36 | 4.48
Dong || 15.80 15.08 3.80 248 0.28 | 3.34 0.26 | 0.18

\ from
B-Method (s = 1)

\ from
A-Plot
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Table B.5: Percentage of data sets with identified dispersion effects: no effects (“zero”),
at least one, but not all (“not all”) or all effects correctly (“correct”)

Scenario (1,3) (1,5) (2,5)
A/ A zero correct | zero correct | zero mnotall correct
50 51.16  46.12 | 52.18  45.20 | 37.3¢  30.20  31.04
A=1 Box 78.62 3.44 | 80.20 4.02 | 79.94 4.06 0.04
DonG || 61.90  34.48 | 62.02  34.54 | 54.76  21.84  20.62

S0 14.22 83.32 | 27.86 69.96 | 2.66 12.88 82.50
Box 48.64 21.16 | 64.44 12.76 | 21.56 17.86 2.52
Dong || 17.12 79.40 | 34.04 62.76 | 3.16 13.14 80.36
S0 54.02 42.10 | 54.78 41.86 | 12.76  29.12 95.76
Box 74.16 5.94 | 79.00 5.18 | 55.88 14.76 0.36
DoNG || 61.90 32.62 | 64.20 31.30 | 20.36  28.90 47.56
S0 15.18 83.86 | 20.32 79.04 | 15.26 19.08 64.52
Box 92.54 33.52 | 63.70 24.68 | 54.04  23.82 4.70
Dona || 15.90 83.24 | 26.84 72.16 | 23.52 15.72 99.10

A from Original
B-Method

A from
B-Method (s = 1)

\ from
A-Plot

Table B.6: Percentage of data sets with identified location effects: no effects (“zero”), at
least one, but not all (“not all”) or all effects correctly (“correct”)

Scenario (0,1) (0,3) (0,5)
A/ A zero correct | zero not all correct | zero not all correct
50 70.54 27.00 | 48.28  42.96 798 | 2262  69.04 8.2
A=1 Box 91.30 2.04 | 91.80 2.18 0.00 | 92.26 2.38 0.00
Dona 81.1 1530 | 746  18.72 4.32 | 59.22  31.32 8.56
0 69.18 28.44 | 44.80  44.52 9.80 | 189  69.82 11.22

A from Original

3-Method Box 90.58 2.36 | 90.06 2.14 0.00 | 89.18 2.64 0.00

Dong || 79.70 16.48 | 72.00 20.4 5.20 | 53.80  33.18 12.08
S0 68.40 28.96 | 43.54  45.06 10.64 | 18.12  69.56 12.28
Box 90.54 2.44 | 89.76 2.24 0.00 | 88.04 3.02 0.00
Dong || 79.30 16.78 | 71.24  20.90 5.62 | 51.70  34.14 13.30
S0 85.04 11.98 | 37.92  59.62 1.52 | 13.28  84.84 1.74
Box 91.24 1.52 | 88.02 2.70 0.00 | 86.18 3.62 0.00
DonNG || 86.26 9.92 | 50.88  44.30 098 | 39.46  57.36 2.08

A from
B-Method (s = 1)

A from
A-Plot

Table B.7: Percentage of data sets with identified location effects: no effects (“zero”), at
least one, but not all (“not all”) or all effects correctly (“correct”)

Scenario (1,3) (1,5) (2,5)
A/A zero not all correct | zero not all correct | zero mnotall correct
50 25.56  46.28 2734 | 1094 61.78 2728 | 4.76 39.86  55.32

A=1 Box 76.62 16.80 0.02 | 79.04 16.18 0.00 | 37.66  56.56 0.14
Dong || 46.32  29.96 21.32 | 33.86  36.52 29.24 | 16.50  26.86 56.50
A from 50 19.36  44.16 3548 | 5.28  54.10 40.54 | 0.80 3294 66.22
Original | Box 69.1 18.76 0.26 | 65.64  24.42 0.02 | 20.28  61.52 2.06
B-Method | DONG || 36.84  32.42 28.04 | 19.92  36.84 4282 | 338 30.14 66.26
A from 50 22.60  44.62 32.08 | 8.32 58.74 32.90 | 2.24 35.8 61.94
B-Method | Box 73.06 17.76 0.08 | 74.68 17.72 0.00 | 31.38  56.08 1.00
(s=1) Dong || 42.30  30.84 24.60 | 29.36  35.34 34.86 | 8.84  27.68 63.26
S0 16.70  68.58 1296 | 442 83.24 11.94 | 1.62 71.08 25.88
Box 60.24  26.12 0.08 | 58.80  25.20 0.00 | 22.12  64.18 0.16
Dong || 31.74  53.60 10.46 | 20.44  64.78 13.24 | 9.66 61.12 24.64

\ from
A-Plot
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