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                                            Summary 

The correlated Weibull regression model for the analysis of correlated binary data is 

presented. This regression model is based on Bonney’s disposition model for the regression 

analysis of correlated binary outcomes. Parameter estimation was done through the maximum 

likelihood method. The correlated Weibull regression model was contrasted with the 

correlated logistic regression model. The results showed that both regression models were 

useful in explaining the familial aggregation of oesophageal cancer. The correlated logistic 

regression model fitted the oesophageal cancer data better than the correlated Weibull 

regression model for both the non-nested and nested cases. Furthermore, the correlated 

logistic regression model was computationally more attractive than the correlated Weibull 

regression model.   

 

Key words: Correlated binary data; Non-nested disposition model; Nested disposition model;    

             Weibull distribution.  

 

1. Introduction 

 

The occurrence of correlated binary data in the study of familial diseases necessitates the 

characterisation of the dependence structure and the response probabilities associated with it. 

This calls for the introduction of the disposition model as a basis for analysing correlated 
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binary data. The development of the disposition model involves the derivation and 

parameterisation of the joint distribution on which the likelihood function is based. Here, the 

experimental unit is the nuclear family and the response is the disease status. In such studies, 

the methods of estimating the parameters of the models are of particular importance. Here, the 

maximum likelihood method will be used to analyse the models. Since closed-form solutions 

are not possible, the Newton-Raphson iteration method is applied to obtain maximum 

likelihood estimates of the parameter vector. With this study, potential risk factors for disease 

such as smoking and age can be identified. Also, it can be assessed whether the disease tends 

to aggregate in families as a result of common shared risks. Such knowledge is decisive for 

counselling in the aetiology of familial disease.  

 

Liang and Zeger (1986) introduced the use of ‘generalised estimating equations’ (GEE), an 

extension of generalised linear models, for estimating regression parameters in situations 

when the vector of association parameters is a nuisance parameter. The approach is to use a 

working generalised linear model for the marginal distribution of the outcome variable. The 

method gives efficient estimates of regression coefficients, although estimates of the 

association among the binary outcomes can be inefficient. Liang, Zeger and Qaqish (1992) 

discussed the use of ‘generalised estimating equations’ (GEE1 and GEE2) for regression 

analysis of multivariate binary data, focusing on the regression and association parameters. 

They recommended the use of GEE1, introduced by Liang and Zeger (1986), when the 

association parameter is considered as a nuisance and the number of clusters is large relative 

to the size of each cluster. On the other hand, GEE2, introduced by Zhao and Prentice (1990), 

is preferable to GEE1 when there are few clusters and/or the association parameter is of 

primary interest. In order to accommodate the many complicating features associated with 

real data, Bonney (1998) derived joint distributions for constructing likelihood functions. The 

central aspects of his work concern the notion of disposition to an outcome. He used a 

moment series representation to derive the joint distributions. Bonney (1998) and Kwagyan 

(2000) developed estimation procedures for the non-nested and nested cases of the disposition 

model. An application of the disposition model for the analysis of ordinal tree damage in 

forest ecosystem was treated by Kötting, Bonney and Urfer (1998). 

  

In this paper, computationally attractive models with readily interpretable dependence 

structure for the regression analysis of correlated binary data will be presented. Estimation is 

based on the log likelihood function, whose solutions can be solved by the Newton-Raphson 
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iteration. In Section 2, the standard Weibull distribution and its parameters will be discussed. 

Section 3 introduces the disposition model (Bonney, 1998) and its associated likelihood 

function. The first level extension of the disposition model will be considered in Section 4. 

Parameter estimation for the models will be treated in Section 5. Section 6 illustrates the 

methods with oesophageal cancer data. The last section contains a discussion of the methods 

and the experiences gained. 

 

 

2.     The standard Weibull distribution 

 

The purpose of this section is to review some basic concepts of survival theory of the standard 

Weibull distribution. This is necessary since there is a link between the constructions of the 

likelihood functions of the standard Weibull distribution and the correlated Weibull 

regression model. This link will be discussed at the end of Section 3.  

 

Consider the two-parameter Weibull distribution denoted by ),(W~T ρφ  )0,0( >ρ>φ , 

where T is the lifetime of a living organism or a product, or the time until the occurrence of 

some specified event, φ  is the shape parameter and ρ  is the scale parameter, and let 

n21 T,...,T,T  be a random sample of size n from T.  

 

The probability density function (PDF), which is sometimes also called the unconditional 

failure rate, is given by 



 >ρ−φρ

=ρφ
φ−φ

otherwise    0,

 0,  t ),texp(t 
),;t(f

1

T     (2.1) 

 

where φ  > 0, ρ  > 0 are real parameters (Gross and Clark, 1975). 

