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Abstract

In this paper we examine two widely used methods to obtain a transformation in

Taguchi experiments, namely the lambda plot and the beta technique. We consider

di�erent situations with contrasts in
uencing the mean and/ or the variance of the

response. Our simulation study reveals that the variation of the �-Method proposed

by Kunert and Lehmkuhl (1998) is a good compromise in terms of meeting the

con�dence level and identifying active e�ects.
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1 Introduction

In many technical applications, o�-line process control, i. e. design of experiments, is used

in order to optimize processes. Taguchi (1986) suggests product array designs, which

carry out an outer array (variation of noise factors) for every design factor combination

of the design, also called inner array. The aim is to determine factor combinations which

lead to a production on target while minimizing the variance of the response. Taguchi

(1986) distinguishes among \dispersion e�ects", i. e. factors that in
uence the variance,

\location e�ects", i. e. factors that in
uence the mean, and those which neither e�ect the

mean nor the variance of the response. E�ects in
uencing the mean but not the variance

are called \adjustment e�ects".

Usually a data transformation is carried out to achieve maximum simplicity of the model

and to meet the assumptions of parsimony and separation. This means we want to
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identify only a few factors (possibly none) with dispersion e�ects and a larger number of

factors with location e�ects on the transformed response. Taguchi methods seek for a

transformation accomplishing these assumptions.

We assume a data transformation belonging to the family of so-called Box-Cox-

transformations (compare Box and Cox, 1964) which is usually used in this situation

T�(yij) =

8<: y�ij � 1
�

: � 6= 0

ln(yij) : � = 0 ;
(1)

where yij is assumed to be positive, i = 1 ; : : : ; ndenotes the design point and j =

1; : : : ; m the replication or the design point of the inner array, respectively.

If �� denotes the true underlying transformation parameter, then z�ij = T��(yij) is assumed

to follow the underlying model

z�ij = �0 + �1x1 + : : :+ �sxs + �s+1xs+1 + : : :+ �kxk + ( 
x11 � : : : � 
xss ) eij ; (2)

with eij i. i. d. � N(0; �2); �0 6= 0 ; 
r 6= 1 ; 
q > 0; q = 1 ; : : : ; s ;

(compare e. g. the discussion contribution of Nair and Pregibon to the article by

Box, 1988), where k = kD + kI with kD denoting the number of design factors and kI

the number of considered factor interaction contrasts. In this equation the design factors

x1; : : : ; xkD as well as the factor interactions xkD+1; : : : ; xk are assumed to take the two

levels �1 (low level) and +1 (high level).

If the transformation parameter �� is known, model (2) can be used to estimate location

and dispersion e�ects. Without loss of generality we assume the �rst s factors to be

factors with dispersion e�ects. We expect s, the number of dispersion e�ects, to be very

small, i. e. zero to two. For s = 0, the model simpli�es to a linear model with an additive

error term. Furthermore we do not expect all factors to in
uence the mean, therefore

some of the �p ; p = 1 ; : : : ; kare likely to be zero. The number of adjustment e�ects will

be denoted by r and can then be determined by r = j f ap : ap 6= 0 ; p > s gp=1;::: ;kj . We

assume r > s unless both are zero.

When using model (2) and for k = kD, an appropriate design would be a screening design

which is not used to optimize the process but to determine the most important variables

among the design factors. If kI > 0, a design to model the process could be used, e. g. a

response surface design.

2



In the case of unknown transformation parameter ��, this parameter needs to be esti-

mated �rst. For this situation Box (1988) developed the �-Plot, which is a graphical

method used to achieve an appropriate data transformation. Grize (1991) extended the

procedure to unreplicated designs by adapting the variance estimation for the coe�cients.

A description of the �-Plot procedure and di�erent variance estimation methods follows

in Section 2.

On the other hand the mean-variance-plot (compare e. g. Box, Hunter and Hunter,

1978) has been used for Taguchi experiments by Logothetis (1990) resulting in the

�-Method. A generalization suggested by Engel (1992), which as well as the original

�-Method possibly leads to inconsistent estimates for the transformation parameter ��,

has been adapted to model (2) by Kunert and Lehmkuhl (1998). Section 3 introduces

the original �-Method by Logothetis and the generalized version by Kunert and

Lehmkuhl.

In Section 4 the simulation study used to compare both methods is described. Section 5

contains a summary of the results, conclusions and further discussion.

2 Description of the �-Plot

To use the �-Plot as a graphical tool, we need to compute two sequences containing the

estimated in
uences of all the design factors and considered interactions on the mean

and standard deviation of the transformed response. Additionally, an estimate for the

variance of the e�ects is calculated for each value of � in order to standardize the estimated

e�ects and obtain t-statistics. Two separate graphics for location and dispersion e�ects

are created where a curve of these t-values is plotted against � for each design factor or

interaction.

The standard deviation of the coe�cient estimates can be estimated as proposed by Box

(1988). If model (2) is �tted for every value of �, we get

E (zij) = �0 +
kX

p=1

�p xp ;

V ar (zij) = �2
� sY

q=1


 xq
q

�2

() ln
q
V ar (zij) = ln � +

sX
q=1

xq ln 
 q : (3)
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To analyze the means we use a simpli�cation of (2) that neglects the presence of dispersion

e�ects

(�z1; : : : ; �zn)
0 = ( 1; x1; : : : ; xk) � (�) + e1 ; e1 � N(0; �21 I) ;

where 1 = (1 ; : : : ;1)0, xi = ( xi1; : : : ; xi n)
0, � (�) =

�
�0(�); �1(�); : : : ; �k(�)

�0
and �21 =

�2

m
. If the design is orthogonal, with (1; x1; : : : ; xk)

0(1; x1; : : : ; xk) = n I , the parameter

vector � (�) can then be estimated by

b� (�) = 1

n
(1; x1; : : : ; xk)

0(�z1; : : : ; �zn)
0 : (4)

The corresponding covariance matrix for this estimate is

Cov [ b� (�) ] =
1

n2
(1; x1; : : : ; xk)

0 Cov [ (�z1; : : : ; �zn)
0 ] ( 1; x1; : : : ; xk)

=
1

n2
(1; x1; : : : ; xk)

0 1

m
�2 I (1; x1; : : : ; xk)

=
1

nm
�2 I : (5)

