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Abstract

The development of high�quality products or production processes can of�

ten be greatly improved by statistically planned and analysed experiments�

Taguchi methods proved to be a milestone in this �eld� suggesting optimal

design settings for a single measured response� However� these often fail

to meet the needs of today�s products and manufacturing processes� which

require simultaneous optimization over several quality characteristics� Cur�

rent extensions for handling multi�responses assume that all responses are

weighted beforehand in terms of costs due to deviations from desired target

settings� Such information is usually unavailable� especially with manufac�

turing processes� As an alternative solution� we propose strategies that use

sequences of possible weights assigned to each of the multiple responses� For

each weighting a design factor combination is derived� which minimizes a
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respective estimated multivariate loss function and is optimal with respect

to some compromise of the responses� This compromise can be graphically

displayed to the engineer� who can thereby gain much more insight into the

production process and draw more valuable conclusions�

� Introduction

The design of robust products through o��line quality control� before actual

manufacturing� has been popularized by the Japanese engineer and statis�

tician G� Taguchi� Robust parameter design tries to prescribe a setting of

design parameters that minimizes the e�ect of hard�to�control factors or noise

while still providing a high quality of the product or process� The classical

approach by Taguchi has already been widely extended and supplemented

	see Grize� �

�� Leon et al�� �
�
� Taguchi and Phadke� �
���� Most of this

research focuses on determining the optimal level settings of process param�

eters for products with a single measured quality characteristic� In practice�

however� for most products more than one quality characteristic is of inter�

est� A separate analysis of each response can yield some information about

the process� but this approach often results in con�icting recommendations

regarding the parameter setting� Possibly� a setting which simultaneously
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improves all responses is even missed or overlooked� Recent extensions of

robust parameter design strategies to the multi�response problem have in�

volved the analysis of desirabilities 	Derringer and Suich� �
���� combining

signal�to�noise ratios 	Chen� �


� and applications of principal component

analysis 	Su and Tong� �


��

Pignatiello 	�

�� has provided a straightforward extension to the multi�

response case� following the Taguchi philosophy� However� a serious problem�

atic issue in the approaches of Pignatiello 	�

��� Vining 	�

�� and others�

in practical o��line planning processes� is the assumption of a pre�speci�ed

cost matrix� An engineer will� at this stage� rather be able to assign a relative

importance to each response than to specify actual costs incurred for speci�c

response values� Tong and Su 	�


� use the conversion of linguistic terms� in

which relative importances of the responses given by the engineer are trans�

lated into corresponding fuzzy numbers� But like most other approaches�

the authors consider only one cost matrix from which it can only be assumed

that a reasonable compromise is reached 	i� e� compromise design factor levels

are found that achieve relatively good results for all responses�� However� in

practice� a single response variable will often dominate the expected loss by

its large variability or large deviation from target� This implies that a �real

compromise� is attained in relatively few cases� since often a cost matrix used
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leads to factor levels optimized with respect to only one of the responses� We

therefore propose to consider a range of cost matrices simultaneously� instead

of specifying one �xed cost matrix� For each of these matrices� a respective

optimal design factor combination can be found and� at these combinations�

comparisons are then possible between predicted response means and vari�

ances�

Following the concept of multivariate robust parameter design� which is sum�

marized in Section �� a design factor combination is optimal if it minimizes

the expected loss� The loss itself� of course� depends again on the used cost

matrix� Speci�c choices are proposed and discussed in Section �� A better

understanding of these matrices is achieved by factoring each into a prod�

uct of �standardizing� and �weighting� matrices� Data�driven choices of the

standardizing matrix component are proposed� The notion of a joint opti�

mization plot is introduced in Section �� intended to visualize the e�ect of

di�erent weight matrices� In Section �� the proposed methods are applied to

a data set of sheet metal forming� We conclude with a short summary�
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� Multivariate Robust Parameter Design

Let a product or production process be considered� which can be charac�

terized by a vector of quality characteristics Y � 	Y�� � � � � Yp�
�� We further

presume� that a vector of �nite target values � � 	��� � � � � �p�
� is given� If