 

The cumulative distribution function (CDF)  





>ρ−−
≤

=≤=ρφ φ  0  t ),texp(1 

0   t0,
)tT(P),;t(FT    (2.2) 
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is called the lifetime distribution or failure distribution. If T represents time at death of an 

individual, ),;t(FT ρφ  is the probability that an individual dies before time t. On the other 

hand, if T represents age of first occurrence of a certain event (e.g., chronic disease), then 

),;t(FT ρφ  represents age of onset distribution of the event (disease) (Gross and Clark, 1975; 

Elandt-Johnson and Johnson, 1980). 

 

The survival function (SF), which is defined as the probability of an individual surviving 

beyond time t, is given by 

   )texp(),;t(F1)tTPr()t(S TT
φρ−=ρφ−=>=    (2.3) 

 

(Gross and Clark, 1975; Elandt-Johnson and Johnson, 1980). In survival analysis, )t(ST  is 

more commonly used, instead of its complementary function, ),;t(FT ρφ .   

 

The hazard function (HF), which characterises the instantaneous failure rate when T = t, 

conditional on survival to time t, is defined mathematically as 

   





∆
≥∆+<<=

→∆ t

)tT|ttTtPr(
lim)t(h

0t
T     (2.4) 

 

(Gross and Clark, 1975). The hazard function, also termed the failure rate, may also be 

defined as a measure of  proneness to failure. This can also be expressed as 

   1
Te

T

T

T t)t(Slog
dt

d

)t(S

)t(S
dy

d

)t(h −φφρ=−=−=     (2.5) 

 

(Gross and Clark, 1975; Nelson, 1972). For values of the shape parameter, φ , less than 1, the 

hazard function is a decreasing function, for φ  = 1, the Weibull distribution is an exponential 

distribution and has a constant failure rate, and for φ  > 1, it is an increasing function of t 

(Nelson, 1972). An increasing hazard rate indicates that a unit of age t is more likely to fail in 

a given increment of time than it would be in the same increment of time at an earlier age. For 

example, the probability that an individual survives to age 71, given that he has lived to age 

70, is greater than the probability that an individual survives to age 72, given that he has lived 

to age 71. Similarly, a decreasing hazard rate means that the unit is improving with age. For 

example, children who have undergone an operative procedure to correct a congenital 
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condition such as a heart defect represent a population exhibiting a decreasing hazard rate. 

This is because the principal risk of death is the surgery or complications immediately 

thereafter (Gross and Clark, 1975). A constant hazard rate results due to chance failures (e.g., 

accidents). Such random occurrences are often independent of age.  

 

The failure rate function of a discrete distribution { }∞
=0kkp  (e.g., geometric, binomial, poisson, 

etc.) is  

     

∑
∞

=

=

kj
j

k

p

p
)k(h       (2.6) 

(Barlow and Proschan, 1965). We note that in this case 1)k(h ≤ . 

 

From (2.1), (2.3) and (2.5), it follows that 

     )t(S)t(h)t(f TTT = .     (2.7) 

 

Any distribution of survival times can be characterised by the three equivalent functions 

)t(fT , )t(hT  and )t(ST .  

 

In observational studies of the time to failure of units (e.g., breakdown of a machine, death of 

an individual), a group of data may be incomplete in the sense that some units may not have 

failed by the end of the study, or may have been withdrawn before the end of the study. Such 

data are said to be censored (Daintith and Nelson, 1989).  

 

Censoring is said to be on the right when the item or subject is observed prior to failure or 

death. Since the event time is larger than the time of observation, such an observation 

provides information on the survival function, )t(ST , evaluated at the time of observation       

(Klein and Moeschberger, 1997).  

 

On the other hand, censoring is said to be on the left when failure or death occurs prior to 

some designated censoring time. Since the event time has already occurred, such an 

observation provides information on the cumulative distribution function, )t(FT , evaluated at 

the time of observation (Klein and Moeschberger, 1997).  
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An observation corresponding to an exact event time provides information on the density 

function of T at this time, that is, )t(fT  (Klein and Moeschberger, 1997). 

 

The likelihood function may take the following form: 

    ∏ ∏∏
∈ ∈∈

∝
Rj Lj

jTjT
Dj

jT )t(F)t(S)t(fL ,     (2.8) 

 

where, D is the set of death times, R the set of right-censored observations and L is the set of 

left-censored observations (Klein and Moeschberger, 1997). If the data set comprises only 

right-censored and left-censored observations, the above likelihood function reduces to   

    ∏ ∏
∈ ∈

∝
Rj Lj

jTjT )t(F)t(SL .     (2.9) 

 

The following are some examples on censored data. 

 

Ex. 1: In a particular clinical trial, suppose that all n patients are followed until death. Their 

recorded survival times are n1 t,...,t , and it is assumed that the death density function for the 

jth patient is given by the Weibull density function. The likelihood function ),;t(L ρφ  is given 

by 

   ∏∏
=

φ−φ

=

ρ−φρ=ρφ=ρφ
n

1j
j

1
j

n

1j
j )texp(t),;t(f),;t(L              (2.10) 

 

(Gross and Clark, 1975). 