It can be estimated by

dCov [ b� (�) ] = 1

nm
�S 2
z I ;

where �S 2
z denotes the within-runs sums of squares based on n(m� 1) degrees of freedom

�S 2
z =

1

n (m� 1)

nX
i=1

mX
j=1

(zij � �zi)
2 :

The vector of t-values for the location e�ects can then be computed by

tBoxL (�) =

p
nm
�Sz

b� (�) : (6)

The estimation of dispersion e�ects is based on equation (3). To estimate ln 
q , q =

1; : : : ; s , we use the following model

(lnSz1; : : : ; lnSzn)
0 = ( 1; x1; : : : ; xk) ln 
 (�) + e2 ; e2 � N(0; �22 I)

for the logarithm of standard deviations for n design points, where ln 
 (�) =�
ln�(�); ln
1(�); : : : ; ln 
k(�)

�0
and most of the entries ln 
1(�); : : : ; ln
k(�) are as-

sumed to be zero. The vector ln 
 (�) can be estimated by

dln 
 (�) = 1

n
(1; x1; : : : ; xk)

0(lnSz1; : : : ; lnSzn)
0 : (7)
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To achieve the variance of this estimate, we need to compute the variance of lnS �rst.

It is well known that V ar (S2) = 2 �4=(m � 1), because (m � 1)S2=�2 � �2
m�1 and

therefore by using the delta method

V ar f(Y ) � [f 0(E Y )]
2
V ar Y ; (8)

for Y = S2, we get

V ar (lnS) �
�

1

2E(S2)

�4
V ar (S2) =

1

2 (m� 1)
:

The covariance matrix of dln 
 (�) then becomes

Cov [dln
 (�) ] � 1

n2
(1; x1; : : : ; xk)

0 Cov [ (lnSz1; : : : ; lnSzn)
0 ] ( 1; x1; : : : ; xk)

=
1

n2
(1; x1; : : : ; xk)

0 1

2 (m� 1)
I (1; x1; : : : ; xk)

=
1

2n (m� 1)
I ; (9)

compare Box (1988). Therefore the vector of t-values for dispersion e�ects can be com-

puted according to

tBoxD (�) =
p
2n (m� 1) ^ln 
 (�) : (10)

To identify active e�ects for a given value of �, we test the hypotheses

H01 : max
p=1;::: ;k

jE ( tL(�)p ) j = 0 vs. HA1 : max
p=1;::: ;k

jE ( tL(�)p ) j > 0

and H02 : max
p=1;::: ;k

jE ( tD(�)p ) j = 0 vs. HA2 : max
p=1;::: ;k

jE ( tD(�)p ) j > 0 :

Assuming H0 := \H01 and H02 both hold", the vectors of t-values for location and

dispersion e�ects given in (6) and (10) are both approximately multivariate standard

normal. Heading for a con�dence level CL, the critical value c1 can then be achieved by

PH0

�
max

p=1;::: ;k
j tBox(�)pj > c1

�
� 1� CL

=) c1 � ��1

 
1 + k

p
CL

2

!
:

Factors or interactions with corresponding values exceeding the critical value are called

active e�ects. If more than one e�ect is present, this proceeding is conservative!

Not only in unreplicated experimental designs, but also in replicated situations the stan-

dard deviation estimator can also be based on the estimated factor and interaction e�ects
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as done for the scaled �-Plot introduced by Grize (1991). Again assuming H0 := \H01

and H02 both hold", we get for b� (�) and dln
 (�) given in (4) and (7):

b� (�) � N

�
0;

1

n
�21 I

�
and dln
 (�) app:� N

�
0;

1

n
�22 I

�
; if n > 1 :

Median-based variance estimation by

s0;L :=
3

2
median
p = 1 ; : : : ; k

� ��� b�p(�)
����

and s0;D :=
3

2
median
p = 1 ; : : : ; k

� ���dln 
p (�) ���� ;

will be approximately unbiased because

E (s0;L) � 3

2
��1

�
3

4

�
�1p
n
� �1p

n

and E (s0;D) � 3

2
��1

�
3

4

�
�2p
n
� �2p

n
:

This leads to vectors of t-values

tMed

L (�) =
b� (�)
s0;L

(11)

and tMed

D (�) =
dln 
 (�)
s0;D

: (12)

When using these t-values, critical values c2 for testing both hypotheses (H01 and H02)

can be achieved by numerical approximation. This has been done by Knuth (1994),

selected values are given in Table A.1.

The estimators s0;L and s0;D can be used even under the alternative of active e�ects as long

as the parsimony assumption holds, i. e. most of the coe�cients b�p (�) and dln 
p (�); p =
1; : : : ; k , have expectation zero. But clearly in this case the variance estimation increases

and will not be unbiased.

The median-based variance estimation has been improved by several authors. Lenth

(1989) also suggested the pseudo standard error (PSE) which is de�ned as follows

PSEL :=
3

2
median

j b�p(�)j � 2:5 s0;L
p = 1 ; : : : ; k

� ��� b�p(�)
����

and PSED :=
3

2
median���dln 
p (�)

��� � 2:5 s0;D
p = 1 ; : : : ; k

� ���dln
p (�) ���� :
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The results of the �-Plot using the estimators suggested by Box (1988) and the PSE

suggested by Lenth (1989) has been compared for some known examples by Grize

(1991).

Another possibility of estimating the variance has been proposed by Dong (1993). These

estimators are again based on s0 and de�ned by

s1;L :=

vuut1:08

mL

X
jb�pj�2:56 s0;L;

p=1;::: ;k

b�p
2

and s1;D :=

vuuut1:08

mD

X
jdln
pj�2:56 s0;L;

p=1;::: ;k

dln 
p 2 ;
with

mL =
���fb�p : b�p � 2:56 s0;Lgp=1;::: ;k

���
and mD =

���fdln 
p : dln 
p � 2:56 s0;Dgp=1;::: ;k
��� ;

respectively. The estimators given here, slightly di�er from the ones proposed by Dong

(1993), see Kunert (1997).

The t-values therefore will be computed by

tDongL =
b� (�)
s1;L

(13)

and tDongD =
dln 
 (�)
s1;D

: (14)

Simple critical values for identifying location and dispersion e�ects can be achieved by the� �
1 + CL 1=n

�
=2
� � 100 % Quantile of the t-distribution with 0:69 �k degrees of freedom

(for motivation of df, compare Kunert, 1997).