�r � � for any response Yr� the respective response will be transformed

to eYr � ��Yr with e�r � �� The random vector Y is assumed to depend

functionally on a vector of design parameters x � 	x�� � � � � xk�
� � X and

a noise vector Z � 	Z�� � � � � Zl�
� � Z� that is Y � f	x�Z�� The distribu�

tion of Y can vary conditioned on the controllable design parameter values

x�� � � � � xk� For a �xed x� the random vector Y will be denoted by Yjx with

expectation E	Yjx� � �	x� and covariance matrix Cov	Yjx� � �	x� �h�
�rs	x�

�
r������ �p

s������ �p

i
� Note that� in the sense of Taguchi� we not only take the

response mean to depend on the design parameters but also the covariance

matrix� In most cases� it is assumed that Yjx� or a suitable transformation

thereof� follows a multivariate normal distribution for each x � X �

The case of a single response 	p � �� is treated by the traditional Taguchi

approach 	see Taguchi and Phadke� �
���� The overall quality of the product

is thereby seen in terms of loss resulting from the deviation of quality char�

acteristics from their target values� Taguchi measures this loss for a speci�c
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outcome y by the quadratic loss function� loss	y� � c	y � ���� where c is a

constant� To derive this constant� it su�ces to know the costs occurring for

a single deviating value y� The aim of robust parameter design methods is

to �nd combinations of the design parameter values which minimize the risk

function R	x� � EZ	loss	Y jx� � EZ	f	x�Z��� representing the expectation

of the loss taken over the noise� The use of signal�to�noise ratios to achieve

this aim� as propagated by Taguchi� has been supplemented by Leon et al�

	�
�
�� They describe distributional situations for which the maximization

of signal�to�noise ratios equals the minimization of the expected loss and add

the notion of performance measures independent of adjustment�

As an extension of the quadratic loss function to multivariate quality char�

acteristics the quadratic form

loss	y� �
�
y � �

��
C
�
y � �

�
	��

has been proposed by Pignatiello 	�

��� where C denotes a p�p dimensional

symmetric cost matrix� For the resulting risk function it holds that

R	x� � EZ
�
loss	Yjx�

�
� EZ		f	x�Z�� ���C	f	x�Z�� ���

� trace
�
C�	x�

�
�
�
�	x�� �

��
C
�
�	x�� �

�
� 	��

Hence� minimizing the risk function will� roughly spoken� simultaneously

bring the mean on target and minimize variances�covariances� On the basis
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of suitably designed experiments� di�erent strategies have been proposed to