 

Ex. 2: Suppose that we only know that out of n individuals starting at time zero, r died before 

time 't , and (n – r) survived beyond 't  (i.e., censored data). The statistical model for this set 

of data is binomial, so that the likelihood function is    

   rn
T

r
T ]);'t(S[)];'t(F[

r

n
),;t(L −θθ





=ρφ               (2.11) 

 

(Elandt-Johnson and Johnson, 1980). 
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3.  The non-nested disposition model 

 

Disposition, as defined by Bonney, is the tendency of an individual or group to manifest an 

outcome (e.g., to be affected by a disease). The central aspect of the development of the 

disposition model is to derive joint distributions that directly capture aggregation, if there 

should be any. In this section, there will be a brief presentation of the disposition model 

(Bonney, 1998) and its associated joint distribution function.  

 

Consider a binary outcome Y = 1 or 0, with q 0  group-specific covariates, )Z,...,Z(Z
0q001

T
0 = , 

and p individual-specific covariates, )X,...,X(X jp1j
T
j = , n,...,1j = , measured on several 

groups of individuals. We consider two types of dispositions here: the group disposition, δ0 , 

which is determined by the group-specific covariates, Z0, and the individual disposition, δ j  

(for individual j), which is determined by the group-specific covariates, Z0, and the 

individual-specific covariates, jX , n,...,1j = .  

 

Define the group or overall disposition, δ0 , by      

δ
µ
α0

0

0

= ,       (3.1) 

where µ 0  is the baseline (i.e., Xj = 0, j = 1,…,n) disposition under no aggregation and α 0  is 

the relative disposition. Then, α 0  < 1 corresponds to positive aggregation, α 0  = 1 

corresponds to no aggregation, and α 0  > 1 corresponds to negative aggregation. 

 

The logit of the group disposition can be written as  

)Z(D)Z(M
1

log 0000
0

0 +=
δ−

δ
,    (3.2) 

where 
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M Z0 0
0

01
( ) log=

−
µ

µ
      (3.3) 

and 

D Z0 0
0

0

0

01 1
( ) log log=

−
−

−
δ

δ
µ

µ
.    (3.4) 

 

We term M Z0 0( )  the logit of group disposition assuming no aggregation or the cluster logit 
mean risk and D Z0 0( )  the excess disposition due to aggregation or the excess cluster logit 
disposition due to dependence among members of a group. 

 

From (3.3) and (3.4), it follows that 

µ 0
0 0

1

1
=

+ −exp{ [ ( )]}M Z
, δ0

0 0 0 0

1

1
=

+ − +exp{ [ ( ) ( )]}M Z D Z
  (3.5) 

and therefore 

α
µ
δ0

0

0

0 0 0 0

0 0

1

1
= =

+ − +
+ −

exp{ [ ( ) ( )]}

exp{ [ ( )]}

M Z D Z

M Z
.    (3.6) 

Now, we decompose the logit of the individual disposition as 

)X(W)Z(D)Z(M
1

log jj0000
j

j ++=
δ−

δ
 � � � jθ ,   (3.7) 

j = 1,…,n, where )Z(M 00  and )Z(D 00  are as defined above, and W Xj j( )  is a function of the 

individual-specific covariates. It follows that 

)]}X(W)Z(D)Z(M[exp{1

1

)exp(1

1

jj0000j
j ++−+

=
θ−+

=δ ,        (3.8)  

j = 1,…,n. 
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The joint probability for a group or cluster becomes 

∏∏
=

−

=

δ−δα+−α−===
n

1j

y1
j

y
j0

n

1j
j0nn11

jj )1()y1()1()yY,...,yY(P ,           (3.9) 

with α 0  and δ j  as defined in (3.6) and (3.8). Explicit derivation of the joint distribution can 

be found in Bonney (1998). If α 0 1=  or 0)Z(D 00 = , equation (3.9) reduces to 

∏
=

−δ−δ===
n

1j

y1
j

y
jnn11

jj )1()yY,...,yY(P ,              (3.10) 

that is, the independence case. Explicit parameterisations for M Z0 0( )  and D Z0 0( )  are 

obtained by the linear models 

M Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +ξ ξ ξ                (3.11) 

and 

D Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +γ γ γ .              (3.12) 

 

The set of parameters to be determined in the model is 

),...,,,...,,,...,(),,( p1q000q00000 00
ββγγξξ=βγξ=λ . 

 

It is now convenient to compare and contrast the standard Weibull distribution with the 

correlated Weibull regression model. We denote the likelihood function of the joint 

distribution in Equation (3.9) by )y|(Lk λ , K,...,1k = :   

∏∏
=

−

=

δ−δα+−α−=λ
n

1j

y1
j

y
j0

n

1j
j0k

jj )1()y1()1()y|(L ,               

           

))]}X...Xexp(1()Z(D)Z(M[exp{1

1

jpp1j10000
j β++β−++−+

=δ , j = 1,… ,n, and recall that 

the likelihood function for the standard Weibull distribution based on (2.9) is  
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    ∏ ∏
∈ ∈

∝
Rj Lj

jTjT )t(F)t(SL .      