In this study we use the estimators suggested by Box and Dong as well as the

Median-based estimators s0;L and s0;D.

When using the �-Plot procedure in practice, one decides by eye which transformation

to choose. Usually a simple transformation like the logarithm (� = 0), the square root

(� = :5) or the reciprocal (� = �1) is used, as long as one of these leads to possibly none
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active dispersion e�ect and a few location e�ects. For the simulation study and especially

to permit the comparison with the �-Method, the �-Plot procedure needs to be formalized.

The formalization scheme used in our study has been suggested by Lehmkuhl (1998).

First the values of � that do not lead to any active dispersion e�ect are considered

(Step 1.0) and ordered by the size of the sum of unsigned dispersion e�ect estimates.

The �rst transformation which identi�es active location e�ects, is chosen (Step 2). If

there is no transformation to meet these criterions, we take step by step all values for

� which lead to one or more dispersion e�ects, into account (Step 1.1 to Step 1.k-1).

Then the order of consideration depends on the t-value of the smallest active dispersion

e�ect, which will be maximized. This procedure also ends as soon as a transformation

is found that leads to at least one location e�ect (again Step 2). If the �-Plot does not

suggest a transformation, the conclusion would be to use the original data and check only

for dispersion e�ects. The formalized procedure is explained more precisely by the 
ow

chart in Figure A.1.

Because the �-Plot uses a sequence of transformations (i. e. more than one value for �) and

especially seeks for active location e�ects, we expect this procedure to identify location

e�ects in more than (1� CL) � 100 % of experiments without active e�ects.

3 Description of the �-Method

The �-Method as described by Logothetis (1990) uses a di�erent viewpoint and leads

to another procedure for the choice of transformation, but again corresponds to the model

assumptions made in Section 1.

Logothetis (1990) considers the situation where a functional relationship between the

mean �y and the standard deviation �y of the untransformed response of the following

kind can be assumed

�y = g(�y) :

Now the aim is to �nd a transformation Tc that leads to a constant variance, say

V ar Tc (y) = c2. The delta method (8) yields to the rough approximation

V ar (Tc (y)) � [T 0
c (E (y)) ]

2
V ar (y) ;
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which can be used to determine an appropriate data transformation:

[T 0
c (�y) ]

2 � V ar (Tc(y))

V ar (y)
=

c2

g(�y)2

=) Tc (�y) �
Z

c

g(�y)
d� :

If we assume a special kind of functional relationship, namely

�y = g(�y) = � ��y ; (15)

then the transformation attained by this procedure will be proportional to the Box-Cox-

transformation stated in equation (1),

Tc (�y) �
8<:

c

�(1� �)
�1��y : � 6= 1

c

�
ln(�y) : � = 1

9=; / T� (�y) ;

with � = 1� � (compare also Box, Hunter and Hunter, 1978).

This motivates another common way to identify an appropriate data transformation based

on the estimation of the parameter � using equation (15). By taking the logarithm we

get

ln�y = ln � + � ln�y

and �t the linear model

ln (Sy) = ln � + � ln (�y) + e3 ; e3 � (0; �23I) ; (16)

with Sy = ( Sy1; : : : ; Syn)
0 and �y = (�y1; : : : ; �yn)

0.

Engel (1992), however, pointed out that this procedure leads to inconsistent estimates

if dispersion e�ects are present. In this case, equation (15) can be extended to

�y = � ��y

sY
q=1

�q xq ;

which leads to an analysis of covariance model with ln (�y) being the covariate

ln (Sy) = ln � + � ln (�y) +
sX

q=1

xq ln �q + e4 ; e4 � (0; �24I) :

We expect the number of dispersion e�ects to be at most two, according to the parsimony

assumption. For the case s = 1 , the appropriate model becomes

ln(Sy) = ln � + �(q�) ln (�y) + xq� ln �q� + e5 ; e5 � N(0; �25) : (17)
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This model is �tted for each xi; i = 1 ; : : : ; k. The factor or interaction accomplishing

the largest measure of �t R2 is denoted by xq�. The use of the model containing xq�

implies the consideration of the factor or interaction with the largest estimated e�ect on

the variability. Therefore the estimation of � also depends on q�, which is indicated by the

notation �(q�) (compare Kunert and Lehmkuhl, 1998). We do not extend the model

to s = 2 here.

If a data transformation is needed, usually a plot of the logarithm of the mean responses

versus the logarithm of the standard deviations for every design factor combination is

drawn. The so-called mean-variance-plot can give visual help in deciding which of the

models (16) and (17) to use, or whether even a model considering more than one dispersion

e�ect is needed. If there is no active dispersion e�ect, the points are approximately falling

on a straight line with slope � = 1� �. No transformation is necessary if � = 0.

It is also possible to estimate s, the number of dispersion e�ects. Lehmkuhl (1998)

presents a formalized stepwise procedure for determining factors or interactions that e�ect

the variability when using the �-Method. In this study we only consider the two models

addressed above, where s is equal to zero or one.

Once the parameter � has been estimated, the estimate for the transformation parameter

� will be determined by �̂ = 1��̂ or �̂ = 1��̂(q�). The data transformation is carried out

according to the chosen value and the transformed data is examined relative to dispersion

and location e�ects among the factors and considered interactions. Again, critical values

are depending on the variance estimation method used to standardize the factor e�ects. To

attain comparable results, we use the Median-based estimators (t-values given in equation

(11) and (12)), the estimator proposed by Dong (1993, compare equations (13) and (14)),

as well as the estimators used by Box (1988, compare (6) and (10)).

4 Design of the Simulation study

A simulation study has been done to compare the two procedures �-Plot and �-Method

speci�ed in sections 2 and 3. In particular we focus on the case where neither dispersion

nor location e�ects are present, to see whether the methods introduce arti�cial signif-

icances, i. e. we have random data following the normal distribution. In addition we
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examine a smaller number of data sets with e�ects on the mean and variance of the

outcome. The seven scenarios that will be considered, are summarized in Table 1.

