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Abstract: This paper deals with linear plus quadratic approaches aiming to �nd

a combined forecast for a scalar random variable from several individual forecasts

for that variable. When combining forecasts linear approaches have been used pre-

dominantly. One reason may be the well-known fact that the linear approach with

constant term is optimal with respect to the mean square prediction error loss, if

the single forecasts and the target variable follow a joint normal distribution. In this

paper no assumption is made on the type of the joint distribution. Its moments up

to order four, however, are assumed to be given for the derivation of the optimal

combination parameters. Three versions for the quadratic part of the combined fore-

cast are discussed. As a by-product a linear plus quadratic adjustment of a single

forecast is obtained. In order to apply these methods to empirical data the moments

of the joint distribution have to be estimated.
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1 Introduction

Suppose that we are given k forecasts f1; : : : ; fk for a scalar random variable y.

The forecasts are gathered in a random vector f , i.e. f = ( f1; : : : ; fk)
T. Our aim is

to obtain combined forecasts fcomb from the single forecasts fi which are optimal

within certain given classes of combinations.

Optimality in this paper is always understood as optimality with respect to the

mean square prediction error (MSPE). Given a forecast f for a random variable y
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the MSPE is given by

MSPE(f; y) = E[(y�f)2] = Var( y�f)+[E(y�f)]2 : (1.1)

It is a well-known fact (see e.g. Thiele, 1993) that a linear combination fb;c =

bTf + c with suitably chosen b = ( b1; : : : ; bk)
T 2 R

k and c 2 R is optimal among all

combinations if y and f follow a joint normal distribution.

In the absence of joint normality, however, it is worthwhile to consider nonlinear

forecast combinations. Stimulated by Taylor's series expansion formula we may

try to 'approximate' the target variable y by a linear plus quadratic function in f

fA;b;c = fTAf +bTf +c ; (1.2)

rather than by a linear function. Here c 2 R, b = ( b1; : : : ; bk)
T 2 R

k and

A =

0
BBB@

a11 a12 : : : a1k
a12 a22 : : : a2k
...

...
. . .

...

a1k a2k : : : akk

1
CCCA 2 R

k�k (1.3)

may be assumed to be symmetric without loss of generality, because it only appears

within the quadratic form fTAf .

In order to apply such a linear plus quadratic combination of forecasts two steps

have to be taken:

In the �rst step we derive the theoretically optimal combination parameters Aopt,

bopt and copt such that

MSPE(fAopt;bopt;copt; y) � MSPE(fA;b;c; y) (1.4)

for all symmetric matrices A, vectors b and scalars c. Clearly, the optimal linear

plus quadratic combination also outperforms the optimal linear combination fb�opt;c�opt
since the latter may be regarded as a linear plus quadratic combination with A = 0,

b = b�opt and c = c�opt.

For the determination of the optimal combination parameters we will assume that

the �rst to fourth order moments of the joint distribution of y and f exist. If this is

not the case, e.g. if the target variable y and the single forecasts fi are trended, then

appropriate transformations of y and f should be undertaken, e.g. di�erencing of

the time series of observations or consideration of relative changes. Since f1; : : : ; fk
are forecasts of y the same transformation should be appropriate for both, target

variable and forecasts.
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Furthermore, we have to assume that we know the �rst to fourth order moments of

the joint distribution of y and f . (This describes a state of knowledge between states 1

and 2 in the classi�cation scheme by Harville (1985). Here state 1 means complete

knowledge about the distribution whereas state 2 is described by knowledge of the

�rst and second order moments.) We will see that the optimal linear plus quadratic

combination parameters depend on these �rst to fourth order moments.

In practical applications, however, such moments will hardly ever be known. (Thus

our knowledge falls even behind state 4 of knowledge in Harville's scheme, where

some assumptions on the �rst order moments are made.) Consequently, in the second

step we have to estimate the necessary moments from a sample of observations on

the variables of interest. Then we plug these estimators into the formulae for the

optimal combinations.

The focus of this paper will be the �rst step, i.e. the derivation of the optimal combi-

nation parameters from known �rst to fourth order moments of the joint distribution

of y and f . We will investigate three versions of the linear plus quadratic approach:

The combined forecast in Equation (1.2) with no additional restriction (besides sym-

metry) imposed on the matrix A is referred to as the strong version. Consequently,

the strong linear plus quadratic approach involves k(k + 1) =2 parameters for the

quadratic part and (k + 1)(k + 2) =2 parameters in total.

Since the number of observations from which the unknown parameters are to be

estimated is not so large in general, it is reasonable to consider reduced linear plus

quadratic approaches as well, which involve less parameters. In order to achieve this

goal we may restrict A to be a diagonal matrix or even to be a multiple of the k�k

identity matrix.

RestrictingA to be diagonal leads to the medium version of the linear plus quadratic

approach

fa;b;c = fT dg(a)f+bTf+c =
kX

i=1

aif
2
i +b

Tf+c ; (1.5)

where a = ( a1; : : : ; ak)
T 2 R

k ,

dg(a) =

0
BBB@

a1 0 : : : 0

0 a2 : : : 0
...

...
. . .

...

0 0 : : : ak

1
CCCA 2 R

k�k ; (1.6)

is a diagonal matrix, b = ( b1; : : : ; bk)
T 2 R

k and c 2 R. Thereby the number of the

elements in A is reduced to k and the total of unknown parameters is reduced to

2k + 1.
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Restricting A to be a multiple of the identity matrix, i.e. A = �Ik, leads to the weak

version of the linear plus quadratic approach which is

f�;b;c = �fTf +bTf + c ; (1.7)

where � 2 R, b = ( b1; : : : ; bk)
T 2 R

k and c 2 R. Thus there only remains one single

parameter for the quadratic part and k + 2 unknown parameters in total.

As we will see later on the optimal choice of the combination parameters within the

three approaches requires di�erent levels of knowledge about the moments of the

joint distribution of y and f . In each case, however, moments up to order four are

involved. We will now introduce our notations:

Extending the approach from Harville (1985) and utilizing the notations from

Rao and Kleffe (1988) we will assume the following setting: The expectations of

y and f are given by E(y) = �0 and E(f) = �f := (�1; : : : ; �k)
T, respectively, which

gives rise to the model:�
y

f

�
=

�
�0

�
f

�
+

�
"0
"f

�
=: �+" ; (1.8)

where "f := ("1; : : : ; "k)
T. Consequently, E(") = 0 and the higher order moments of

" are the centered moments of (y; fT)T.

First, let us turn to the second order moments:

� := E(""T) = E

"�
"0
"f

��
"0
"f

�T
#
=:

�
�00 �0f

�f0 ��

�
(1.9)

and

E(""T) = E

"��
y

f

�
�

�
�0

�
f

����
y

f

�
�

�
�0

�
f

��T
#
= Cov

�
y

f

�
:

(1.10)

The lower left (k � 1){submatrix �f0 and the lower right (k � k){submatrix �� of

� read explicitly

�f0 =

0
BBB@

�10

�20

...

�k0

1
CCCA and �� =

0
BBB@

�11 �12 : : : �1k

�21 �22 : : : �2k

...
...

. . .
...

�k1 �k2 : : : �kk

1
CCCA : (1.11)

We will assume invertibility of the centered second order moment matrix of f

throughout, i.e. we assume invertibility of �� = Cov( f) and hence also invertibility
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of the non-centered second order moment matrix �� + �f�
T

f
= E( ffT) is granted.

Note that vectors and matrices are represented by bold face letters.

Analogously, the third order moments of " are given by

� := E("
""T) =

0
BBB@

�0

�1

...

�k

1
CCCA ; (1.12)

where

�i = E( "i""
T) =

�
�i00 �i0f

�if0 �i�

�
; i = 0 ; : : : ; k (1.13)

and the fourth order moments are given by

	 = E( ""T
""T) =

0
BBB@

	00 	01 : : : 	0k

	10 	11 : : : 	1k

...
...

. . .
...

	k0 	k1 : : : 	kk

1
CCCA ; (1.14)

where

	ij = E( "i"j""
T) =

�
	ij00 	ij0f

	ijf0 	ij�

�
; i; j = 0 ; : : : ; k: (1.15)

Note that�,�i and	ij are symmetric matrices of order (k+1)�(k+1). Furthermore

	ij = 	ji such that the matrix 	 is symmetric as well. The elements of � are

�ijl = E( "i"j"l) and the elements of 	 are 	ijlm = E( "i"j"l"m).