 
The following differences are observed. (1) In the case of the standard Weibull distribution, 

the response variable is a variable of time (continuous or discrete), whereas the response 

variable in Bonney’ s disposition model presented in this paper is the disease status, and 

therefore binary. (2) As opposed to the standard Weibull distribution whose most applied 

characterisation revolves around its role in extreme value theory (e.g., daily maximum or 

minimum temperatures, precipitation, etc.), Bonney’ s model is fitted with parameters like jδ  

and 0α  to model the effect of influential factors and to capture aggregation in families, if 

there should be any. Here, variables of time (e.g., age) are regarded as covariates  in the 

model. Our concern, however, is to determine the link between the standard Weibull 

distribution and the correlated Weibull regression model. Suppose T is the length of time until 

the occurrence of a certain disease, and consider a group of size n with survival times 

n1 T,...,T , where jT  is censored or not at time jt  with the censoring indicator 0y j =  if 

censored, and 1y j =  if uncensored. Then, in the above likelihood functions, 0y j =  in the 

correlated Weibull regression model corresponds to the survival function in the standard 

Weibull distribution, and 1y j =  in the correlated Weibull regression model corresponds to 

the cumulative distribution function in the standard Weibull distribution. In other words,  

 

 

∏
=

δ−α+α−=λ
n

1j
j00k )1()1()y|(L  

             ∏
= β++β−++−+

β++β−++−
α+α−=

n

1j jpp1j10000

jpp1j10000
00 ))]}X...Xexp(1()Z(D)Z(M[exp{1

))]}X...Xexp(1()Z(D)Z(M[exp{
)1(   

 

corresponds to ∏
∈

∝
Rj

jT )t(SL  = ∏
∈

φρ−
Rj

j )texp(   

and 

∏
= β++β−++−+

α=λ
n

1j jpp1j10000
0k ))]}X...Xexp(1()Z(D)Z(M[exp{1

1
)y|(L  
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corresponds to ∏∏
∈

φ

∈

ρ−−=∝
Lj

j
Lj

jT )}texp(1{)t(FL , with the above parameters as previously 

defined. Thus, in this sense, the two likelihood functions are equivalent.    

 

4.  First level nesting 

Consider a binary outcome Y = 1 or 0, with q 0  group-specific covariates, )Z,...,Z(Z
0q001

T
0 = , 

q subgroup-specific covariates, )Z,...,Z(Z iq1i
T
i = , m,...,1i = , and p individual-specific 

covariates, )X,...,X(X ijp1ij
T
ij = , m,...,1i = , in,...,1j = , measured on several individuals. 

Bonney (1998) considered three types of dispositions here: the group (cluster) disposition, δ0 , 

which is determined by the group-specific covariates, Z0 , the subgroup disposition, δ i ,          

m,...,1i = , which is determined by the group-specific covariates, Z0 ,  and the subgroup-

specific covariates, Z i , m,...,1i = , and the individual disposition, δ ij , m,...,1i = ,                      

in,...,1j = , which is determined by the group-specific covariates, Z0, the subgroup-specific 

covariates, Z i , m,...,1i = , and the individual-specific covariates, X ij , m,...,1i = ,         

in,...,1j = .  

 

Then, δ0  and δ i  are given by      

δ
µ
α0

0

0

=       (4.1)  

and 

δ
µ
αi

i

i

= ,      (4.2) 

i = 1,… ,m, where µ 0  is the group baseline disposition under no aggregation, µ i  is the 

subgroup baseline disposition under no aggregation, α 0  is the relative disposition with 

respect to the group and α i  is the relative disposition with respect to subgroup i, i = 1,… ,m.  
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The logit of the individual disposition is then  

)X(W)Z(D)Z(M)Z(D)Z(M
1

log ijijiiii0000
ij

ij ++++=
δ−

δ
 � �  ijθ ,         (4.3)   

i = 1,… ,m, j = 1,… , in , where   

M Z0 0
0

01
( ) log=

−
µ

µ
               (4.4) 

is the cluster logit mean risk, 

D Z0 0
0

0

0

01 1
( ) log log=

−
−

−
δ

δ
µ

µ
    (4.5) 

 is the excess cluster logit disposition due to dependence among members of the group, 

M Zi i
i

i

( ) log log=
−

−
−

µ
µ

δ
δ1 1
0

0

,     (4.6) 

i = 1,… ,m, is the excess on the logit scale of the mean risk in subgroup i above that due to the 
cluster disposition,              

D Zi i
i

i

i

i

( ) log log=
−

−
−

δ
δ

µ
µ1 1

,    (4.7) 

i = 1,… ,m, is the excess on the logit scale of the disposition in subgroup i that cannot be 

explained by the overall cluster disposition and the differences in µ i , i = 1,… ,m, and      

W Xij ij( ) ,       (4.8) 

i = 1,… ,m, j = 1,… , in , is a function of the individual-specific covariates.  