Table 1: Number of contrasts in
uencing the mean and variation of the outcome - Exam-
ined scenarios

1 2 3 4 5 6 7

Dispersion E�ects (DE) 0 0 0 0 1 1 2

Location E�ects (LE) 0 1 3 5 3 5 5

Adjustment E�ects 0 1 3 5 2 4 3

The design used for our simulation study is a 16-run fractional factorial design with 15

factors on two levels each, namely a 215�11 design. No noise factor array (outer array) has

been carried out, but the estimation of location and dispersion e�ects is based on four

replicates for every design factor combination.

Values for the observed response yij are sampled from a normal distribution with mean 10

and variance 1 to achieve only positive outcomes, i. e. yij � N(10; 1), with 1 � i � 16 and

1 � j � 4. Consequently � is set to 1 in equation (1), which implies no transformation.

Thus the underlying model for scenario 1 where neither dispersion nor location e�ects are

present, is given by

z�ij = T��(yij) = yij � 1 = 9 + eij; with eij � N(0; 1) ;

compare equation (2).

For the remaining six situations mentioned above, the data sets are simulated as follows:

We assume that every factor with a dispersion e�ect will also in
uence the mean of the

outcome. In order to attain comparable results, the transformation parameter �� is again

set to 1 and �0 = 9.

Comparing equations (5) and (9), the coe�cients �1; : : : ; �k and ln 
1; : : : ; ln
s can

be estimated with variance 1=64 or approximately 1=96, respectively. The values �i

used in the simulation study for factors assumed to have location e�ects, are chosen to

start at �ve times the standard deviation of the estimate, increasing by one standard

deviation for each additional e�ect. In analogy, values for ln 
i will be taken as multiples

of
p
1=96 � 1=10. Furthermore, factors with dispersion e�ects are randomly selected

among the factors with location e�ects.
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As an example, the model for the �fth scenario, i. e. one dispersion e�ect which also

in
uences the mean and two additional adjustment e�ects (compare Table 1), is given

below:

z�ij = 9 +
5

8
� x1 + 6

8
� x2 + 7

8
� x3 + exp f 5

10
� xrag eij ;

where eij � N(0; 1) and xra 2 f x1; x2; x3g is chosen at random.

10 000 runs are simulated for the �rst scenario and 5 000 runs for each of the scenarios two

to seven. A total of 13 of these data sets has been replaced because of negative entries, but

this will not change the results by much. For every data set the transformation parameter

� is estimated according to the �-Plot procedures and the two versions of the �-Method.

As a basis to test for active e�ects, three ways to estimate the variance of the coe�cients

have been presented in Section 2. The formalized �-Plot procedure is carried out at 37

equidistanced points between -8 and 10 to estimate �, compare Figure A.1. In general,

di�erent variance estimation methods do not yield the same estimate for the transfor-

mation parameter. On the other hand the transformation parameter achieved by using

the �-Method does not depend on the variance estimation used. But the original version

assuming the model stated in equation (16) and the improved procedure that assumes

one dispersion e�ect as described in model equation (17) will lead to di�erent results.

After the choice of transformation, vectors of t-values for dispersion and location e�ects are

computed and active e�ects are determined to the con�dence level CL= 0:95. To allow

further comparison, we also compute the resulting vectors for the true transformation

parameter �� = 1.

We expect the original �-Method to meet the given con�dence level for both, dispersion

and location e�ects, while the assumption of one dispersion e�ect in advance (s=1) could

possibly lead to a higher proportion of identi�ed dispersion e�ects. As mentioned earlier,

the �-Plot on the contrary is anticipated to identify more location e�ects because of the

used formalization scheme.

We will see that there are great di�erences in proportions of identi�ed e�ects, depending

on the method and the variance estimators used.
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5 Simulation Results

In this section the results of the simulation study are summarized. It is divided into

three subsections that deal with the estimation of the transformation parameter � (sec-

tion 5.1), the percentage of contrasts identi�ed to e�ect the mean or variation of the

outcome (section 5.2) and some additional remarks, explanations and recommendations

(section 5.3).

5.1 Estimation of �

First we focus on the transformation parameter � that indicates the transformation chosen

by each of the procedures. The �-Method on one hand always suggests transformation

parameters, but these are not restricted to a certain range. The results of the �-Plot

procedures on the other hand depend on the considered �-sequence which is presumed

to contain the 'real' transformation parameter. Therefore the �-sequence needed for the

�-Plot procedure has been chosen as f�8;�15
2
; : : : ;�1

2
; 0; 1

2
; 1; : : : ; 19

2
; 10g in accordance

to the range of values achieved by the �-Method in former simulations.

Histograms are drawn to visualize the empirical distributions for transformation param-

eter estimations suggested by each of the methods. Density estimations are added where

suitable (dark: density of normal distribution with estimated parameters, bright: density

estimation by smoothing).

Figure 1 compares suggested transformation parameters for data sets containing neither

e�ects. The empirical distributions of values suggested by the �-Methods almost seem to

be normal, with smaller variance for the original version (a).

The �-Plot procedure does not necessarily suggest a transformation. If no transformation

parameter leads to location e�ects, the original data set is used. This procedure coincides

with using �̂ = 1, which results in identifying the true transformation parameter for about

80 - 90% of the simulated data sets.

In Figure 1 only the data sets for which a transformation has been suggested, are consid-

ered in the graphs for the �-Plot, (c) to (e). We should keep in mind that these �gures
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Figure 1: Estimated �-values for data sets containing neither dispersion nor location e�ect
(Scenario 1)

(a) �-Method (Original) (b) �-Method (s = 1)
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(c) �-Plot (s0) (d) �-Plot (Box) (e) �-Plot (Dong)
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only represent about 10 - 20% of the data sets, and imagine very high peaks at � = 1,

i. e. add 1.62, 1.79 and 1.69 to the corresponding bars.

Consequently the �-Plot yields very good results in identifying the true transformation

parameter, especially the procedure based on the suggestion by Box.

For the case of three e�ects in
uencing the mean of the response, the suggested transfor-

mation parameters are compared in Figure 2. Obviously the Original �-Method attains

best results, while the �-Method assuming one dispersion e�ect as well as the �-Plot

by Box also yield reasonable results. (Here the proportion of data sets with �̂ = 1 is

comparable.)

Histograms covering Scenarios 2 and 4 are given in the appendix (Figure B.1 and Figure

B.2). Altogether, in the situation of data without dispersion e�ects, the estimation of �

evidently improves with increasing number of location e�ects.