Section 2 deals with the classical linear approaches within the framework of this

paper whereas Sections 3, 4 and 5 investigate the respective linear plus quadratic

approaches. Section 6 considers the special case of combining k = 2 forecasts. Setting

k = 1 we obtain and investigate adjustments of individual forecasts in Section 7.

The question in how far the various methods are sensitive to the chosen coordinate

system is discussed in Section 8. Section 9 concludes the paper.

Section A in the appendix lists some results mostly from the theory of matrix dif-

ferential calculus which will be useful in the subsequent sections.

2 The linear approach

Linearly combined forecasts are of the form bTf + c, where it may be appropriate

to impose certain restrictions on the combination parameters b and c. Linear ap-
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proaches have been widely discussed in the literature, compare e.g. Clemen (1989)

or Thiele (1993) for good overviews on the topic.

To derive the theoretically optimal combination parameters within the linear ap-

proaches we only need the �rst and second order moments of the joint distribution

of y and f to exist and to be known.

We will consider four versions of the linear approach: The �rst is

fb;c = bTf + c : (2.1)

As stated in Section 1, with suitably chosen parameters, this version leads to the

MSPE-optimal combined forecast under joint normality of y and f .

A simpler approach is to de�ne the combined forecast to be a weighted average of

the single forecasts

fb = bTf : (2.2)

If each of the single forecasts is unbiased it is a well-known fact that the combined

forecast is unbiased as well if, in the second approach, the parameters are chosen

such that they sum up to unity, i.e. bT1 = 1. This leads to the third version of the

linear approach which utilizes this restriction:

fb;rest = bTf ; where bT1 = 1 : (2.3)

If the individual forecasts fi are biased it is reasonable to perform a bias correction

fi��i+�0 before combining them. After the correction the individual forecasts are

unbiased and, hence, they should be combined with weights summing up to unity.

This leads to the restricted linear combination with absolute term:

fb;c;rest = bTf+c ; where bT1 = 1 : (2.4)

For each of the four versions we now want to state how the combination parameters

should be chosen in order to minimize the mean square prediction error of such a

combined forecast and we will provide the respective minimal values.

When considering the last two approaches which utilize the restriction on the vector

b it is common practice in the literature to do this by using the moments of the

distribution of errors e = f � y1k, i.e. e = ( e1; : : : ; ek) is the vector containing the

single forecast errors.

In linear forecast combination under the restriction bT1 = 1 consideration of the

errors is appealing. In this case (and only in this case) the same weights bi are
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assigned to the single forecasts fi to yield the combined forecast as well as to the

single errors ei to yield the error of the combined forecast:

eb;rest = fb;rest�y = bTf�bT1y = bTe (2.5)

and

eb;c;rest = fb;c;rest�y = bTf+c�bT1y = bTe+c : (2.6)

Consequently, we may consider the forecast errors instead of the forecasts in order

to obtain the optimal combination weights which are to be assigned to the single

forecasts. No similar result holds for non-linear combinations (like the linear plus

quadratic combinations considered here) or for linear combinations without the re-

striction bT1 = 1.

In linear forecast combination under the restriction bT1 = 1 it is, however, equiv-

alent to base our derivations on the moments of (y; fT)T or on the moments of e,

if we assume that the �rst and second order moments of (y; fT)T exist. Note that

E[(bTe)2] = E( e2
b;rest) = MSPE(fb;rest; y) = Var(y � bTf) + [E( y� bTf)]2.

For these reasons we use the moments of the joint distribution of y and f throughout

(like e.g. in Harville, 1985). By doing so we ensure comparability of the results

from the various approaches.

First we will consider the linear approach with constant term c and without restric-

tions on the vector b, i.e. we consider fb;c = bTf + c with expectation

E(fb;c) = bT�f + c : (2.7)

From Harville (1985), Equation (2.1) we know that the optimal choices for b and

c are given by

bopt = ��1
�
�f0 and copt = �0��

T

f0�
�1
�
�
f

(2.8)

leading to the optimal value of the MSPE-function

MSPE(fbopt;copt; y) = �00��
T

f0�
�1
�
�f0 : (2.9)

Obviously, the combined forecast fbopt;copt is unbiased even if the single forecasts are

biased.

Now we turn to the linear approach without constant term and without restrictions

on the vector b, i.e. we consider fb = bTf with expectation

E(fb) = bT�
f
: (2.10)
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The mean square prediction error of a forecast combination fb is given by

MSPE(fb; y) = bT(��+�f�
T

f
)b�2bT(�f0+�0�f )+�00+�2

0 : (2.11)

Di�erentiating this function with respect to b and setting the derivative equal to

zero we arrive at the optimal choice for b within this approach, namely

bopt = ( �� + �f�
T

f
)�1 (�f0 + �0�f) : (2.12)

Inserting this optimal weight vector into Equation (2.10) it can be seen that the

corresponding linear combination is not necessarily unbiased even if the individual

forecasts are unbiased. The optimal MSPE-value is given by

MSPE(fbopt; y) = �00+�2
0�(�f0+�0�f )

T(��+�f�
T

f
)�1(�f0+�0�f ) : (2.13)

Using Lemma A.1 this may be rewritten as

MSPE(fbopt; y) = �00��
T

f0�
�1
�
�f0+

�
�0 � �

T

f
��1
�
�f0

�2
1 + �T

f
��1
�
�f

(2.14)

such that from comparing this formula to Equation (2.9) the loss caused by dropping

the constant term becomes evident.

Next, we investigate the linear approach without constant term and with restriction

on the vector b, i.e. we consider fb;rest = bTf with bT1 = 1. This combination

approach is designed for the situation where each single forecast is unbiased, i.e.

�f = E( f) = E( y)1 = �01. Namely, under the unbiasedness assumption fb;rest is

unbiased as well:

E(fb;rest) = bT�f = �0b
T1 = E( y) : (2.15)

Consequently, also the calculation of the optimal combination weights and the cor-

responding optimal MSPE-value for fb;rest are performed under the unbiasedness

assumption:

Evidently, the MSPE-function is the same as that given in Equation (2.11), but

using �
f
= �01 this may be rewritten as

MSPE(fb;rest; y) = bT( ���+�2
011

T)b�2bT( ��f0+�2
01)+��00+�2

0 ; (2.16)

where

�� = E

"��
y

f

�
� �01

���
y

f

�
� �01

�T
#

(2.17)
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is the covariance matrix of (y; fT)T under the unbiasedness assumption.

In order to minimize this function with respect to b under the restriction bT1 = 1

we follow a Lagrange multiplier approach to obtain

bopt = ��
�1

�
��f0+

1� 1T ��
�1

�
��f0

1T ��
�1

�
1

��
�1

�
1 ; (2.18)

which leads to the optimal MSPE-value

MSPE(fbopt;rest; y) = ��00� ��
T

f0
��
�1

�
��f0+

(1� 1T ��
�1

�
��f0)

2

1T ��
�1

�
1

: (2.19)

If the assumption of unbiasedness is satis�ed, then, of course, the matrix �� coincides

with the true covariance matrix �. If, however, the unbiasedness assumption is

violated and fbopt;rest is applied nevertheless, the combined forecast is based on an

incorrect covariance matrix.

In the context of considering fbopt;rest the following two observations are interesting.

They are proven in Appendix B.

Assertion 2.1 If the unbiasedness assumption is incorrect it is obvious that the

true optimal MSPE-value MSPE(fbopt;rest; y) should be calculated by inserting bopt

from Equation (2.18) into the general Equation (2.11), which is valid for any lin-

ear combination of the type bTf . We obtain, however, the same Result (2.19) from

inserting bopt into the (now invalid) Equation (2.16).

Assertion 2.2 The optimal parameter vector bopt is not changed if we use any other

constant than �0 in the calculation of the covariance matrix �� in Formula (2.17).

The covariance matrix �� itself is changed, though.

An important consequence for practical applications is that we need not worry about

which estimate of �0 should be used when estimating ��: We may use the arithmetic

mean of the observations on the target variable y, the arithmetic mean of all observa-

tions on the target variable y and the single forecasts fi, both of which are reasonable

estimates, or we may even use 0.