 

From (4.4)-( 4.7), it follows that 

µ 0
0 0

1

1
=

+ −exp{ [ ( )]}M Z
, δ0

0 0 0 0

1

1
=

+ − +exp{ [ ( ) ( )]}M Z D Z
,   

µ i
i iM Z D Z M Z

=
+ − + +

1

1 0 0 0 0exp{ [ ( ) ( ) ( )]}
, i = 1,… ,m, 
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δ i
i i i iM Z D Z M Z D Z

=
+ − + + +

1

1 0 0 0 0exp{ [ ( ) ( ) ( ) ( )]}
, i = 1,… ,m,        (4.9) 

and therefore 

α
µ
δ0

0

0

0 0 0 0

0 0

1

1
= =

+ − +
+ −

exp{ [ ( ) ( )]}

exp{ [ ( )]}

M Z D Z

M Z
,              (4.10) 

α
µ
δi

i

i

i i i i

i i

M Z D Z M Z D Z

M Z D Z M Z
= =

+ − + + +
+ − + +

1

1
0 0 0 0

0 0 0 0

exp{ [ ( ) ( ) ( ) ( )]}

exp{ [ ( ) ( ) ( )]}
,           (4.11) 

i = 1,… ,m, and 

,
)]}X(W)Z(D)Z(M)Z(D)Z(M[exp{1

1

)exp(1

1

ijijiiii0000ij
ij ++++−+

=
θ−+

=δ

                                (4.12) 

i = 1,… ,m, j = 1,… , in . 

 

With these, the joint probability for the first level nesting becomes 

P Y y Y y ymn mn ij
j

n

i

m

i i

i

( ,..., ) ( ) ( )11 11 0
11

1 1= = = − −
==

∏∏α  

    + α α α δ δ0
1

111

1 1 1( ) ( ) ( )− − + −








−

===
∏∏∏ i ij i ij

y
ij

y

j

n

j

n

i

m

y ij ij
ii

.        (4.13) 

 

The derivation of the joint distribution can be found in Bonney (1998).  Explicit 

parameterisations for M Z0 0( ) , D Z0 0( ) , M Zi i( )  and  D Zi i( )  are obtained by the linear 

models 

M Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +ξ ξ ξ ,              (4.14) 

D Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +γ γ γ ,              (4.15) 
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iqq1i1ii Z...Z)Z(M ξ++ξ= ,                (4.16) 

i = 1,… ,m, and 

D Z Z Zi i i q iq( ) ...= + +γ γ1 1 ,                (4.17) 

i = 1,… ,m.  

 

The set of parameters to be determined in the model is 

),...,,,...,,,...,,,...,,,...,(),,( p1q1q000q1q000 00
ββγγγγξξξξ=βγξ=λ . 

 

If 1i =α  or 0)Z(D ii = , i = 1,… ,m, equation (4.13) reduces to the non-nested case. Also, if 

10 =α  and 1i =α , or equivalently, if 0)Z(D 00 =  and 0)Z(D ii = , equation (4.13) reduces 

to the independence case.  

 

5.  Estimation 

 

The method of maximum likelihood is used to determine estimates of the unknown model 

parameters, ),,( βγξ=λ . Since closed-form solutions are not possible here, the Newton-

Raphson iteration method is applied to obtain estimates of the parameter vector. The Newton-

Raphson method requires the first and second derivatives of the log likelihood functions. To 

estimate the parameters in the model, the joint function of all the clusters is required, but there 

is no loss of generality if the joint function of a cluster is considered.  

The maximum likelihood estimations for the correlated logistic regression model have been 

done by Bonney (1998) and Kwagyan (2000). The presentation in this paper is based on their 

work. 
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5.1  Parameter estimation for the non-nested case 

Denote the likelihood function of the joint probability in Equation (3.9) by )y|(Lk λ ,             

K,...,1k = :   

∏∏
=

−

=

δ−δα+−α−=λ
n

1j

y1
j

y
j0

n

1j
j0k

jj )1()y1()1()y|(L             

 = j0

n

1j
j0 L)y1()1( π

=

α+−α− ∏ ,               (5.1.1) 

 

where ∏
=

π =
n

1j
jj LL , jj y1

j
y
jj )1(L −δ−δ=  and   

))]}x...xexp(1()Z(D)Z(M[exp{1

1

jpp1j10000
j β++β−++−+

=δ , j = 1,… ,n.                

 

This gives the score function 









λ+αλ=λ ∑

=

n

1j
jk

*
0kk U)(B)(A)(U ,             (5.1.2) 

 

k = 1,… ,K, where )(*
0 λα = ( ) )Z(M1)Z(D)1( 0000000 δλ

δα−δ+
δλ
δδ−− ,  

k

n

1j
jj0

k L

)y1(L

)(A








−−α

=λ
∏

=
π

, k = 1,… ,K, j
k

0
k L

L
)(B π

α
=λ , K,...,1k = , 
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The Hessian matrix is given by 
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The Fisher Information matrix is 
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5.2    Parameter estimation for the first level nesting 
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The corresponding score function is 
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The Hessian matrix is given by 

 