solve the parameter design problem 	see e� g� Pignatiello� �

�� p� ������ In

a direct approach� empirical means and covariances are derived for every

design point i based on ni � � replications or noise factor combinations�

The resulting risk

�R	xi� � trace 	CS	xi�� �
�
��	xi� � �

��
C
�
��	xi� � �

�
� i � �� � � � � m �

��	xi� � 	�y�i� � � � � �ypi�� where �yri � �

ni

Pni

u�� yriu and S	xi� �
h�
srs	xi�

�
r������ �p

s������ �p

i
with elements srs	xi� � �

ni��

Pni

u��	yriu� �yri�	ysiu� �ysi� is �tted by a linear

model in the design factors� This approach has a major disadvantage in that

we do not really gain information about the multivariate process but rely

solely on the chosen weight matrix and the optimal factor setting achieved

by minimizing the associated expected loss� Furthermore� losses achieved

across di�erent weight matrices C are not comparable�

In addition� Pignatiello 	�

�� has suggested a response model based strat�

egy of relating the expected values of the responses to the design variables

through �tting a response model� From this� the predicted expected loss is

derived by

bR	x� � trace
�
Cb�	x�

�
�
�b�	x�� �

��
C
�b�	x� � �

�
� 	��

where the �tted mean b� results from the response model� However� it re�






mains rather unclear how an estimated covariance matrix b�	x� � which varies

in x � can be derived from a response model as proposed by Pignatiello 	�

���

We therefore suggest to �t separate models for the mean and variance of the

responses and minimize the expected loss resulting from these models� For a

single response� such model building has been addressed by the dual response

approach which can be used for replicated experiments 	possibly replicates

over noise factors�� see Grize 	�

��� Namely� 	after suitable transformation�

separate linear models for the mean and variance of each response variable

Yr� r � �� � � � � p� are used� For the mean� a weighted linear model is �tted

to the sample means �yri resulting in

bE	Yrjxi� � �r� �
kX

j��

�rj xij � 	��

with weights being the reciprocal of the estimated variances� These can

be obtained for instance by �tting a linear model to the sample variances

b�rr	xi� � b��r	xi� resulting in

dV ar	Yrjxi� � 	r� �
kX

j��

	rj xij

or by a multiplicative variance model resulting in

dV ar	Yrjxi� � exp

�
	r� �

kX
j��

	rj xij

�
� 	��

The latter can be �tted by using a gamma GLM with log link 	compare Engel

and Huele� �

��� When using the �rst model� the parameter space needs
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to be restricted in order to yield positive variance estimates� For this reason

and the interpretive ease of the second model� 	�� is more commonly used

for variances� Factors xj with non�signi�cant in�uences may be discarded

from these models by setting �rj � � or 	rj � �� respectively�

If the number of replicates is small� as in the extreme case of unreplicated

experiments� variance model 	�� may also be based on the squared residuals

of the �tted mean model e�iu �
�
yriu � bE	Yrjxi�

��
� The �tting procedure

for both models 	�� and 	�� then involves iteratively reweighted least squares

	IRLS�� which alternates between �tting the mean and variance model� al�

ways using the actual estimates 	see Engel and Huele� �

���

For correlated responses� estimates for the correlation or covariance structure

are also needed� at least if non�diagonal cost matrices are to be applied� Chiao

and Hamada 	����� propose the model

�Corr	Yr� Ysjxi� � tanh

�

rs� �

kX
j��


rsj xij

�

for �tting models to the empirical correlation between two responses�

Joint mean and variance estimation can further employ double generalized

linear models if dependencies between means and variances cannot be re�

moved by data transformation� Generalized linear model approaches as pro�

posed by McCullagh and Nelder 	�
�
� or Nelder and Lee 	�

�� are powerful






tools to handle such dependencies as well as arbitrary distributions from the

exponential family�

All previously described techniques can be used to derive an estimated risk

function bR	x� which can then be minimized with respect to design parameters

x after a cost matrix C has been speci�ed� The question of how to �nd a

sensible matrix C will be addressed in the subsequent section�

� Choice of the matrix C

In case of one quality characteristic� the constant c from the quadratic loss

function is traditionally determined by a cost associated with a speci�c re�

sponse value� Similarly Pignatiello 	�

�� suggests a cost related matrix C�

where the choice of the entries of C is based on the loss su�ered for a speci�c

number of arti�cial responses� However� such an approach has certain disad�

vantages� For higher dimensional response vectors Y� costs must be known

for a large number of response vectors� Moreover� it is quite unrealistic to

assume that such costs can always be speci�ed beforehand� This is espe�

cially true in the development stage of a product� The choice of the matrix

C will therefore often be quite arbitrary and consequently� optimal design

parameter values are derived� for which it is rather obscure what they opti�
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mize� Hence� we derive and suggest alternative ways to determine a matrix

C in two steps� First we investigate the in�uence of speci�c entries of C on

the loss function� After which� we partition the matrix C into a product of

�standardization� and �weight� matrices�

��� E�ect of the entries of C on the loss

Every entry crs of the matrix C can have a major in�uence on the multivariate

loss in 	��� as can easily be seen from

loss	Y� � 	Y � ���C	Y � �� �

pX
r��

pX
s��

	Yr � �r�crs	Ys � �s�

�

pX
r��

	Yr � �r�
�crr �

pX
r ��s

	Yr � �r�crs	Ys � �s��

Obviously the diagonal elements of C give weight to the deviation of the

respective responses from their target values� The o��diagonal elements dis�

tinguish between a pure additive structure� consisting of weighted losses of

the single responses and the integration of combined deviations� In particu�

lar� entries crs � � penalize deviations of the two responses Yr and Ys from

their respective target values �r and �s in opposite directions 	one positive�

one negative� while entries crs � � penalize deviations in the same direction

	both positive or both negative�� Depending on the weight one wishes to

assign� these values should be chosen so that crs �
��pcrrcss� pcrrcss� for
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s �� r� This restriction assures that C is positive de�nite� i�e� the case of