Equation (2.15) con�rms that the combined forecast fb;rest is unbiased if all single

forecasts are unbiased as well. The assumption of unbiasedness for each single fore-

cast seems at least doubtful. Granger and Ramanathan (1984, p. 200) point

out:
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There is nothing sacred about the weights adding up to unity, although

that seems to be the common practice. Furthermore, there is no reason

to believe that every alternative forecast will be unbiased.

The linear combination fb;c, however, is always unbiased whenever the combination

parameters b and c are determined according to the above optimal choice. This is

also true for any of the considered combination methods involving a constant term,

including the three linear plus quadratic approaches, as we will see later on.

We now turn to the linear approach with constant term and with restriction on the

vector b, i.e. we consider fb;c;rest = bTf + c with bT1 = 1. Its expectation is given

by

E(fb;c;rest) = bT�
f
+ c : (2.20)

The optimal choices for b and c can be calculated to be

bopt = ��1
�
�f0+

1� 1T��1
�
�f0

1T��1
�
1

��1
�
1 and copt = �0�b

T

opt�f : (2.21)

The corresponding optimal value of the MSPE-function is

MSPE(fbopt;copt;rest; y) = �00��
T

f0�
�1
�
�f0+

(1� 1T��1
�
�f0)

2

1T��1
�
1

: (2.22)

Comparing this formula to Equation (2.9) we see which loss is caused by placing the

restriction on b.

The optimal weight vector bopt and the optimal MSPE-value are in the same form

as in the previous approach, but they are calculated from the covariance matrix �

instead of ��. Regarding Equations (2.20) and (2.21) it becomes evident that the

combined forecast fbopt;copt;rest is unbiased even if the single forecasts are biased.

Finally, we will also include the arithmetic mean of the individual forecasts in our

considerations, since it is a very simple and empirically very powerful statistic:

fam =
1

k

kX
i=1

fi =
1

k
1Tf : (2.23)

Its expectation is

E(fam) =
1

k
1T�f (2.24)
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and thus the unweighted average is not unbiased in general. If, however, each indi-

vidual forecast is unbiased, then also fam is. The corresponding MSPE-value is given

by

MSPE(fam; y) = �00�
2

k
1T�f0+

1

k2
1T��1+

�
1

k
1T�

f
� �0

�2

: (2.25)

We now turn to the linear plus quadratic approaches to the combination of forecasts.

They are of the general form fTAf+bTf+c, and the versions analyzed here di�er with

respect to the choice of the matrix A in the quadratic part of this expression. They

will be dealt with in Sections 3, 4 and 5 respectively. Since the linear combination

fb;c = bTf + c with weights chosen according to Equations (2.8) is MSPE-optimal

among all combined forecasts under joint normality of y and f , employment of linear

plus quadratic approaches only deserves attention under non-normality. Hence we

will assume non-normality in the following.

3 The linear plus quadratic approach with full

matrix A

The strong linear plus quadratic approach fA;b;c = fTAf +bTf + c is based on a full

k � k real symmetric matrix A to build the quadratic part, a k{dimensional real

vector b as well as a real constant term c.

The expectation of fA;b;c is immediately derived from Lemma A.4 (a). Setting ~Y = f ,

~� = �f and ~" = "f we obtain ~� = �� . Setting further ~A = A and ~a = b we arrive

at

E(fA;b;c) = �
T

f
A�

f
+tr(A�� )+b

T�
f
+c : (3.1)

We now want to determine how the combination parameters A, b and c should be

chosen in order to minimize the mean square prediction error of such a combined

forecast. To achieve this goal we will perform the following three steps: In the �rst

step we will explicitly calculate the general MSPE-function of a combined forecast

fA;b;c. In the second step we will di�erentiate this function with respect to A, b

and c. In the �nal step we will simultaneously equate these derivatives to zero which

results in a linear equation system. The unique solution (Aopt;bopt; copt) of this

equation system yields the desired minimum of the MSPE-function.

Step 1: Explicit calculation of the MSPE-function. Since MSPE(fA;b;c; y) =

E[(y � fA;b;c)
2] = Var( y� fA;b;c) + [E( y� fA;b;c)]

2 we may split the necessary

calculations in two parts.
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While the calculation of [E(y � fA;b;c)]
2 is quite easily done with the help of (3.1)

and E(y) = �0, the calculation of Var(y � fA;b;c) requires much more e�ort.

Setting

~Y =

�
y

f

�
; ~� =

�
�0

�f

�
= � and ~" =

�
"0
"f

�
= " (3.2)

we obtain

~� = � ; ~� = � and ~	 = 	 (3.3)

as de�ned in (1.9) and (1.12) { (1.15). Setting further

~A = ~B =

�
0 0

0 �A

�
and ~a = ~b =

�
1

�b

�
(3.4)

we may then apply Lemma A.4 (b).

Joining the two parts of the calculation and performing some simpli�cations we

�nally arrive at the following expression for the mean square prediction error of

fA;b;c, where the terms have been ordered with respect to the occurring unknowns:

MSPE(fA;b;c; y) =

= 4 �T
f
A��A�f + 4'T

A
A�

f
+ tr(A 

A
) + ( �T

f
A�

f
)2 + 2 �T

f
A�

f
tr(A�� )

� 4�T

f0A�f � 2 tr(A�0� )� 2�0�
T

f
A�

f
� 2�0 tr(A�� )

+ 4 bT��A�f + 2 bT'A + 2 �T
f
A�fb

T�f + 2 tr(A�� )b
T�f

+ bT��b+ bT�
f
�T

f
b

� 2bT�f0 � 2�0b
T�

f

+ 2 �T
f
A�fc+ 2 tr(A�� )c

+ 2 bT�
f
c

+ c2

� 2�0c

+ �00 + �2
0 ; (3.5)

where

'A =

0
B@

tr(A�1� )
...

tr(A�k� )

1
CA (3.6)
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is a k{dimensional vector and

 
A
=

0
B@

tr(A	11� ) : : : tr(A	1k� )
...

. . .
...

tr(A	k1� ) : : : tr(A	kk�)

1
CA (3.7)

is a symmetric k � k matrix.

Step 2: Di�erentiation. Applying common di�erential calculus we immediately

get

@MSPE(fA;b;c; y)

@c
= 2 [c� �0 + bT�

f
+ �T

f
A�

f
+ tr(A�� )] : (3.8)

With the help of Lemma A.7 it is not di�cult to show

@MSPE(fA;b;c; y)

@b
= 2 [��b + �f�

T

f
b��f0 � �0�f + 2��A�f

+'
A
+ �T

f
A�

f
�
f
+ tr(A�� )�f + c�

f
] : (3.9)

Di�erentiation with respect to A is the hard part of this second step. Since A is

symmetric we have to apply Lemma A.9. Furthermore, Lemma A.8 has to be applied

several times and also Lemmas A.2 and A.3 are of value at some stages. We �nally

arrive at

@MSPE(fA;b;c; y)

@A
=

= 2[ �f�
T

f
A(4�� + �f�

T

1
) + (4�� + �f�

T

1
)A�f�

T

f

� diag(�
f
�T

f
A(4�� + �

f
�T

1
))]

+ tr(A�� )[4�f�
T

f
� 2 diag(�

f
�T

1
)]

+ tr(A�f�
T

1
)[4�� � 2 diag(�� )]

+ 4['
A
�T

f
+ �

f
'T

A
� diag('

A
�T

f
)]

+ 4 
A
� 2 diag( 

A
)

+
kX

i=1

kX
j=1

aij�j[8�i� � 4 diag(�i� )]

+ 4[��b�
T

f
+ �

f
bT�� � diag(��b�

T

f
)]

+ ( bT�f + c� �0)[4(�� + �f�
T

1
)� 2 diag(�� + �f�

T

f
)]

+
kX

i=1

bi[4�i� � 2 diag(�i� )]

� 4[�f0�
T

f
+ �

f
�T

f0 � diag(�f0�
T

f
)]

� 4�0� + 2diag(�0� ) ; (3.10)
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where for a k � k{matrix M = ( mij) we de�ne

diag(M) =

0
BBB@

m11 0 : : : 0

0 m22 : : : 0
...

...
. . .

...