Tm

1i
i

m

1i
i0k

k

m

1i

n

1j
ij

T*
0

*
0k

k

m

1i

n

1j
ijm

1i
ikk UU)1(B

L

)y1(

A
L

)y1(

)(HB)(H

ii











α−

−
+αα

−
+



 λ=λ ∑∑

∏∏∏∏
∑

==

= == =

=

      + *
0Tk

Tm

1i
i

*
0

T*
0

m

1i
ik

k

m

1i

n

1j
ij

AUUB
L

)y1(
i

α
δλ
δ+

















α+α





−

∑∑
∏∏

==

= = ,         (5.2.3) 

k = 1,… K, where 

T*
i

*
ii

i

n

1j
ij

i A
L

)y1(

H

i

αα
−

=
∏

= +











α








+








α

−

∑∑
∏

==

= T*
i

n

1j
j

T
n

1j
j

*
ii

i

n

1j
ij

ii

i

UUB
L

)y1(

 

             + 

T
n

1j
j

n

1j
ji

i

n

1j
iji

ii

i

UUB
L

)y1()1(

















−α−

∑∑
∏

==

=  + 







∑

=

in

1j
ji HB  + *

iiA α
δλ
δ

 

and 

 























βδ−−

=λ

)Xexp(XX)y(0000

00000

00000

00000

00000

)(H

ij
TT

'ijijijij

j  

 























β−−−−
−
−
−
−

δ−δ−

)X2exp(XXwZwZwZwZ

wZZZZZZZZZ

wZZZZZZZZZ

wZZZZZZZZZ

wZZZZZZZZZ

)1(

ij
TT

ijij
T
i

T
i

T'
0

T'
0

T
i

T
ii

T
ii

T'
0i

T'
0i

T
i

T
ii

T
ii

T'
0i

T'
0i

T'
0

T
i

'
0

T
i

'
0

T'
0

'
0

T'
0

'
0

T'
0

T
i

'
0

T
i

'
0

T'
0

'
0

T'
0

'
0

ijij ,  

 

)]Xexp(X[w ij
T

ij β= , m,...,1i = , n,...,1j = . 

 

 

 

 



 20 

For the correlated logistic regression model, we have the following corresponding expressions 

for ijδ , )y|(U j λ  and )(H j λ :    
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The Fisher information matrix for the first level nesting is 
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k = 1,… ,K, where   
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ij β= , m,...,1i = , j = 1,… , in , and A k
* , Bk

* , *
iA , *

iB , *
iU , and *

jU , are the 

resulting values of A k , Bk , iA , iB , iU , and jU  evaluated at y = 0 (see also Kwagyan 

(2000) for the logistic version).  

 

 

6. Illustrations 

 

Data were collected in the Yangcheng County, Shanxi Province, the Peoples Republic of 

China, designed to assess the presence of familial aggregation of oesophageal cancer. There 

were 2951 clusters (families), parents and siblings forming two subgroups of individuals.  

Cluster sizes were distributed as follows: 

 Cluster size     3       4       5       6       7       8       9      10    11   12   13     

 Number of clusters 623   819   659   412   232   129   43    23     8     2     1 

 

The independent variables were smoking status, alcohol, age, sib size (sibsize) and mean sib 

age (meansibage). There were no group-specific covariates. The subgroup-specific covariates 

consisted of sibsize and meansibage, and the individual-specific covariates consisted of 

smoking status, alcohol and age. Smoking status was coded as 0 for non-smokers and 1 for 

smokers, alcohol was coded as 0 for non-drinkers and 1 for drinkers, and age was measured in  

years. The response variable Y was coded as 0 for unaffected and 1 for affected. 
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6.1 Model for the non-nested case 

 

In this subsection, we shall determine the correlated logistic and the correlated Weibull 

regression models. We shall also compare the model fit of the two regression models.  

 

We note that there are no group-specific covariates in the data set. Therefore, the cluster logit 

mean risk, )Z(M 00 , and the excess cluster logit disposition due to dependence among 

members of a group, )Z(D 00 , become 0000 )Z(M ξ=  and 0000 )Z(D γ= , respectively (see 

Equations (3.11) and (3.12)). We also note that in the non-nested case aggregations in 

subgroups are not considered. The only variables in the model are therefore the individual-

specific covariates: smoking status ( )X1 , alcohol ( )X2  and age ( )X3 . Thus, the function that 

describes the effects of the individual-specific covariates becomes 

)XXXexp(1)X(W 3j32j21j1jj β+β+β−= , j = 1,… ,n, for the correlated Weibull regression 

model and 3j32j21j1jj XXX)X(W β+β+β= , j = 1,… ,n, for the correlated logistic regression 

model, for the jth individual. The set of parameters to be determined is therefore    

),,,,(),,( 3210000 βββγξ=βγξ=λ .   

 

Table 6.1.1 presents the results of the correlated Weibull regression model (left panel) and of 

the correlated logistic regression model (right panel). The table shows regression parameter 

estimates, standard deviations of the parameter estimates and Wald statistics for determining 

whether the parameters in the model are needed. 