negative losses 	 	Y � ���C � 	Y � �� � �� is excluded�

To demonstrate the e�ect of nonzero� o��diagonal entries crs� we will consider

a simple example with two cases� Let Y� and Y� represent two quality char�

acteristics with target values �� � �� � � and suppose we assign the same

weight to both individual deviations� c�� � c�� � �� The o��diagonal ele�

ments of C are chosen so that c�� � c��� where both equal ��� in the �rst case

and ���� in the second case� We can then compare the two corresponding

loss functions�

loss�		y�� y��
�� � y�

�
� y�

�
� y�y�

and

loss�		y�� y��
�� � y�

�
� y�

�
� y�y��

The e�ect of the two choices of o��diagonal elements can be seen in Figure ��

The positive weighting c�� � ��� leads to increasing losses if both responses

simultaneously deviate in the same direction from the target zero� Contrary

to this� the loss increases if both responses deviate in di�erent directions for

the negative weight c�� � �����

This simple example already indicates that non�zero o��diagonal elements of

C have a rather complex in�uence on the loss function and should only be

selected after serious considerations�
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Figure �� Two example loss functions loss		y�� y��
��
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��� Partitioning of C and data�driven choice of the

standardisation part

We now consider the problem of choosing a useful matrix C� Quality char�

acteristics are often measurable on di�erent scales� But whether one of the

quality characteristic is measured in grammes or in kilo grammes� for exam�

ple� optimal design speci�cations should remain the same�

We therefore consider the possibility that the response vector y may also be

measured on a di�erent scale �y � V y � where V denotes a diagonal 	p� p�

matrix� We assume that the target value is in this case also determined on

the alternative scale� �� � V � � The resulting change in the loss function can

��



be seen from

loss	�y� �
�
V y � V �

��
C�y

�
V y � V �

�
�
�
y � �

��
V �C�yV

�
y � �

�
� 	��

where the cost matrix is labeled by �y to denote the use of transformed re�

sponses� Comparison with the loss function 	�� shows that the loss will be

invariant to a scale transformation if V �C�yV � Cy � for any diagonal matrix

V � To �nd cost matrices with this invariance property� we suggest a factor�

ization of Cy into a product of a diagonal standardization matrix Ay and

an actual weight matrix W according to Cy � A�
yWAy� One possible and

natural choice for W would be the identity matrix W � I �

It follows then from

V �C�yV � V �A�
�yWA�yV

that the condition V A�y � Ay ensures the loss function will be una�ected

by a scale transformation� Consequently� we further examine selection of the

standardization matrix� A�y� As a �rst possible choice and example consider

a diagonal matrix with the inverses of the target values as entries� which will

be denoted by A��y� Namely� assuming non�zero target values� we de�ne�

A��y � diag
�

����r�r������ �p

�
� 	
�

��



For the transformed response �y and target �� it holds that

V A���y � V diag
�

��� ��r�r������ �p

�
� diag

�
�vr�vr�r�r������ �p

�
� diag

�
����r�r������ �p

�
� A��y�

so that the use of A��y prevents the loss and the expected loss from being

a�ected by a scale transformation of the responses� If� however� one of the

target values �r� r � �� � � � � p� equals zero� as will often be the case� A��y can

not be applied�

We next consider data�driven standardization matrices� Ay� Assume that we

have a sample 	y�� � � � �yn� of n observed response vectors� each of length p�

yl � 	y�l� � � � � ypl�
�� l � �� � � � � n� We suppose� that the experimental design

is based on m di�erent design points xi � 	xi�� � � � xik��� i � �� � � � � m� For