0 0 : : : mkk

1
CCCA 2 R

k�k : (3.11)

Step 3: Equating to zero. Setting Equations (3.8), (3.9) and (3.10) simultaneously

to zero and solving the resulting linear equation system for the unknown parameters

we obtain the optimal choices for A, b and c.

From Equation (3.8) we get

copt = �0�b
T

opt�f��
T

f
Aopt�f�tr(Aopt�� ) : (3.12)

Using (3.12) we obtain from (3.9)

bopt = ��1
�
(�f0�'Aopt

)�2Aopt�f : (3.13)

Using (3.12) and (3.13) Equation (3.10) is equivalent to

4 Aopt
� 2 diag( Aopt

)� 4�0� + 2diag(�0� )

+
kX

i=1

�
(k)T
i ��1

�
(�f0 � 'Aopt

)[4�i� � 2 diag(�i� )]

� 4 tr(Aopt�� )�� + 2 tr(Aopt�� ) diag(�� ) = 0 : (3.14)

Here �
(k)
i denote the k-dimensional unit vectors, i.e. the i-th component of �

(k)
i is

equal to 1 whereas the other components are equal to 0.

Equation (3.14) represents a linear equation system with the unknowns being the

k(k+1)=2 di�erent elements of the symmetric matrixAopt. Unfortunately, we cannot

write down its solution explicitly, and hence we cannot give the optimal combination

parameters (Aopt;bopt; copt) in an explicit form. In practical applications we have to

solve Equation (3.14) in order to obtain Aopt, then insert this result into Equation

(3.13) and thus get bopt and �nally insert these two results into Equation (3.12) to

obtain copt.

Provided that Equations (3.14), (3.13) and (3.12) have a common unique solution

(Aopt;bopt; copt), it can be seen that this solution describes a minimum of the MSPE-
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function within the considered class of combined forecasts:

MSPE(fA;b;c; y) = E[(y � fA;b;c)
2]

= E[(y � fTAf � bTf � c)2]

= E

2
4
 
y �

kX
i=1

kX
j=1

aijfifj �
kX

i=1

bifi � c

!2
3
5

= E

2
4 y � kX

i=1

aiif
2
i � 2

X
i <

X
j

aijfifj �
kX

i=1

bifi � c

!2
3
5

(3.15)

is a quadratic function in the unknown parameters bounded below by the value 0

(compare Lemma A.2).

Since we cannot express the optimal combination parameters Aopt, bopt and copt
with the help of explicit formulae, we cannot give an explicit expression for the

optimal value MSPE(fAopt;bopt;copt; y) of the MSPE-function either.

We can conclude, however, that fAopt;bopt;copt is an unbiased forecast: Following Equa-

tion (3.1) the expectation of fAopt;bopt;copt is given by

E(fAopt;bopt;copt) = �
T

f
Aopt�f+tr(Aopt�� )+b

T

opt�f+copt : (3.16)

Then unbiasedness is guaranteed by the optimal choice of the constant term as can

be seen by inserting

copt = �0�b
T

opt�f��
T

f
Aopt�f�tr(Aopt�� ) (3.17)

into Equation (3.16).

For a simple example see Section 6 where the combination of k = 2 forecasts is

performed.

The fact that the optimal combination parameters Aopt, bopt and copt are not given

by explicit formulae, but have to be calculated from Equations (3.12), (3.13) and

(3.14) not only hinders further theoretical considerations but also impedes the ap-

plication of the strong linear plus quadratic combination technique: We can only

deal with these numbers of individual forecasts k for which we have made the linear

equation system (3.14) explicit. From Section 6 dealing with k = 2 it becomes clear

that this may be a cumbersome task.
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4 The linear plus quadratic approach with diago-

nal matrix A

The medium linear plus quadratic approach fa;b;c =
Pk

i=1 aif
2
i + bTf + c emerges

from restricting the full matrixA in the strong approach to a diagonal matrix dg(a),

a = ( a1; : : : ; ak)
T 2 R

k .

Inserting A = dg( a) in Equation (3.1) we obtain the expectation offa;b;c

E(fa;b;c) =
kX

i=1

ai�
2
i +

kX
i=1

ai�ii+b
T�

f
+c : (4.1)

Unfortunately, the MSPE-optimal choices for the combination parameters a, b and

c cannot be derived directly from the results of the preceding section. Instead, we

have to perform the same three steps as before heeding the additional restrictions

imposed on the matrix in the quadratic part.

Along the same lines as in Section 3 we obtain the following equations determining

the optimal choices for a, b and c (compare Section C in the appendix):

copt = �0 � bT

opt�f � �
T

f
dg(aopt)�f � tr(dg(aopt)�� ) ; (4.2)

bopt = ��1
�
(�f0 � 'aopt

)� 2 dg(aopt)�f (4.3)

and

kX
i=1

kX
l=1

aopt;l	llii�
(k)
i �

kX
i=1

�0ii�
(k)
i � tr(dg(aopt)�� )

kX
i=1

�ii�
(k)
i

+
kX

i=1

kX
l=1

�
�
(k)T
l ��1

�

�
�f0 �'aopt

��
�lii�

(k)
i = 0 ; (4.4)

where �
(k)
i denotes the i-th k-dimensional unit vector.

Equation (4.4) is a linear equation system with the unknowns being the k compo-

nents of the vector aopt. Again, we cannot write down its solution explicitly, and

hence we cannot give the optimal combination parameters (aopt;bopt; copt) in an

explicit form. In practice we have to proceed by solving Equation (4.4) in order to

obtain aopt. Then this result is inserted into Equation (4.3) and thus bopt is obtained.

Finally these two results are inserted into Equation (4.2) and we get copt.

By the same reasoning as at the end of the previous section we may conclude

that the unique solution (aopt;bopt; copt) of Equations (4.4), (4.3) and (4.2) leads
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to the minimum value of the MSPE-function within the considered class of com-

bined forecasts. Due to the lack of an explicit expression for the optimal combina-

tion parameters, again we cannot give an explicit expression for the optimal value

MSPE(faopt;bopt;copt; y). Just like above we may, however, conclude that faopt;bopt;copt
is an unbiased forecast.

In Section 6 the combination of k = 2 forecasts using the medium linear plus

quadratic approach is considered as well.

5 The linear plus quadratic approach with A cho-

sen as a scalar multiple of the identity matrix

In the weak linear plus quadratic approach f�;b;c = �fTf + bTf + c the full matrix

A from the strong approach is restricted to �I, a real scalar multiple of the k � k

identity matrix.

It should be pointed out again, that the weak linear plus quadratic combination

increases the number of combination parameters by only one with respect to the

best linear combination, but it involves k� 1 parameters less than the medium and

even k(k+1)=2�1 parameters less than the strong linear plus quadratic combination.

Consequently, it may be practical in empirical applications where the number of data

available for parameter estimation is not large.

Inserting A = �I in Equation (3.1) we obtain the expectation of f�;b;c

E(f�;b;c) = �(�T

f
�f+tr(�� ))+b

T�f+c : (5.1)

Like in the two sections before the MSPE-optimal choices for the combination pa-

rameters �, b and c have to be determined in three steps (compare Appendix C).

Unlike the two sections before we are now able to express these optimal parameters

explicitly:

�opt =
tr(�0� )��T

f0�
�1
�
'

tr( )�'T��1
�
'� [tr(�� )]2

; (5.2)

bopt = ��1
�
�f0��opt(�

�1
�
'+2�f ) (5.3)

and

copt = �0�b
T

opt�f��opt(�
T

f
�
f
+tr(�� )) : (5.4)

By the same reasoning as in Section 3 we may conclude that the unique solu-

tion (�opt;bopt; copt) given above leads to the minimum value of the MSPE-function
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within the considered class of combined forecasts. Inserting (�opt;bopt; copt) into the

general function MSPE(f�;b;c; y) (Equation (C.7) from Appendix C) we may derive

that this optimal value is given by

MSPE(f�opt;bopt;copt; y) = �00��
T

f0�
�1
�
�f0�

�
tr(�0� )��T

f0�
�1
�
'
�2

tr( )�'T��1
�
'� [tr(�� )]2

:

(5.5)

From comparing this equation to Equation (2.9) we may conclude that employing

the optimal weak linear plus quadratic combined forecast instead of the optimal

linear combined forecast leads to a gain of

�
tr(�0� )��T

f0�
�1
�
'
�2

tr( )� 'T��1
�
'� [tr(�� )]2

(5.6)

with respect to the MSPE-criterion.