 

We note that as opposed to the correlated logistic regression model, where a positive value of 

the coefficient of the individual-specific covariate indicates increased probability for a 

disease, a negative value of the coefficient of the individual-specific covariate is indicative of 

increased probability for a disease for the correlated Weibull regression model. For both 

models, a positive value of the coefficient of the group-specific covariate increases the 

probability for a disease. For example, the negative coefficient of age in the correlated 

Weibull regression model indicates that age increases the probability for oesophageal cancer. 

All the coefficients in Table 6.1.1 are statistically significant in both the correlated Weibull 

regression model and the correlated logistic regression model, when compared to the (1- 2
α )th 

quantile of the standard normal distri�������������	-level of 0.05  (i.e., 96.1u 975.0 = ).   
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Table 6.1.1: Parameter estimates, standard deviations and Wald statistics using the 

correlated Weibull and the correlated logistic regression models  

Variable Parameter Correlated Weibull regression model Correlated logistic regression model 

  Parameter 

estimate 

Standard 

deviation 

Wald 

statistic 

Parameter 

estimate 

Standard 

deviation 

Wald 

statistic 

constant 
00ξ  -2.4630 0.0387 63.6434 -3.7617 0.0934 40.2752 

constant 
00γ  0.1272 0.0319 3.9875 0.0510 0.0250 2.0400 

smoking 
1β  -0.6657 0.2673 2.4905 0.5006 0.0597 8.3853 

alcohol 
2β  2.1720 0.2581 8.4153 -1.1208 0.1701 6.5891 

age 
3β  -0.0262 0.0027 9.7037 0.0364 0.0016 22.7500 

Critical value for the rejection of the null hypothesis: 96.1u 975.0 = . 

 

To test the hypothesis of ‘no aggregation of oesophageal cancer in a cluster’ , we test the 

hypothesis that 0)Z(D 00 = , or more specifically, 000 =γ . We do this by performing the 

likelihood ratio test and the Wald’ s test.  

 

For the correlated Weibull regression model, the log likelihood under the null hypothesis is 

0479.5673Llog 0 −=  and the log likelihood based on the full data is 1874.5665Llog 1 −= . 

The likelihood ratio test statistic is therefore WLR  = -2[-5673.0479-(-5665.1874)] 

= 15.7210, which is significant when compared to a chi-square distribution with one degree of 

freedom )8415.3.,e.i( 2
1 =χ . For the correlated logistic regression model, the corresponding 

values are 8614.5494Llog 0 −=  and 7594.5492Llog 1 −= .  The likelihood ratio test statistic 

is therefore LLR  = -2[-5494.8614 – (-5492.7594)] = 4.2040, which is also significant. 

 

We now perform the Wald’ s tests. In Table 6.1.1, the value of 00γ  is 0.1272 for the correlated 

Weibull regression model. The value of the Wald statistic is 9875.3ZW = , and the critical 

value is 96.1u 975.0 = . Because WZ  > 975.0u , the null hypothesis will be rejected (see, for 

example, Garthwaite et al., 1995). The conclusion is that there is evidence of familial 

aggregation of oesophageal cancer. For the correlated logistic regression model, the Wald 
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statistic is 0400.2ZL = . Since the Wald statistic is large, the null hypothesis will be rejected, 

indicating that there is significant aggregation of oesophageal cancer in the families.  

 

We finally compare the model fit of the correlated Weibull regression model with that of the 

correlated logistic regression model using the Akaike’ s Information Criterion (AIC) (Akaike, 

1974). The AIC of the correlated Weibull regression model is 

1W Llog2AIC −= + 2(number of estimated parameters) = 11330.3748 + 10 = 11340.3748,  

and that of the correlated logistic regression model is 

1L Llog2AIC −= + 2(number of estimated parameters) = 10985.5187 + 10 = 10995.5187.  

The correlated logistic regression model has minimum AIC, and therefore fits the data better. 

 

 

6.2 Model for the first level nesting  

 

Since there are no group-specific covariates in the data set, the cluster logit mean risk, 

)Z(M 00 , and the excess cluster logit disposition due to dependence among members of a 

group, )Z(D 00 , become 0000 )Z(M ξ=  and 0000 )Z(D γ= , respectively (see Equations (4.14) 

and (4.15)). Two subgroups are nested within each family: parents form the first subgroup 

(i.e., i = 1) and siblings the second (i.e., i = 2). No variables are available for subgroup 1. The 

variables for subgroup 2 are sibsize and meansibage. Therefore, the excess on the logit scale 

of the mean risk in group 2 above that due to the cluster disposition, )Z(M 22 , and the excess 

on the logit scale of the disposition within group 2 that cannot be explained by the overall 

cluster disposition and differences in baseline disposition under no aggregation in the group, 

)Z(D 22 , become 22221122 ZZ)Z(M ξ+ξ=  and D Z Z Z2 2 1 21 2 22( ) = +γ γ , respectively (see 

Equations (4.16) and (4.17)).  

 

The individual-specific covariates are smoking status )X( 1 , alcohol )X( 2  and age )X( 3 . 