each design point the number of available replications in the experiment is

denoted by ni� adding up to n �
Pm

i�� ni total observations�

As noted in Section �� direct estimates or predictions from models of the

mean and covariance can be substituted into the risk function 	�� to achieve

an estimated risk� Since any sensible moment estimator or prediction model

will possess linear operator properties 	as true expectations do�� it can be

assumed that bE	 �Yjx� � V b�	x� and dCov	 �Yjx� � V b�	x�V �� In which cases

the estimated expected loss function 	�� of a transformed response is given

��



by

bR �Y	x� � trace
�
V �C�yV b�	x�

�
�
�b�	x�� �

��
V �C�yV

�b�	x�� �
�
�

and it is obvious then that the invariance condition V �C�yV � Cy trans�

fers automatically to the estimated risk� As a straightforward data�driven

alternative to A��y we propose the use of

A��y � diag

��	 �

m

mX
i��

bE	Yrjxi�

��
r������ �p

�A
for the minimization of the estimated risk� As a third possibility� we introduce

A��y � diag

��	 �

m

mX
i��

dV ar	Yrjxi�
����
r������ �p

�A �

For the two data�based choices above� we have

V A���y � V

�
 diag

��	 �

m

mX
i��

bE	 �Yrjxi�

��
r������ �p

�A��
� diag

��	 vr
vrm

mX
i��

bE	Yrjxi�

��
r������ �p

�A � A��y

and

V A���y � V diag

��	 �

m

mX
i��

dV ar	 �Yrjxi�

����
r������ �p

�A
� diag

��	 v�r
v�rm

mX
i��

dV ar	Yrjxi�
����
r������ �p

�A � A��y �

Hence� the choice of either standardization matrix A��y or A��y� will result in

the same estimated loss function for y or V y�
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If we want the estimated risk function to be scale and translation invariant�

only standardization matrix A��y meets the requirement� This can easily be

veri�ed by substituting �y � V y � b� b � Rp � in the previous argument�

� Joint optimization plot �JOP�

After choosing an experimental design� estimating mean and covariance mod�

els for the p response variables� and selecting a standardization matrix for

the partitioning of C as described in the last section� we can now minimize

the resulting estimated risk for every desired weight matrix W � However�

our objective is to provide �optimal� factor settings for di�erent possible

matrices W � such that the �nal choice of optimal factor combinations rests

on knowledge about the e�ect of a weight matrix selection on the resulting

predicted response means and variances� We will �rst introduce a graphical

tool� called a joint optimization plot� for visualizing the optimal design set�

tings and consequent response predictions associated with a given sequence

of weight matrices� Subsequently� the issue of de�ning such weight matrices

will be addressed�

We assume� for now� that a sequence of weight matrices is available� say

fWtgNs

t��� For each weight matrix Wt� the minimization of the correspond�
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ing estimated risk 	�� is then restricted to a k�dimensional sphere covering

the experimental region� where k denotes the number of design factors 	the

dimension of an x�vector�� Every point within this sphere represents a pos�

sible design factor combination� A determination of optimal factor settings

uses k �dimensional polar coordinates� so that the optimization routine can in

fact be performed on a k �dimensional cube� which is supported by common

statistical software packages� It might be necessary though to use di�erent

starting points for this minimization procedure to ensure a global optima is

obtained�

Performing the optimization procedure for each considered weight matrix

Wt� t � �� � � � � Ns� results in Ns optimal factor settings and Ns associated

predicted means and variances� The computed results can be visualized

by separately plotting the optimal factor settings and associated predicted

response means 	� one standard deviation� by the corresponding sequence

of weight matrices fWtgNs

t��� Figure � illustrates the joint optimization plot

in the special case of two response variables and three design factors� The

weight matrix from fWtgNs

t�� corresponding to the �best compromise� can be

read o� the right �gure of the JOP by the engineer and transmitted to the

corresponding optimal factor settings displayed in the left �gure� Thereby�

we assure that the joint optimization is really based on process requirements�
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Figure �� Joint optimization plot for two response variables and three design
factors