Again the optimal choice copt for the constant term guarantees unbiasedness of the

combined forecast f�opt;bopt;copt.

The following section deals with the combination of k = 2 forecasts via this and the

other linear plus quadratic approaches.

6 Combination of k = 2 forecasts

In order to see explicitly how the single forecasts are combined using the linear

plus quadratic approaches and in order to give a clearer impression of the nature

of the equation systems arising in the three previous chapters, we will now consider

the simple case of combining k = 2 forecasts f1 and f2 for the target variable y.

Consequently, the strong, medium and weak versions depend on 6, 5 and 4 unknown

parameters, respectively.

In any of the linear plus quadratic approaches the di�cult equation is the one

determining the parameters of the quadratic part. Having solved this equation it is

an easy task to derive the parameters b and c of the respective linear parts. Hence, in

this section we will concentrate on making the equations for the respective quadratic

parts explicit.

In the situation of k = 2 forecasts Equation (3.14) for the determination of the

optimal full parameter matrix Aopt from the strong linear plus quadratic ap-

proach is equivalent to the linear equation system Tx + s = 0. Here the vector

x = ( aopt;11; aopt;12; aopt;22)
T consists of the unknown di�erent entries in the symmet-
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ric matrix Aopt 2 R
2�2 , T is a 3� 3 matrix with elements

t11 = 	1111 +
1

d
[�111(��22�111 + �12�211) + �211(��11�211 + �12�111)]

� �2
11

t12 = 2(	1112 +
1

d
[�111(��22�112 + �12�212) + �211(��11�212 + �12�112)]

� �11�12)

t13 = 	1122 +
1

d
[�111(��22�122 + �12�222) + �211(��11�222 + �12�122)]

� �11�22

t21 = 	1211 +
1

d
[�112(��22�111 + �12�211) + �212(��11�211 + �12�111)]

� �11�12

t22 = 2(	1212 +
1

d
[�112(��22�112 + �12�212) + �212(��11�212 + �12�112)]

� �2
12)

t23 = 	1222 +
1

d
[�112(��22�122 + �12�222) + �212(��11�222 + �12�122)]

� �12�22

t31 = 	2211 +
1

d
[�122(��22�111 + �12�211) + �222(��11�211 + �12�111)]

� �11�22

t32 = 2(	2212 +
1

d
[�122(��22�112 + �12�212) + �222(��11�212 + �12�112)]

� �12�22)

t33 = 	2222 +
1

d
[�122(��22�122 + �12�222) + �222(��11�222 + �12�122)]

� �2
22 (6.1)

and s is a 3{dimensional vector with components

s1 = ��011 +
1

d
[�111(�22�10 � �12�20) + �211(�11�20 � �12�10)]

s2 = ��012 +
1

d
[�112(�22�10 � �12�20) + �212(�11�20 � �12�10)]

s3 = ��022 +
1

d
[�122(�22�10 � �12�20) + �222(�11�20 � �12�10)] : (6.2)

The scalar d stands for

d = det(�� ) = �11�22��2
12 : (6.3)

Equation (4.4) for the determination of the optimal parameter vector aopt =

(aopt;1; aopt;2)
T from the medium linear plus quadratic approach is equivalent to the

19



linear equation system�
t11 t13
t31 t33

��
aopt;1
aopt;2

�
+

�
s1
s3

�
=

�
0

0

�
; (6.4)

i.e. the elements of the system matrix of the linear equation system in this approach

are identical with the four corner elements of the matrix T in the approach with full

parameter matrix A. Likewise the elements of the vector in this approach are equal

to the top and bottom elements of the vector s in the strong approach.

Equation (C.15) for the determination of the optimal parameter �opt from the weak

linear plus quadratic approach is equivalent to the linear equation

(t11+t13+t31+t33)�opt+(s1+s3) = 0 ; (6.5)

i.e. the ingredients of this equation are the same as in the medium approach.

If we take a closer look at the elements tij and si involved in each of the linear

plus quadratic approaches, it is evident that all approaches depend on moments up

to order 4. The strong approach, however, needs fourth order moments which are

not used in the medium and weak approaches. The di�erence between the medium

and the weak approach in this respect is that the medium approach utilizes three

di�erent fourth order moments individually, while the weak approach only utilizes

the weighted sum of the same three quantities. Thus we can say that each version

needs a di�erent level of knowledge about the moments of the joint distribution of

y and f .

After considering the special case k = 2 we will now turn to the special case of k = 1

forecast.

7 The special case k = 1 : Adjustment of forecasts

There is no reason why the special case k = 1 should be ruled out in the above

considerations. Of course, this "combination of one forecast" should rather be ad-

dressed as adjustment of single forecasts. Exploiting the moment structure of the

joint distribution of the target variable y and a single forecast fi the performance of

fi can be improved with respect to the mean square prediction error by this kind of

adjustment.

The MSPE of the forecast fi is given by

MSPE(fi; y) = E[(y � fi)
2]

= Var( y� fi) + [E( y� fi)]
2

= �00 + �ii � 2�i0 + �2
0 + �2

i � 2�0�i : (7.1)
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All of the linear and linear plus quadratic combination approaches described above

may be employed in this case. Some of them, however, are identical to others, as we

will see in the following.

For instance all three linear plus quadratic combined forecasts coincide in the current

situation, i.e. we only need to consider one linear plus quadratic adjustment

(fi)�;b;c = �f 2
i + bfi+ c (7.2)

with �; b; c 2 R. As a special case of Equations (5.2), (5.3) and (5.4) the optimal

choices for the unknown parameters may be derived as

�opt =
�0ii � �i0�

�1
ii �iii

	iiii � �2
iii�

�1
ii � �2

ii

; (7.3)

bopt =
�i0

�ii

��opt

�
�iii

�ii

+ 2 �i

�
and (7.4)

copt = �0�bopt�i��opt

�
�2
i + �ii

�
(7.5)

leading to the MSPE-value of the optimal linear plus quadratic adjusted forecast

MSPE((fi)�opt;bopt;copt; y) = �00�
�2
i0

�ii

�

�
�0ii � �i0�

�1
ii �iii

�2
	iiii � �2

iii�
�1
ii � �2

ii

: (7.6)

The unrestricted linear adjustment with constant term is

(fi)b;c = bfi+ c (7.7)

with b; c 2 R. Granger (1989, p. 169) points out the usefulness of such an ad-

justment. The optimal choices for the parameters are obtained as special cases of

Equations (2.8), namely

bopt =
�i0

�ii

and copt = �0�
�i0

�ii

�i (7.8)

with corresponding optimal MSPE-value

MSPE((fi)bopt;copt; y) = �00�
�2
i0

�ii

: (7.9)

The unrestricted linear adjustment without constant term reads

(fi)b = bfi (7.10)
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with b 2 R. According to Equation (2.12) the optimal choice for b is given by

bopt =
�i0 + �0�i

�ii + �2
i

(7.11)

which gives the optimal MSPE-value

MSPE((fi)bopt; y) = �00 + �2
0 �

(�i0 + �0�i)
2

�ii + �2
i

= �00 �
�2
i0

�ii

+

�
�0 � �i�i0�

�1
ii

�2
1 + �2

i�
�1
ii

: (7.12)

The linear adjustment with constant term and with the restriction of the weights

summing up to unity is

(fi)1;c = fi+ c : (7.13)

According to Equation (2.21) the optimal choice for c 2 R is given by

copt = �0��i (7.14)

thus resulting in the well known bias corrected forecast. The corresponding optimal

MSPE-value is

MSPE((fi)1;copt; y) = �00�
�2
i0

�ii

+�ii(1��i0�
�1
ii )

2 : (7.15)

Finally, the linear adjustment without constant term and with the restriction of the

weights summing up to unity as well as the adjustment counterpart of the arithmetic

mean equal the original single forecast fi and need no special consideration.

Following the results in Section 2 each of the adjusted forecasts with a constant

term c is unbiased.

8 Translations and scale transformations

It is an important question in which way the linear plus quadratic combinations

of forecasts are a�ected by transformations of origin and scale, i.e. in how far the

results depend on the chosen coordinate system. We can ask which of the optimal

weights or MSPE-values change under translations or scale transformations and, if

so, how they do change.