Thus, the function that describes the effects of the individual-specific covariates becomes 

)XXXexp(1)X(W 3ij32ij21ij1ijij β+β+β−= , i = 1,… ,m, j = 1,… , in , for the correlated Weibull 

regression model and 3ij32ij21ij1ijij XXX)X(W β+β+β= , i = 1,… ,m, j = 1,… , in , for the 



 25 

correlated logistic regression model, for the jth individual in group i. The set of parameters to 

be estimated is therefore ),,,,,,,,(),,( 32121002100 βββγγγξξξ=βγξ=λ .    

 

Table 6.2.1 provides analysis of the oesophageal cancer data. The table gives maximum 

likelihood estimates, standard deviations and Wald statistics for the correlated Weibull 

regression model (left panel) and the correlated logistic regression model (right panel).  

 

Table 6.2.1: Parameter estimates, standard deviations and Wald statistics using the 

correlated Weibull and the correlated logistic regression models  

Variable Parameter Correlated Weibull regression model Correlated logistic regression model 

  Parameter

estimate 

Standard 

deviation 

Wald 

statistic 

Parameter

estimate 

Standard 

deviation 

Wald 

statistic 

constant 
00ξ  -4.4426 0.1154 38.4974 -4.6036 0.1243 37.0362 

sibsize 
1ξ  0.0172 0.0146 1.1781 0.0183 0.0152 1.2039 

meansibage 
2ξ  0.0412 0.0019 21.6842 0.0365 0.0021 17.3810 

constant 
00γ  -0.0965 0.0342 2.8216 -0.1042 0.0342 3.0468 

sibsize 
1γ  -0.0117 0.0149 0.7852 -0.0179 0.0123 1.4553 

meansibage 
2γ  0.0077 0.0015 5.1333 0.0081 0.0013 6.2308 

smoking 
1β  -1.2751 0.3082 4.1372 0.5812 0.0654 8.8869 

alcohol 
2β  2.2346 0.3157 7.0782 -0.9633 0.1768 5.4485 

age 
3β  -0.0247 0.0046 5.3696 0.0191 0.0020 9.5500 

Critical value for the rejection of the null hypothesis: 96.1u 975.0 = . 

 

The negative coefficient of age in the correlated Weibull regression model indicates that age 

increases the probability for oesophageal cancer. With the exception of 1ξ  and  1γ , all the 

coefficients of both regression models are statistically significant.  

 

The hypotheses to be tested are 0:H 0 =γ  and 0:H1 ≠γ . The following critical values will 

be used in this subsection for the rejection of 0H : 96.1u 975.0 =  for the 1-parameter Wald’ s 

test and 8147.72
95.0,3 =χ  for the likelihood ratio test. 
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The Wald’ s test rejects the null hypotheses '0'00 =γ  and '0'2 =γ  of both the correlated 

Weibull regression model and the correlated logistic regression model, since the test statistics 

are large. The conclusion is that there is significant aggregation of oesophageal cancer in 

families and in siblings. It follows that the meansibage affects the familial aggregation of 

oesophageal cancer. On the other hand, the null hypothesis '0'1 =γ  of both disposition 

models cannot be rejected, since the test statistics are small. Hence, the sibsize does not affect 

the familial aggregation of oesophageal cancer.     

  

For the correlated Weibull regression model, the maximised log likelihood from which γ  is 

omitted is 6679.5361Llog 0 −= , and the full log likelihood is 3685.5323Llog 1 −= . The 

likelihood ratio statistic is therefore WLR  = -2[-5361.6679 – (-5323.3685)] = 76.5988.  

For the correlated logistic regression model, the corresponding values are 

7628.5353Llog 0 −=  and 0410.5309Llog 1 −= . The likelihood ratio statistic is therefore  

LLR  = -2[-5353.7628 – (-5309.0410)] = 89.4436. Thus, for both disposition models, 

significant familial aggregation is observed (see, for example, Wilks, 1938). 

 

The AIC of the correlated Weibull regression model is 7370.10664AICW =  and that of the 

correlated logistic regression model is 0820.10636AICL = . The correlated logistic regression 

model minimises the AIC, and is therefore considered to be the more appropriate model.  

  

 

7.  Discussion 

 

The correlated Weibull regression models for correlated binary data have been presented. The 

objective of the analyses has been to assess familial aggregation of diseases. In Section 6, the 

model fit of the correlated Weibull regression model was compared to that of the correlated 

logistic regression model using the Akaike Information Criterion (AIC). The model that 

minimised the AIC was considered to give a better fit to the oesophageal cancer data. The 

correlated logistic regression model fitted the data better than the correlated Weibull 

regression model for both the non-nested and nested cases. On the whole, the correlated 
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logistic regression model was computationally more feasible than the correlated Weibull 

regression model.  

 

The data processing was done using the statistical program package SAS, and computations 

were made in the C programming language. Further research has to be done to study the 

performance of the correlated Weibull regression model as the level of nesting gets deeper. 
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