Di�erent outcomes are attained in the case of one e�ect in
uencing the variation (and

also the mean) and additional adjustment e�ects. Figure 3 summarizes the results for
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Figure 2: Estimated �-values for data sets containing three location e�ects (Scenario 3)

(a) �-Method (Original) (b) �-Method (s = 1)
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(c) �-Plot (s0) (d) �-Plot (Box) (e) �-Plot (Dong)
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Scenario 5 with two additional adjustment e�ects. The case of four additional e�ects on

the mean is covered in Figure B.3.

Both �gures reveal that only the �-Method that assumes one dispersion e�ect in advance,

attains consistent estimates for the true parameter �� = 1. Estimates resulting from the

original �-Method are biased, and the empirical distributions realized when using the

�-Plot procedures with Median-based variance estimator or the one proposed by Dong,

have their modus at � = 1 due to the formalization scheme. This implies that, for about

half of these cases, we identify none of the location e�ects.

The results for the last examined scenario, the situation of two dispersion e�ects (also

in
uencing the mean) and three additional adjustment e�ects are shown in Figure 4. Both

�-Methods lead to biased estimates, but the version assuming one dispersion e�ect yields

much better results. None of the �-Plot procedures leads to satisfying outcomes. Again,

for about 3=4 of the data sets forming the peaks in �gures (c) and (e), no location e�ect

is found.
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Figure 3: Estimated �-values for data sets containing one dispersion e�ect and two addi-
tional adjustment e�ects (Scenario 5)

(a) �-Method (Original) (b) �-Method (s = 1)
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(c) �-Plot (s0) (d) �-Plot (Box) (e) �-Plot (Dong)
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Figure 4: Estimated �-values for data sets containing two dispersion e�ects and three
additional adjustment e�ects (Scenario 7)

(a) �-Method (Original) (b) �-Method (s = 1)
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(c) �-Plot (s0) (d) �-Plot (Box) (e) �-Plot (Dong)
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To allow further comparison among the suggested transformations, summary statistics of

the empirical distributions are given in Table B.2 of the appendix.

5.2 Identi�cation of active contrasts

We now want to concentrate on determining design factor e�ects on the mean and varia-

tion of the response after carrying out the suggested transformation.

Percentages of data sets with wrongly identi�ed e�ects on mean and variation are repre-

sented in Figure 5 to Figure 8. We distinguish between results determined when using

the true underlying transformation parameter �� = 1 (reference) and the three methods

Original �-Method, �-Method with one dispersion e�ect and �-Plot. All possible combina-

tions of these four procedures (including the reference) with the three variance estimation

methods explained in Section 2 and the seven scenarios of Table 1, are considered.

Figure 5: Percentage of data sets with wrongly identi�ed e�ects for the true transformation
parameter �� = 1, depending on the variance estimation method
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For Figure 5 no transformation has been carried out. When using the Median-based

variance estimation or the estimation proposed by Dong, the percentage of data sets

for which e�ects have been wrongly identi�ed to be active, does not exceed 5% for any

scenario. In contrary the estimation method suggested by Box leads to very high propor-

tions of contrasts wrongly ascribed to in
uence the variation and still proportions mostly

above 5% with wrongly identi�ed e�ects on the mean.
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Figure 6: Percentage of data sets with wrongly identi�ed e�ects, transformation parameter
� estimated by Original �-Method, depending on the variance estimation method
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Figure 6 illustrates the according proportions in case of � being estimated by the Original

�-Method. Again, the variance estimation method based on the Median and the sugges-

tion by Dong attain results meeting the required level. The estimation used by Box

performs even worse than before, especially for Scenarios 5 to 7, that include e�ects on

the variation. (Note that the proportion for scenario 7 using the method by Box is 58%.)

Using the �-Method that assumes one dispersion e�ect in advance to estimate the trans-

formation parameter �, the proportion of data sets with wrongly identi�ed e�ects on the

variation increases for all scenarios that do not contain such e�ects and tends to the 5%

level for the remaining. Only the results attained by the estimation method used by Box

exceed this level by much (compare Figure 7).

Figure 8 shows the results attained by estimating the transformation parameter via �-

Plot. In this case the proportion of wrongly identi�ed e�ects on the variation almost

reduces to zero for all scenarios but the �rst, when using the variance estimators \M"

and \D". The procedure suggested by Box does again not meet the required 5% level,

neither for dispersion nor for location e�ects. Focusing on the wrongly identi�ed mean

e�ects, both other methods lead to satisfying results for at least one location e�ect.
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Figure 7: Percentage of data sets with wrongly identi�ed e�ects, transformation parameter
� estimated by �-Method assuming one dispersion e�ect (s=1), depending on the variance
estimation method
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Figure 8: Percentage of data sets with wrongly identi�ed e�ects, transformation parameter
� estimated by �-Plot, depending on the variance estimation method
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Up to this point we only focused on wrongly identi�ed e�ects. In the following we will

concentrate on the number of data sets for which e�ects on the mean and variation have

been identi�ed correctly, i. e. we consider the power of the underlying test procedures. We

distinguish among data sets for which no e�ects are identi�ed, denoted by \zero", those

for which at least one, but not all of the underlying e�ects are identi�ed, denoted by \not

all", and those for which the underlying e�ects are all identi�ed correctly, denoted by

\correct". Of course these proportions and the proportion of data sets for which at least

one e�ect has been wrongly identi�ed, add up to 100%.

Figure 9: Identi�ed e�ects on the variation, (i) � = 1 (reference); (ii) �̂ from Original
�-Method; (iii) �̂ from �-Method with s = 1; (iv) �̂ from �-Plot

(a) Scenario 5 (1,3) (b) Scenario 6 (1,5)
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(c) Scenario 7 (2,5)
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Figure 9 covers identi�ed e�ects on the variation. Therefore only the last three scenarios

that include such in
uences, are considered. In (a) and (b) it is only possible to identify

one or none e�ect (\correct" or \zero"), and the �-Method assuming one dispersion e�ect

clearly yields the best results. In (c) only the Original �-Method performs much worse

than the other two methods.