Y� Y�

x�

x�
x�

bE�Y���b��Y��bE�Y��bE�Y���b��Y��
bE�Y���b��Y��bE�Y��bE�Y���b��Y��

W� W� � � � WNs W� W� � � � WNs

For higher�dimensional response vectors it can be advisable to produce sev�

eral JOPs� for instance by dividing the right �gure into two or more plots

on top of each other� The responses could for example be arranged by their

measurement scale to avoid too many vertical axes in one plot�

However� we still have to state the choice of a reasonable sequence of weight

matrices� For simplicity of exposition� we will focus on prescribing sequences

of diagonal weight matrices� However� if non�diagonal weight 	and cost�

matrices are applied� we shall assume that o��diagonal elements of a weight

matrix can be derived from the diagonal entries by a relation like wrs �

ewrs
p
wrrwss� for some desired �scaled� setting of o��diagonal elements ewrs �

	��� �� � speci�ed beforehand� However� as mentioned previously 	see Section

����� o��diagonal elements of the weight matrix W should be used with care�

�




Due to the above assumption� we only need to deal with the diagonal of W

which is denoted by w � 	w��� � � � � wpp�
�� Furthermore� note that the scale

of the assigned weights is inconsequential because the use of aw� a � Rnf�g

or w will lead to identical optimization results� Only the relative sizes of

the weights are important�

In general� de�ning a sequence of vectors w near �p seems to be a good start�

ing point since the entries of w are relative weights due to the standardiza�

tion discussed in section ���� Therefore� we de�ne the sequence fwtgNs

t�� � Rp

by

logwt � d log at 	��

with a �slope� vector d � Rp and flog atgNs

t�� � R an increasing equidis�

tant sequence within the interval �log alow� log ahigh� where alow� ahigh � ��

usually alow � a��high� In d� weight relations of interest can be speci�ed 	i�e��

proportionality sizes and directions�� The results in the JOP can be directly

related to flog atgNs

t��� Optimal factor settings achieved for wt are denoted

by xt � 	xt�� � � � � xtk��� t � �� � � � � Ns�

Let us consider some examples in order to illustrate the de�nition in 	�� and

its consequences for di�erent numbers of responses� For the special case of

two response values� there is only one ordering of interest� namely low� or
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high�weighting one of the responses� For instance� the sequence resulting

from d � 	�� ��� and alow � ����� ahigh � �� yields weight matrix diagonals

from w� � 	��� ��� to wNs
� 	��� ���� If three responses are considered�

conceivable choices are� for example the case of only one varying weight d �

	�� �� ��� as well as choices with two varying weights of di�erent �slopes� like

d � 	�� ��� ��� or even something like d � 	��� �� ��� 	e�g� anti�proportional

weighting�� With at de�ned as above� the three slopes result in weights

w� � 	��� �� ���� w� � 	���
p

��� ��� or w� � 	��� ��� ��� to wNs
� 	��� �� ����

wNs
� 	���

p
��� ��� or wNs

� 	��� ��� ���� respectively� Figure � visualizes the

e�ect of slope vector d � 	�� ��� ��� on associated weights�

Figure �� Sequence of weights in log scale and natural scale for �slope� vector
d � 	d�� d�� d��

� � 	�� ��� ���
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For more than two responses� a series of JOPs with weight matrix diagonals

de�ned iteratively based on the experience of weights used in a previous

��



JOP can be created� Using �tted mean and variance models� it seems also

reasonable to group responses which are not contradictory by using the same

slope in d for each such group� In addition� if there is reason to use a �basis

weight� di�erent from � for some of the responses� wt may be de�ned by

logwt � log e � d log at with desired vector of basis weights e � Rp �

With the de�ned scheme for weight matrices� we possess the means to handle

�compromise� optimization cases for which the joint optimization noticeably

depends on all responses as well as cases where single responses or groups of

responses are more important� The bene�t to be gained from the suggested

procedure will be elucidated in the following numerical example�

� Example

The aim of the considered experiment is the optimization of a process of high�

pressure sheet metal forming 	see Kleiner et al�� �


 and Skotarzik� ������ A

central composite design in two design variables 	K� blank holder force and D�

pressure of working media� is used� which has been combined with the factor

level combinations of the third design variable 	A� initial blank thickness� and

the one noise factor 	R� friction�� Both of the latter factors assume only two

levels� low and high� For this example we have two response variables� Area�

��



the area between the workpiece and the desired workpiece contour along a

cutting and RBT� the relative blank thinning� Target values are � for Area

and ���� for RBT� The response values are derived from numerical simulations

of the forming process by means of Finite Element Analysis� The data are

given in Table ��

Table �� Data of the FEA	simulation experiment

K D A Area RBT
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For the dual response approach� models for the mean and variance of both