Due to the lack of explicit formulae for the combination parameters within the

strong and medium linear plus quadratic approaches we cannot prove all of the

22



facts stated below for these approaches as we can do for all the other forecasts.

Regarding the similar nature of the weak linear plus quadratic approach, however,

it may be supposed that the facts are valid for the medium and strong versions as

well. This has also been con�rmed by all numerical investigations so far.

Let us �rst consider translations of the data. By this we mean that we add a constant

� to the target variable y as well as to each single forecast fi, i.e. after the translation

we obtain the new variables�
~y
~f

�
=

�
y

f

�
+�1k+1 : (8.1)

The expectation vector ~� and the centered moment matrices ~�, ~� and ~	 of the

transformed variables (~y;~f
T

)T relate to the corresponding quantities �, �, � and 	

of the original variables (y; fT)T as follows:

~� = �+�1k+1 ; ~� = � ; ~� = � and ~	 = 	 : (8.2)

Consequently, also the quantities '
A
, '

a
, ',  

A
,  

a
and  are not a�ected by

such a translation. The same is true for the second order moment matrix �� which

is calculated di�erently because of the assumption of unbiasedness of each single

forecast.

Consulting the equations determining the optimal parameters and the corresponding

MSPE-values from the respective sections above we can derive the following facts:

For the linear plus quadratic combinations or adjustments fAopt;bopt;copt, faopt;bopt;copt,

f�opt;bopt;copt and (fi)�opt;bopt;copt the optimal parameter matrix, vector or scalar (Aopt,

aopt or �opt) corresponding to the quadratic part remains unchanged by the transla-

tion of the data, whereas the parameter vector or scalar (bopt or bopt) corresponding

to the linear part as well as the constant term (copt) are a�ected by that translation.

This amounts to the e�ect that the combined or adjusted forecast is translated by

the quantity � as well and, consequently, the MSPE-value is invariant with respect

to the translation of the data.

For the linear unrestricted combined or adjusted forecast with constant term fbopt;copt
or (fi)bopt;copt only the constant term copt is a�ected by the translation, while for the

linear restricted combination with or without constant term fbopt;copt;rest or fbopt;rest as

well as for the bias corrected forecast (fi)1;copt no combination parameter is changed.

In any case the adjusted or combined forecast is also translated by � such that the

MSPE-value is not changed by a translation of the data. The latter is also true for

the single forecasts fi and their arithmetic mean fam.

Only the linear unrestricted combined or adjusted forecast without constant term

fbopt or (fi)bopt exhibits an undesired behaviour under a translation of the data.
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The parameter vector or scalar (bopt or bopt) is changed in such a way that the

combined or adjusted forecast is not translated by � with the consequence that the

MSPE-value is changed as well.

The MSPE-values of all the adjustments and combinations involving a constant term

copt are not only invariant with respect to a translation of the data by a constant � ,

but they are not even a�ected by any change of the vector � = ( �0;�
T

f
)T.

Let us now turn to scale transformations of the data. By this we mean that target

variable y as well as each single forecast fi are multiplied by the same constant �,

i.e. after the translation we obtain the new variables�
~y
~f

�
= �

�
y

f

�
: (8.3)

The moments of the transformed variables (~y;~f
T

)T relate to the corresponding quan-

tities of the original variables (y; fT)T as follows:

~� = �� ; ~� = �2� ; ~� = �3� and ~	 = �4	 : (8.4)

The quantities derived from these moments are a�ected in the same way, i.e. '
A
,

'a and ' are multiplied by �3 and  A,  a and  are multiplied by �4. The special

second order moment matrix �� is multiplied by �2.

Proceeding like above we can derive the following general facts: Whenever a

quadratic part is involved in the combination or adjustment, the corresponding op-

timal parameter matrix, vector or scalar after the scale transformation is 1=� times

the respective quantity (Aopt, aopt or �opt) before the transformation. The optimal

parameter vector or scalar for the linear part (bopt or bopt) remains unchanged by

the transformation. Finally, whenever a constant part (copt) is involved, the optimal

choice after the transformation is � times the optimal choice before the transfor-

mation. Accordingly, after the transformation each (single, adjusted or combined)

forecast has been multiplied by the same scale factor � by which the data have been

multiplied. This is a reasonable behaviour. As a consequence after the transforma-

tion each MSPE-value is the �2{fold of the value before the scale transformation.

Combining the results on translations and scale transformations above we may con-

clude that only the linear unrestricted combination or adjustment without constant

term fbopt or (fi)bopt are unreasonably sensitive to linear transformations of the data.

Consequently, we cannot recommend the use of these techniques since results will

depend on the chosen coordinate system.
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The linear plus quadratic combined forecasts on the other hand show a reasonable

behaviour. Since they include a constant term their MSPE-values are even insensitive

with respect to the expectation vector � = ( �0;�
T

f
)T of the joint distribution of

(y; fT)T.

9 Conclusions

In this paper we have introduced the linear plus quadratic approach for the combi-

nation of forecasts. Three versions of this approach have been considered. The strong

version depends on the largest number of unknown combination parameters followed

by the medium and then the weak version. We have derived equation systems from

which the respective optimal combination parameters can be calculated. Each of

the linear plus quadratic approaches requires knowledge about the moments up to

order four of the joint distribution of y and f . Again, the strong version requires

more knowledge than the medium version, and the medium version requires more

detailed knowledge than the weak version. We have also considered the classical

linear approaches as competitors to the new approaches.

For the special case of k = 2 forecasts we have shown how the combination via the

linear plus quadratic approaches works in detail. We have also considered the special

case k = 1 which means adjustment of an individual forecast. Due to the smaller

number of parameters involved the weak linear plus quadratic combination seems

to be suitable if only a small amount of data is available for combination parameter

estimation.

We have seen that the linear plus quadratic approaches show a reasonable behaviour

when the coordinate system is changed in which the target variable and the forecasts

are measured. From this point of view use of the linear unrestricted combination of

forecasts without constant term fbopt is not advisable. Thus it does not seem useful

to investigate linear plus quadratic combinations fA;b, fa;b or f�;b not involving a

constant term c.

A detailed analysis of the possible bene�ts of the linear plus quadratic approaches

has to follow. A point of special interest would be to �nd a guideline for potential

users identifying situations beforehand in which linear plus quadratic combination of

forecasts is promising. Especially the question of how much data should be available

is interesting. Another point is to �nd out whether it is worthwhile to consider the

combination of more than k = 2 forecasts via the linear plus quadratic approaches.

As stated at the end of Section 3 derivation of the optimal combination param-

eters for the linear plus quadratic approaches may become quite cumbersome for

25



k > 2 forecasts. Consequently, it is desirable to �nd an easier way to apply linear

plus quadratic combination. This is indeed possible: Granger and Ramanathan

(1984) observe that the linear combination problems from Section 2 may be re-

garded as regression problems. Analogously, a regression approach may be followed

for linear plus quadratic combination, thus allowing for easier implementation for

any number k of forecasts and making standard computer software applicable. This

regression approach will be dealt with in a follow-up paper by the same authors

(Troschke and Trenkler (2000)).
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Appendix

A A collection of useful results

This section lists some basic results which are needed for our considerations. Most

of them are well-known from the literature. The others are quite immediate.

The �rst lemma provides the inverse of a regular matrix modi�ed by a matrix of

rank one:

Lemma A.1 (Rao and Bhimasankaram, 1992, p. 145) Let A 2 R
n�n be

non-singular and let u;v 2 R
n . Then

(A+uvT)�1 = A�1�
1

1 + vTA�1u
A�1uvTA�1 :

The following two lemmas give explicit representations of some matrix or vector

expressions in terms of the elements involved.