All these graphics reveal that the variance estimation method suggested by Box does

always lead to higher proportions of correctly (as well as wrongly) identi�ed dispersion

e�ects. The other two methods in comparison tend to identify zero or not all e�ects rather

than all of the underlying or even wrong ones.

Finally Figure 10 summarizes the proportions of data sets for which factors with location

e�ects are identi�ed correctly. All scenarios which include in
uences on the mean, are

considered. For the �rst scenario (a), the �-Plot performs best, but for all other scenarios

both of the �-Method procedures attain larger proportions of correctly identi�ed e�ects,

regardless of the variance estimation method used. If dispersion e�ects are present, the

�-Method with s = 1 exceeds the Original �-Method in terms of correctly identi�ed

location e�ects. We observe again that the variance estimation method used by Box

attains higher proportions of correctly identi�ed e�ects than the other two methods. The

proportion of data sets for which at least one of the underlying e�ects on the mean has

been revealed, is largest for the �-Plot procedure in almost all of the considered cases.

In addition, tables containing the proportions visualized in this section are given in the

appendix (Table B.3 to Table B.7).
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Figure 10: Identi�ed e�ects on the mean, (i) � = 1 (reference) (ii) �̂ from Original
�-Method (iii) �̂ from �-Method with s = 1 (iv) �̂ from �-Plot

(a) Scenario 2 (0,1) (b) Scenario 3 (0,3)
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(c) Scenario 4 (0,5) (d) Scenario 5 (1,3)
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(e) Scenario 6 (1,5) (f) Scenario 7 (2,5)
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5.3 Remarks, Explanations and Conclusions

In conclusion, the expectations expressed earlier are partly met. When using the Orig-

inal �-Method, active dispersion as well as location e�ects are identi�ed for about

(1 � CL) � 100 = 5% of the data sets as long as the variance estimation suggested

by Dong or the Median-based estimation is used. The �-Method procedure proposed

by Kunert and Lehmkuhl (1998), which assumes the presence of one dispersion ef-

fect, attains a higher proportion of active dispersion e�ects, but still almost meets the

required 5% level for location e�ects when using \M"or \D". Still focusing only on these

two variance estimation methods, the �-Plot procedures on the contrary leads to higher

proportions of data sets for which location e�ects are identi�ed for Scenario 1.

5.3.1 Variance estimation suggested by Box

Surprisingly, the variance estimators used by Box lead to higher proportions of data

sets with wrongly identi�ed contrasts in almost all of the considered combinations of

determined values for �, scenarios and location or dispersion e�ects. To further examine

and possibly explain this result, the t-values achieved when using the true transformation

parameter �� = 1 have been evaluated with regard to active dispersion and location

e�ects. To do so, all three considered variance estimation methods have been used as

described in Section 2. To allow visual impressions, histograms of t-values are drawn.

Figure 11: Empirical Distribution of Standardized E�ects, t-values computed by using
the Median-based variance estimator, � set to 1
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Figure 11 summarizes the t-values attained when using the Median-based variance esti-

mators. The higher proportions of entries in the classes containing the values �2
3
and 2

3
,
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is caused by the fact that one entry of the vector of t-values will always be standardized

to either �2
3
or 2

3
. This coincides with equations (11) and (12).

Figure 12: Empirical Distribution of unsigned maximum Standardized t-values, computed
with variance estimators suggested by Box, � set to 1
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Figure 12 summarizes the empirical distribution of the unsigned maximum of t-values

standardized by the variance estimators computed according to the suggestion given by

Box. These t-values have been approximated by the standard normal distribution, there-

fore the corresponding density function for the unsigned maximum of 15 standard normal

variables is added to the plots. In addition, the density function resulting from the more

appropriate t-distribution with 48 degrees of freedom is presented. Evidently the t-values

for dispersion as well as location e�ects di�er from standard normal. This implies that the

critical values that have been used for the estimation suggested by Box, are not appro-

priate. For location e�ects we should use the t-distribution instead of the approximated

normal distribution.

Figure 13: Empirical Distribution of Standardized E�ects, t-values computed with vari-
ance estimator proposed by Dong, � set to 1
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In Figure 13 the unsigned maximum of t-values standardized by using the method pro-

posed by Dong are presented. The t distribution with 0:69 � k degrees of freedom is as-

sumed to yield to conservative critical values, therefore the corresponding density function

for the unsigned maximum of 15 variables is added to the plots. The empirical distribu-

tion obviously di�ers from the density function achieved by the t distribution. For the

most interesting right tail, the density in fact approximates the empirical distribution.

To allow further comparison between the assumed critical values and empirical values

resulting from our study, the empirical 95% Quantile of the distribution of unsigned

maximum t-value is computed for each of the three methods. Table 2 opposes the critical

values computed respectively given in Table A.1 (see Section 2), and the empirical values.

Table 2: Critical Values (c) and Quantiles of unsigned maximum t-values (95%)

tMed

L (�) tMed

D (�) tBoxL (�) tBoxD (�) tDongL (�) tDongD (�)

c 3.669 3.669 2.928 2.928 3.776 3.776

95 % 3.662 3.597 3.071 3.532 3.767 3.715

When analyzing Table 2 we should recall that the numerators of t-values needed to identify

location e�ects are normal, while the numerators of t-values for dispersion e�ects are

only approximately normal. For the methods \M"and \D", the empirical 95% quantiles

of unsigned maximum t-values are not far below the critical values. For the variance

estimation method used by Box both the empirical values exceed the critical value.

We presume that the application of the delta method is the reason for the large di�erence

between critical value and empirical quantile for dispersion e�ects. The variance of these

e�ects is underestimated systematically, which can also be noticed in Figure 12. The

discrepancy for location e�ects is due to the normal approximation and can be avoided

by using the t-distribution.

5.3.2 Conclusions

When analyzing data and searching for an appropriate transformation, the advantages of

using the �-Plot as suggested by Box are obvious. It is much more convenient to examine

a plot and choose a transformation by eye than just using a computed transformation.
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In addition, the �-Plot gives more information about the behaviour of design factor and

interaction e�ects for various values of �. On the other hand the variance approximation

for dispersion e�ects made by Box (1988) appears not to be appropriate, and therefore

this procedure might lead to wrongly identi�ed e�ects. Furthermore, the fact that a

sequence of �-values is considered, might introduce arti�cial location e�ects.