responses are �tted separately by using the additive mean model and the

multiplicative variance model suggested in 	�� and 	��� Models for the means

are �tted �rst� For the response variable Area� only the three main e�ects

��



are signi�cant 	� � ������ For RBT� the main e�ect for K� though statistically

insigni�cant� has not been removed from the model since the interaction term

KD seems to be important� Initial mean models are

bE	Area� � ���
 � ���� K� ���� D � ��

 A

bE	RBT� � ����� � �����
 K � ���� D� ����� A� ����� D
�

� ����� KD � ������ DA �

Since we only have two replications which result from the two noise factor

settings� it seems to be more reasonable to �t a dispersion model for the

squared residuals� rather than for the standard deviation of two runs� This

results in constant variances for Area and a model only in D for the variance

of RBT� The variance model for RBT is justi�ed by Figure ��

Figure 
� Plot of residuals � squared residuals of the mean model for RBT versus
values of D
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Using iteratively reweighted least squares 	IRLS� methods for �tting the RBT
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model� we �nally get

bE	Area� � ���
 � ���� K� ���� D � ��

 A

dV ar	Area� � ���
�

bE	RBT� � ����� � �����
 K � ���� D� ����� A� ����� D
�

� ������ KD � �����
 DA

dV ar	RBT� � expf����� � ���� Dg �

Contour plots showing the e�ect of the design variables on the means are

given in Figure �� The response variable Area will be optimized by choosing

both K and A small and D large� but the target is not reached within the

experimental region� On the other hand� the target value of ���� for RBT

is attained for di�erent factor combinations within the experimental region�

However� obviously it is not possible to reach both targets simultaneously�

For the joint optimization of both responses� there is in this case no clearly

justi�able reason for a cost matrix with o��diagonal elements di�erent from

zero� Therefore� no model for the covariance of both responses is needed for

the simultaneous optimization�

We restrict the search for optimal design factor combinations to a sphere

around the center of the experimental region in order to get comparable re�

sults� i�e� to avoid ending up in �corners� of the experimental region� To cover

��



Figure �� Contour	Plots for estimated mean surfaces
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all experimental points� the radius has been chosen equal to max jjxijj �
p

��

where xi � 	Ki� Di� Ai�
�� i � �� � � � � m� For suggesting con�rmatory experi�

ments� it is also reasonable to use various increasing radii�

For carrying out the optimization procedure� the �rst suggested standard�

ization matrix A� cannot be applied to this data set since one of the target

values equals zero� The results when using standardization matrices A� or

A� are identical but shifted� if d � 	�� ��� is applied� To see this� consider

the use of arbitrary weights w��� w�� with A� and w�
��
� w�

��
with A�� This

��



results in crr � wrr � �A��
�

rr � r � �� � and c�rr � w�
rr � �A��

�

rr � r � �� ��

Since optimization results only depend on the ratio c���c�� for � � � di�

agonal cost matrices� we get the same result for both matrices� as long

as w���w�� � w�
��
�w�

��
� 	�A��

�

��
�A��

�

��
� �A��

�

��
�A��

�

��
� holds� Using 	�� and

d � 	�� ��� implies w�� � w�
��

� � and therefore log	at� � log	w��� �

log	w�
��

� � log	�A��
�

��
�A��

�

��
� �A��

�

��
�A��

�

��
� � log	a�t � � shift� Based on these

�ndings� we will only use standardization matrix A� due to its invariance

properties derived in Section ����

Figure � displays the joint optimization plot for alow � ��� ���� ahigh � � ���

resulting in log alow 	 ���
� and ahigh 	 ��
� and Ns � ���

Figure 
� JOP for A�� standardization by the standard deviation� r �
p

� and
�slope� vector d � 	�� ���
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Since log at � log	w���w���� the logarithm of the weight ratio is displayed on