Lemma A.2 Let A = ( aij) 2 R
m�n , x = ( xi) 2 R

m and y = ( yj) 2 R
n . Then

xTAy =
mX
i=1

nX
j=1

aijxiyj :

In the special case where m = n and A = In we obtain

xTy =
nX
i=1

xiyi :

Lemma A.3 Let A 2 R
m�n and X 2 R

n�m . Then

tr(AX) =
mX
i=1

nX
j=1

aijxji :

In the special case where m = n and A is symmetric we obtain

tr(AX) =
nX

i=1

nX
j=1

aijxij :

The next result is concerned with the �rst and second order moments of quadratic

forms. Clearly, it is most important for our derivations. It should be pointed out that

no distributional assumption is made. Assuming (multivariate) normality would lead

to much simpler formulae on the one hand. But on the other hand the normality as-

sumption would render the whole linear plus quadratic approach to the combination

of forecasts unnecessary, as has been made clear in the introduction.
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Lemma A.4 (Rao and Kleffe, 1988, p. 32, (iv)) Let ~Y = ~�+~" where ~� is a

constant vector and ~" is a vector random variable with moments E(~") = 0, E(~"~"T) =
~�, E(~"
 ~"~"T) = ~� and E(~"~"T 
 ~"~"T) = ~	. Further let ~a and ~b be vectors and let
~A and ~B be symmetric matrices of appropriate dimensions. Then

(a) E(~aT ~Y + ~Y
T ~A ~Y) = ~aT ~�+ ~�T ~A~�+ tr( ~A ~�) ,

(b) Cov(~aT ~Y + ~Y
T ~A ~Y; ~b

T ~Y + ~Y
T ~B ~Y)

= ~b
T
h
2 ~� ~A~�+ ~�~a+ ~�

�
( ~A)

i
+ tr

�
~B
h
4~�~�T ~A ~�+ 2~�( ~A~�) + 2 ~�

�
( ~A)~�T

+ ~	( ~A) + 2~�~aT ~�+ ~�(~a)� tr( ~A ~�) ~�
i�

:

Here the following abbreviations have been used: For a vector ~c = (~ci) and a matrix
~C = (~cij) we de�ne

~	( ~C) =
X
i

X
j

~cij ~	ij ;

~�(~c) =
X
i

~ci ~�i ;

~�
�
( ~C) = (tr( ~C ~�i))i ;

i.e. the �rst two quantities are matrices, whereas the last one is a vector.

In order to determine the optimal combination parameters within our various ap-

proaches di�erential calculus has to be applied. Since some of the parameters are

vectors or even matrices the concept of matrix di�erential calculus (Magnus and

Neudecker, 1999) proves most helpful.

De�nition A.5 Let f(X) be a scalar valued function of a matrix X = ( xij) 2 R
n�q .

Then f is called di�erentiable with respect to X if and only if it is di�erentiable with

respect to each of the elements xij. The derivative of f with respect to X

@f(X)

@X
:=

0
B@

@f(X)=@x11 : : : @f(X)=@x1q
...

...

@f(X)=@xn1 : : : @f(X)=@xnq

1
CA

is a matrix with the same dimensions as X.
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Lemma A.6 Let f(X) be a di�erentiable scalar valued function of a matrix X =

(xij) 2 R
n�q . Then a necessary condition for f to have a local minimum or a local

maximum is

@f(X)

@X
= 0 ;

where the derivative of f with respect to X is given in De�nition A.5 above.

The next two lemmas give the derivatives for special scalar valued vector and matrix

functions.

Lemma A.7 (Magnus and Neudecker, 1999, p. 177) Let a;x 2 R
n and A 2

R
n�n . Then

@aTx

@x
= a ;

@xTAx

@x
= ( A+AT)x :

Lemma A.8 (Magnus and Neudecker, 1999, p. 178) Let A;B;X be real

matrices of appropriate dimensions. Then

@ tr(AX)

@X
= AT ;

@ tr(XAXTB)

@X
= BTXAT+BXA ;

@ tr(XAXB)

@X
= BTXTAT+ATXTBT :

It is a special and di�cult situation when the derivative is to be taken with respect

to a symmetric matrix. The following lemma shows how to proceed correctly in this

case.

Lemma A.9 (Rao and Rao, 1998, p. 230) Let f be a scalar valued function of

a matrix variable A, where A is symmetric. Then

@f(A)

@A
=

�
@f(B)

@B
+

�
@f(B)

@B

�T

� diag

�
@f(B)

@B

������
B=A

:
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This is meant to indicate that f is regarded as a function of an arbitrary matrix B

which has the same size as A, but all the components of B are regarded as inde-

pendent variables. Then the derivative of f is formed with respect to B, the above

expression is calculated and in this expression B is replaced by the symmetric matrix

A again.

Here for a square matrixM = ( mij) we de�ne diag(M) as the diagonal matrix of the

same dimension with the elements mii on its diagonal (compare Equation (3.11)).

The �nal lemma in this section is concerned with the derivatives of a special kind of

function which is of major importance in Section 4 dealing with the medium linear

plus quadratic approach.

Lemma A.10 Let a1; : : : ; ak be scalar variables. Further let f be a scalar valued

function of two index variables l and m and let f(l; m) be independent of the

a1; : : : ; ak. Finally, let s 2 f 1; : : : ; kg be �xed. Then

@
Pk

l=1

Pk

m=1 alamf(l; m)

@as
=

kX
l=1

al(f(s; l)+f(l; s)) :

Proof:

@
Pk

l=1

Pk

m=1 alamf(l; m)

@as
=

=
@
Pk

l=1 a
2
l f(l; l)

@as
+

@
PP

l 6=m alamf(l; m)

@as

=
@a2sf(s; s)

@as
+

@
P

m6=s asamf(s;m)

@as
+

@
P

l 6=s alasf(l; s)

@as

= 2 asf(s; s) +
X
m6=s

amf(s;m) +
X
l 6=s

alf(l; s)

=
kX

m=1

amf(s;m) +
kX

l=1

alf(l; s)

=
kX

l=1

alf(s; l) +
kX

l=1

alf(l; s)

=
kX

l=1

al(f(s; l) + f(l; s)) : �
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B Proof of assertions in Section 2

The observations deal with the optimal linear combination fbopt;rest without constant

term and with the restriction of the combination weights summing up to unity, i.e.

bT

opt1 = 1. This combination has been designed for the case where each individual

forecast is unbiased. Consequently, the optimal weight vector bopt is calculated on

the basis of the covariance matrix �� = E((Y � �01)(Y � �01)
T) making use of the

unbiasedness assumption. Here Y = ( y;fT)T.

Assertion 2.1 If the unbiasedness assumption is incorrect it is obvious that the true

optimal MSPE-value MSPE(fbopt;rest; y) should be calculated by inserting bopt from

Equation (2.18) into the general Equation (2.11), which is valid for any linear com-

bination of the type bTf . We obtain, however, the same Result (2.19) from inserting

bopt into the (now invalid) Equation (2.16).

Proof: If the unbiasedness assumption is incorrect the following relation can be

established between the true covariance matrix � = E(( Y� �)(Y � �)T) and

the matrix �� = E((Y � �01)(Y � �01)
T) which has been calculated following the

incorrect assumption:

� = �����T+�0�1
T+�01�

T��2
011

T : (B.1)

From this identity we may conclude that

�00 = ��00

�f0 = ��f0

�� = ��� � �f�
T

f
+ �0�f1

T + �01�
T

f
� �2

011
T : (B.2)

Inserting bopt into the valid Equation (2.11), applying the above identities and ex-

ploiting the restriction bT

opt1 = 1 we obtain

MSPE(fbopt;rest; y) =

= bT

opt(�� + �f�
T

f
)bopt � 2bT

opt(�f0 + �0�f) + �00 + �2
0

= bT

opt( ���+�0�f1
T+�01�

T

f
��2

011
T)bopt � 2bT

opt( ��f0 + �0�f ) + ��00 + �2
0

= bT

opt
���bopt � 2bT

opt
��f0 + ��00 : (B.3)

On the other hand, inserting bopt into the presumably invalid Equation (2.16) for

MSPE(fbopt;rest; y) gives

bT

opt( ��� + �2
011

T)bopt � 2bT

opt( ��f0 + �2
01) + ��00 + �2

0

= bT

opt
���bopt � 2bT

opt
��f0 + ��00 ; (B.4)
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as well because of the restriction bT

opt1 = 1. This completes the proof.

Assertion 2.2 The optimal parameter vector bopt is not changed if we use any other

constant than �0 in the calculation of the covariance matrix �� = E((Y� �01)(Y�

�01)
T).

An important consequence for practical applications is that we need not worry about

which estimate of �0 should be used when estimating ��: We may use the arithmetic

mean of the observations on the target variable y, the arithmetic mean of all observa-

tions on the target variable y and the single forecasts fi, both of which are reasonable

estimates, or we may even use 0.