A good alternative to the �-Plot is given by the �-Method as used by Kunert and

Lehmkuhl (1998). This method allows for one dispersion e�ect to estimate the trans-

formation parameter. Consequently, it leads to better results if such e�ects are present,

but still yields satisfying outcomes for situations without in
uences on the variation of

the response.

We conclude that using this method combined with the use of the variance estimator

proposed by Dong (1993) to estimate the variance of e�ects on the variation, and the

estimator suggested by Box (1988) to estimate the variance of in
uences on the mean,

yields a good compromise in terms of transformation parameter estimation and the num-

ber of data sets with wrongly as well as correctly identi�ed e�ects.
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Appendix A: Description of Methods

Critical Values

Table A.1: Critical values for identifying active e�ects when using the Median-based
variance estimation

k CL = 0 :9 CL = 0 :95 CL = 0:99

7 3.09933 3.87517 6.21262

15 3.15836 3.66889 4.96019

31 3.22513 3.59241 4.43574

63 3.31978 3.60575 4.23010
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�-Plot Formalization

For the description of the formalized �-Plot in �gure A.1 the following sets are required:

D0 = f� : tD(�) does not lead to active dispersion e�ects g ;

D1 = f� : tD(�) leads to exactly one dispersion e�ect g ;

: : :

Dk�1 = f� : tD(�) leads to exactly k � 1 dispersion e�ects g

and DE (�) = f p : tD(�)p implies Dispersion E�ect gp=1;::: ;k ;

LEDE (�) = f p : tL(�)p implies Location E�ect gp=1;::: ;k n DE(�) :

Figure A.1: Flow-chart for the Formalized �-Plot procedure

Step 1.k-1

Dk�1 = ; ?

Step 1.2

D2 = ; ?

Step 1.1

D1 = ; ?

Step 1.0

D0 = ; ?

Step 2

9� 2 D1 :
LEDE (�) 6= ; ?

Step 2

9� 2 D0 :
LEDE (�) 6= ; ?

Step 2

9� 2 Dk�1 :
LEDE (�) 6= ; ?

-

-

-

-

No

No

No

No

-

-

Yes

Yes

-Yes

?Yes

?

?

Yes

Yes

...

...
...

�
��	 No

�
��	

�
��	

No

No

END

no real suggestion,
use original data (�̂ = 1),
check for dispersion e�ects

END
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END

�̂1 = arg max
� 2 D1 :
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END

�̂k�1 = arg max
� 2 Dk�1 :
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Appendix B: Tables and Figures

Estimation of �

Figure B.1: Estimated �-values for data sets containing one location e�ect (Scenario 2)

(a) �-Method (Original) (b) �-Method (s = 1)
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(c) �-Plot (s0) (d) �-Plot (Box) (e) �-Plot (Dong)
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Figure B.2: Estimated �-values for data sets containing �ve location e�ects (Scenario 4)

(a) �-Method (Original) (b) �-Method (s = 1)
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(c) �-Plot (s0) (d) �-Plot (Box) (e) �-Plot (Dong)
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Figure B.3: Estimated �-values for data sets containing one dispersion e�ect and four
additional adjustment e�ects (Scenario 6)

(a) �-Method (Original) (b) �-Method (s = 1)
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(c) �-Plot (s0) (d) �-Plot (Box) (e) �-Plot (Dong)
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Table B.2: Parameters characterizing the empirical distribution of estimates for the trans-
formation parameter �

estimation of � (0,0) (0,0) (0,1) (0,3) (0,5) (1,3) (1,5) (2,5)

Mean 1.054 1.017 1.033 1.001 1.008 -0.826 0.015 -1.080
Original

Median 1.051 1.016 1.037 1.006 1.010 -0.808 0.033 -1.071
�-Method

Std. Dev. 2.682 2.667 1.581 0.849 0.591 0.966 0.677 0.746

Mean 1.017 0.994 1.032 0.998 0.998 0.736 0.914 -0.317
�-Method

Median 1.081 1.004 1.031 1.007 1.001 0.931 0.984 -0.164
with s = 1

Std. Dev. 3.137 3.094 1.975 1.007 0.700 1.373 0.784 1.047

Mean 1.005 0.997 1.089 1.081 1.089 -0.500 0.591 0.119
�-Plot (s0) Median 1.000 1.000 1.000 1.000 1.000 -0.500 0.500 0.500

Std. Dev. 2.199 2.190 3.386 2.069 1.345 2.390 1.804 2.609

Mean 1.013 1.020 1.080 1.014 1.023 1.364 1.660 1.106
�-Plot (Box) Median 1.000 1.000 1.000 1.000 1.000 2.000 2.000 1.500

Std. Dev. 0.972 0.928 2.103 1.238 0.896 2.792 1.847 2.254

Mean 1.046 1.038 1.194 1.291 1.191 -0.654 0.745 0.270
�-Plot (Dong) Median 1.000 1.000 1.000 1.000 1.000 -0.500 0.500 0.500

Std. Dev. 2.169 2.195 4.494 3.477 1.823 2.500 2.161 2.776
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Identi�ed Location and Dispersion E�ects

In Table B.3 and Table B.4 the data sets for Scenario 1 are divided into two parts with

5 000 data sets each. The small di�erences between the results for both parts justify the

number of data sets used in the simulation for all other scenarios.

We should keep in mind that the number of correctly identi�ed e�ects in scenarios with at

least two present e�ects on either the mean or the variation would be higher, if descending

critical values for more than one e�ect would have been used. The critical values are

conservative in such situations.