the horizontal axis� If log	w���w��� equals zero� this corresponds to the use of

W � I� i� e� the identity matrix� The left hand side summarizes the optimal

factor settings for the three design variables while the right hand side shows

predicted response means 	plus ! minus one predicted standard deviation�

for the corresponding factor settings� In both parts of Figure �� negative

values of log at imply a greater weighting of Y� � RBT� while positive values

correspond to weight ratios greater than one and thus a higher weighting of

the variable Y� � Area�

From the JOP� it is now possible to decide which available compromise or

design setting is most desirable and should therefore be declared as being

the point of joint optimisation within the experimental region� Of course�

this decision has to be based on knowledge of the process and the purpose of

the manufactured pieces� In this example a reasonable choice might be the

compromise attained by using log	w���w���t � � � if for example the response

Area should not exceed the value �� and therefore the larger expectation and

standard deviation for RBT have to be tolerated� Whereas� if the response

RBT has to be lower than� say� ������ irrespectively of the Area� factor levels

associated with log	w���w���t � ���
 � might be considered� The optimal

factor settings and predictions for both choices are given in Table ��

��



Table �� Summary of optimal factor settings xt and predictions for mean and
variance �radius of sphere �

p
��

log
�
w��
w��

�
x
�
t � �Dt� Kt� At� bE�Y�jxt� bE�Y�jxt� dV ar�Y�jxt� dV ar�Y�jxt�

���� ��	�
� �����	� ����
� ����� ���
�� 	��
� ������	�

����
 ������� ���	
�� ��
�	 	����� ������ 	��
� ��������

We can further see from the previous �gures that all optimal factor settings

are reached on the boundaries of the considered spheres� i� e�
Pk

j�� x
�

jt �

D
�

t � K
�

t � A
�

t � �� 
 t � �� � � � � Ns� Therefore it might be possible to

reach further optimization by increasing the radius of the sphere� if the �tted

models also hold outside the experimental region� Results for the radius

r �
p

� are given in Figures 
 	Ns � ����

Figure �� JOP for A�� standardisation by the standard deviation� d � 	�� ����
r �

p
� �prediction outside experimental region�
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From the right tail of Figure 
� the predicted mean of RBT is below ������

while the response Area approaches zero� Using the same matrices W � a

further optimization seems possible� Results are given in Table ��

Table �� Summary of optimal factor settings ex and predictions �outside experi	
mental region� for mean and variance �radius of sphere �

p
��

log
�
w��
w��

� ex� � �D� K� A� bE�Y�jex� bE�Y�jex� dV ar�Y�jex� dV ar�Y�jex�
���� ��	�
� �����
� ���	
� 	��
� ������ 	��
� ������	�

����
 ������� �����	� ���
� �
�
�� ������ 	��
� �������


However� con�rmatory runs are needed to support the used univariate models

as well as the suggested optimal factor settings�

In order to show possible e�ects of o��diagonal elements in W � Figure �

displays the joint optimization plot� again for the standardization matrix

A�� and weight matrix W with w�� � w�� � ���
p
w��w��� Since we only

have two replications for each design point� estimation and modeling of cor�

relations will not be appropriate� since the correlation will always be either

�� or ��� Therefore� �	x� has been assumed to be diagonal� The use of

ew�� � ��� ensures that deviations from target of RBT and Area in the same

direction are penalized� This is the reason for the unexpected behaviour of

the optimization plot� namely the choice of design factor combinations that

lead to expected values for RBT below the target �� � ����� The use of

diagonal cost matrices as above seems to be advisable�

��



Figure �� JOP for A�� r �
p

�� d � 	�� ��� and ew�� � ���
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Overall it can be concluded that joint optimization plots provide valuable

information about response values� achieved by optimal choices of design

factor settings� It can be expected that equally good results can be achieved

for problems other than the described hydroforming process�

� Summary

In this paper we proposed a data�driven method to choose cost matrices for

the joint optimization of multiple responses in statistically designed exper�

iments� We further suggested suitable graphical tools to allow comparison

of di�erent factor choices and their implications for predictions of the means

��



and variances of the considered responses� Our method allows for compromise

optimization without requiring cost matrices that are di�cult to determine

and heavily in�uence the result of the analysis� On the contrary� our method

allows for great �exibility�
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