Proof: We show that the optimal parameter vector bopt is the same regardless

whether we use �� = E((Y � �01)(Y � �01)
T) or ~� = E(( Y� �01)(Y � �01)

T) for

calculation, where �0 2 R is arbitrary.

It is convenient to switch to an alternative representation of the optimal weight

vector bopt: Since b
T

opt1 = 1 we may as well use the covariance matrix of the errors

e = f � y1 instead of the covariance matrix of Y. Under the assumption of unbi-

asedness of the individual forecasts we have E(e) = 0 and the covariance matrix of

the errors is given by

�V = E( eeT) : (B.5)

It is well-known that the optimal parameter vector bopt is then given by

bopt =
�V
�1
1

1T �V
�1
1

(B.6)

and the corresponding optimal MSPE-value by

MSPE(fbopt; y) = ( 1T �V
�1
1)�1 ; (B.7)

which obviously depend on �V alone.

Now

�V = E[ eeT] = E[(f � y1)(f � y1)T]

= E[((f � �1) + ( �1� y1))((f � �1) + ( �1� y1))T]

= E[( f� �1)(f � �1)T]� E[(y � �)(f � �1)]1T

� 1E[(y � �)(f � �1)T] + E[( y� �)2]11T ; (B.8)

where � 2 R is arbitrary. If we set � = �0 in the �nal expression we obtain

�V = ��ff� ��f01
T�1 ��

T

f0+ ��00 ; (B.9)

32



whereas for � = �0 we obtain

�V = ~�ff� ~�f01
T�1 ~�

T

f0+ ~�00 : (B.10)

Since bopt depends solely on �V this completes the proof.

C Derivation of optimal parameters for medium

and weak linear plus quadratic combination

In Sections 4 and 5 the equations determining the optimal combination parameters

for the medium and weak linear plus quadratic approaches are given. The purpose

of this appendix is to provide some intermediate results from the omitted proofs.

Both proofs are carried out along the same three steps which also occurred in the

derivations connected with the strong approach.

First we will deal with the medium linear plus quadratic combination:

Step 1: Explicit calculation of the MSPE-function. This �rst step is accom-

plished by inserting A = dg( a) in Equation (3.5):

MSPE(fa;b;c; y) =

=
kX

l=1

kX
m=1

alam
�
4�lm�l�m + 4 �m�mll +	mmll + �2

l �
2
m + 2 �2l�mm

�

� 2
kX

l=1

al
�
2�l0�l + �0ll + �0�

2
l + �0�ll

�

+ 2
kX

l=1

kX
m=1

albm (2�l�lm + �mll) + 2 bT�f

kX
l=1

al(�
2
l + �ll)

+ bT��b+ bT�
f
�T

f
b

� 2bT�f0 � 2�0b
T�

f

+ 2 c
kX

l=1

al(�
2
l + �ll)

+ 2 bT�
f
c

+ c2

� 2�0c

+ �00 + �2
0 ; (C.1)
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where

'
a
:= 'dg(a) =

 
kX

l=1

al�1ll; : : : ;
kX

l=1

al�kll

!T

=
kX

i=1

kX
l=1

al�ill�
(k)
i (C.2)

and

 a :=  dg(a) =

0
B@
Pk

l=1 al	11ll : : :
Pk

l=1 al	1kll

...
. . .

...Pk

l=1 al	k1ll : : :
Pk

l=1 al	kkll

1
CA : (C.3)

By �
(k)
i we denote the k{dimensional unit vectors, i.e. the i{th component of �

(k)
i is

equal to 1 whereas the other components are equal to 0.

Step 2: Di�erentiation. Using common di�erential calculus and applying Lemma

A.7 we get

@MSPE(fa;b;c; y)

@c
= 2

"
c� �0 + bT�

f
+

kX
l=1

al(�
2
l + �ll)

#
(C.4)

and

@MSPE(fa;b;c; y)

@b
=

= 2[ ��b+ �
f
�T

f
b��f0 � �0�f + c�

f

+

 
kX

l=1

al(�
2
l + �ll)

!
�
f
+'

a
+ 2�� dg(a)�f ] : (C.5)

In order to di�erentiate MSPE(fa;b;c; y) with respect to a, we di�erentiate with

respect to as, s = 1 ; : : : ; k, and arrange the result in vector form. Lemma A.10 is
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applied several times. We �nally arrive at

@MSPE(fa;b;c; y)

@a
=

= 8dg( �f )�� dg(a)�f + 4
kX

i=1

kX
l=1

al�l�lii�
(k)
i + 4dg(�f )'a

+ 2
kX

i=1

kX
l=1

al	llii�
(k)
i + 2 tr(dg(a)�� )

kX
i=1

�2
i �

(k)
i

� 4 dg(�f )�f0 � 2
kX

i=1

�0ii�
(k)
i

+ 4dg( �f)��b+ 2
kX

i=1

kX
l=1

bl�lii�
(k)
i

+ 2( c+ bT�f � �0 + �
T

1
dg(a)�f )

kX
i=1

(�2
i + �ii)�

(k)
i : (C.6)

Step 3: Equating to zero. Setting Equations (C.4), (C.5) and (C.6) simultane-

ously to zero we arrive at Equations (4.2), (4.3) and (4.4) from Section 4. They

determine the optimal choices for a, b and c.

Now we turn to the derivation of the optimal parameters for the weak linear plus

quadratic combination:

Step 1: Explicit calculation of the MSPE-function. By inserting A = �I in

Equation (3.5) we immediately arrive at

MSPE(f�;b;c; y) =

= �2
�
4�T

f
���f + 4'T�f + tr( ) + ( �T

f
�f )

2 + 2 �T
f
�f tr(�� )

�
+ � (�4�T

f0�f � 2 tr(�0� )� 2�0(�
T

f
�f + tr(�� )))

+ �bT (4���f + 2'+ 2( �T
f
�
f
+ tr(�� ))�f )

+ bT(�� + �
f
�T

f
)b

+ bT (�2�f0 � 2�0�f )

+ �c (2(�T

f
�
f
+ tr(�� )))

+ cbT(2�
f
)

+ c2

+ c(�2�0)

+ �00 + �2
0 ; (C.7)
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since we have

'�I = �(tr(�1� ); : : : ; tr(�k� ))
T =: �' (C.8)

and

 �I = �

0
B@

tr(	11� ) : : : tr(	1k� )
...

. . .
...

tr(	k1� ) : : : tr(	kk� )

1
CA =: � : (C.9)

For notational convenience we will abbreviate the coe�cient of �2 in the �rst line of

Equation (C.7) by d�� and the coe�cient of � in the second line by d�. The vector

by which �bT is multiplied in the third line will subsequently be abbreviated by d�b.

Note that neither of d��, d� and d�b depends on any of the unknown combination

parameters.

Step 2: Di�erentiation. With the help of some di�erential calculus we derive

@MSPE(f�;b;c; y)

@c
= � [2�T

f
�f + 2 tr(�� )]+2c�2�0+2b

T�f ; (C.10)

@MSPE(f�;b;c; y)

@b
= �d�b+2[��+�f�

T

f
]b�2�f0�2�0�f+2c�f (C.11)

and

@MSPE(f�;b;c; y)

@�
= 2 d���+d�+b

Td�b+c[2 tr(�� )+2�
T

f
�f ] : (C.12)

Step 3: Equating to zero. Finally we set Equations (C.10), (C.11) and (C.12) si-

multaneously to zero and solve the resulting linear equation system for the unknown

parameters. Thus we obtain the optimal choices for �, b and c.

From Equation (C.10) we obtain

copt = �0�b
T

opt�f��opt�
T

f
�f��opt tr(�� ) : (C.13)

Using (C.13), from (C.11) we derive

bopt = ��1
�
�f0��opt�

�1
�
'�2�opt�f : (C.14)

With the help of (C.13) and (C.14) Equation (C.12) can be equivalently expressed

as

�opt

�
tr( )�'T��1

�
'� [tr(�� )]

2
�
+
�
� tr(�0� ) +�T

f0�
�1
�
'
�
= 0 : (C.15)

36



Solving Equation (C.15) for � and inserting backwards into Equations (C.14) and

(C.13) we arrive at Equations (5.2), (5.3) and (5.4) from Section 5. They give the

optimal combination parameters for the current approach explicitly.
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