Table B.3: Percentage of data sets with wrongly identi�ed dispersion e�ects

� = �̂ (0,0) (0,0) (0,1) (0,3) (0,5) (1,3) (1,5) (2,5)

s0 4.42 4.68 4.80 4.58 4.32 2.72 2.62 0.78
� = 1 Box 18.30 18.60 18.74 17.76 19.02 17.94 15.78 7.86

Dong 4.48 4.82 4.78 4.70 4.20 3.62 3.44 1.12

s0 4.56 4.70 5.24 4.68 4.28 2.46 2.18 1.82
�̂ from Original

Box 18.62 19.08 17.96 15.42 16.82 30.20 22.80 42.06
�-Method

Dong 4.6 4.72 5.32 4.86 4.66 3.48 3.20 2.92

s0 6.72 6.86 8.58 7.68 6.96 3.88 3.36 2.08
�̂ from

Box 26.36 26.24 24.00 22.12 23.50 19.9 15.82 16.92
�-Method (s = 1)

Dong 6.98 7.46 9.24 8.00 7.68 5.48 4.50 2.40

s0 3.98 4.26 0.96 0.28 0.18 0.96 0.64 0.82
�̂ from

Box 17.72 17.86 12.84 10.90 12.44 13.94 11.62 11.48
�-Plot

Dong 4.12 4.46 0.82 0.14 0.32 0.86 1.00 1.06

Table B.4: Percentage of data sets with wrongly identi�ed location e�ects

� = �̂ (0,0) (0,0) (0,1) (0,3) (0,5) (1,3) (1,5) (2,5)

s0 5.00 4.82 2.46 0.36 0.06 0.48 0.00 0.04
� = 1 Box 7.40 7.30 6.66 2.98 1.90 3.26 1.72 1.86

Dong 5.22 4.58 3.60 0.94 0.36 1.24 0.28 0.06

s0 4.44 4.6 2.38 0.44 0.00 0.74 0.08 0.02
�̂ from Original

Box 7.36 7.42 7.06 4.40 3.18 8.32 4.58 6.62
�-Method

Dong 4.68 4.74 3.82 1.22 0.38 1.92 0.34 0.08

s0 4.90 4.94 2.64 0.38 0.02 0.40 0.04 0.02
�̂ from

Box 7.62 7.46 7.02 4.56 3.62 5.38 2.90 4.72
�-Method (s = 1)

Dong 5.20 5.1 3.92 1.18 0.40 1.46 0.34 0.12

s0 19.12 18.64 2.98 0.72 0.08 1.32 0.10 0.08
�̂ from

Box 10.68 10.74 7.12 5.24 3.84 8.80 6.36 4.48
�-Plot

Dong 15.80 15.08 3.80 2.48 0.28 3.34 0.26 0.18
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Table B.5: Percentage of data sets with identi�ed dispersion e�ects: no e�ects (\zero"),
at least one, but not all (\not all") or all e�ects correctly (\correct")

Scenario (1,3) (1,5) (2,5)

� = �̂ zero correct zero correct zero not all correct

s0 51.16 46.12 52.18 45.20 37.34 30.20 31.04
� = 1 Box 78.62 3.44 80.20 4.02 79.94 4.06 0.04

Dong 61.90 34.48 62.02 34.54 54.76 21.84 20.62
s0 14.22 83.32 27.86 69.96 2.66 12.88 82.50

�̂ from Original
Box 48.64 21.16 64.44 12.76 21.56 17.86 2.52

�-Method
Dong 17.12 79.40 34.04 62.76 3.16 13.14 80.36

s0 54.02 42.10 54.78 41.86 12.76 29.12 55.76
�̂ from

Box 74.16 5.94 79.00 5.18 55.88 14.76 0.36
�-Method (s = 1)

Dong 61.90 32.62 64.20 31.30 20.36 28.90 47.56

s0 15.18 83.86 20.32 79.04 15.26 19.08 64.52
�̂ from

Box 52.54 33.52 63.70 24.68 54.04 23.82 4.70
�-Plot

Dong 15.90 83.24 26.84 72.16 23.52 15.72 59.10

Table B.6: Percentage of data sets with identi�ed location e�ects: no e�ects (\zero"), at
least one, but not all (\not all") or all e�ects correctly (\correct")

Scenario (0,1) (0,3) (0,5)

� = �̂ zero correct zero not all correct zero not all correct

s0 70.54 27.00 48.28 42.96 7.98 22.62 69.04 8.2
� = 1 Box 91.30 2.04 91.80 2.18 0.00 92.26 2.38 0.00

Dong 81.1 15.30 74.6 18.72 4.32 59.22 31.32 8.56

s0 69.18 28.44 44.80 44.52 9.80 18.9 69.82 11.22
�̂ from Original

Box 90.58 2.36 90.06 2.14 0.00 89.18 2.64 0.00
�-Method

Dong 79.70 16.48 72.00 20.4 5.20 53.80 33.18 12.08

s0 68.40 28.96 43.54 45.06 10.64 18.12 69.56 12.28
�̂ from

Box 90.54 2.44 89.76 2.24 0.00 88.04 3.02 0.00
�-Method (s = 1)

Dong 79.30 16.78 71.24 20.90 5.62 51.70 34.14 13.30

s0 85.04 11.98 37.92 59.62 1.52 13.28 84.84 1.74
�̂ from

Box 91.24 1.52 88.02 2.70 0.00 86.18 3.62 0.00
�-Plot

Dong 86.26 9.92 50.88 44.30 0.98 39.46 57.36 2.08

Table B.7: Percentage of data sets with identi�ed location e�ects: no e�ects (\zero"), at
least one, but not all (\not all") or all e�ects correctly (\correct")

Scenario (1,3) (1,5) (2,5)

� = �̂ zero not all correct zero not all correct zero not all correct

s0 25.56 46.28 27.34 10.94 61.78 27.28 4.76 39.86 55.32
� = 1 Box 76.62 16.80 0.02 79.04 16.18 0.00 37.66 56.56 0.14

Dong 46.32 29.96 21.32 33.86 36.52 29.24 16.50 26.86 56.50

�̂ from s0 19.36 44.16 35.48 5.28 54.10 40.54 0.80 32.94 66.22
Original Box 69.1 18.76 0.26 65.64 24.42 0.02 20.28 61.52 2.06
�-Method Dong 36.84 32.42 28.04 19.92 36.84 42.82 3.38 30.14 66.26

�̂ from s0 22.60 44.62 32.08 8.32 58.74 32.90 2.24 35.8 61.94
�-Method Box 73.06 17.76 0.08 74.68 17.72 0.00 31.38 56.08 1.00
(s = 1) Dong 42.30 30.84 24.60 29.36 35.34 34.86 8.84 27.68 63.26

s0 16.70 68.58 12.96 4.42 83.24 11.94 1.62 71.08 25.88
�̂ from

Box 60.24 26.12 0.08 58.80 25.20 0.00 22.12 64.18 0.16
�-Plot

Dong 31.74 53.60 10.46 20.44 64.78 13.24 9.66 61.12 24.64
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