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The concept of breakdown point was introduced by Hodges (1967)

and Hampel (1968, 1971) and still plays an important though at times a

controversial role in robust statistics. It has proved most successful in the

context of location, scale and regression problems. In this paper we argue

that this success is intimately connected to the fact that the translation

and affine groups act on the sample space and give rise to a definition of

equivariance for statistical functionals. For such functionals a nontrivial

upper bound for the breakdown point can be shown. In the absence of

such a group structure a breakdown point of one is attainable and this

is perhaps the decisive reason why the concept of breakdown point in

other situations has not proved as successful. Even if a natural group

is present it is often not sufficiently large to allow a nontrivial upper

bound for the breakdown point. One exception to this is the problem of

the autocorrelation structure of time series where we derive a nontrivial

upper breakdown point using the group of realizable linear filters. The

paper is formulated in an abstract manner to emphasize the role of the

group and the resulting equivariance structure.
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1. Introduction.

1.1. Breakdown points and equivariance. The notion of breakdown point was

introduced by Hodges (1967) and Hampel (1968, 1971). Their definition was based

on a sequence of estimators Tn, n = 1, . . . with Tn applied to a sequence of samples

(X1(F ), . . . , Xn(F )) of random variables distributed according to F. Huber (1981)

took a more functional analytical approach and considered statistical functionals

T defined on the space of distributions. In this framework important properties

of statistical functionals can be phrased in terms of boundedness, continuity and

differentiability. Breakdown is related to the boundedness of the functional and the

breakdown point is defined in terms of metrics or the sizes of neighbourhoods on

the space of distributions. A simple and intuitive definition of breakdown point but

one restricted to finite samples, the finite sample breakdown point, was introduced

by Donoho (1982) and Donoho and Huber (1983). Successful applications of the

concept of breakdown point have been to the location, scale and regression problems

in R
k or to problems which are intimately related to these (see for example Ellis

and Morgenthaler (1992), Davies and Gather (1993), Hubert (1997), Terbeck and

Davies (1998), He and Fung (2000), Müller and Uhlig (2001)). The reason for this is

that such problems have a rich equivariance structure deriving from the translation

or linear group operating on R
k. By restricting the class of statistical functionals

to those with the appropriate equivariance structure one can prove the existence

of nontrivial highest breakdown points which in many cases can be achieved at

least locally (Huber (1981), Davies (1993)). The simplest example is perhaps that

of the median. If we use the replacement finite sample breakdown point of Donoho

and Huber (1983) then the median has a breakdown point of �(n + 1)/2�/n and

this is known to be the highest possible value for translation equivariant location
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functionals. If we consider scale functionals then the situation is somewhat different.

The statistical folklore is that the highest possible finite sample breakdown point

for any affine equivariant scale functional is �n/2�/n and that this is attained by

the median absolute deviation, MAD. Some authors (Croux and Rousseeuw (1992),

Davies (1993)) are aware that this is not correct, as is also shown by the following

example. For the sample

(1.1) x11 = (1.0, 1.8, 1.3, 1.3, 1.9, 1.1, 1.3, 1.6, 1.7, 1.3, 1.3)

the MAD has a finite sample breakdown point of only 1/11. This can be seen by

replacing the data point 1.0 by 1.3: the altered data set has a MAD of zero and this

is generally regarded as breakdown. If the sample has no repeated observations then

the MAD has a finite sample breakdown point of �n/2�/n and this is indeed the

highest possible finite sample breakdown point for a scale functional. The difference

between the maximal finite sample breakdown points for location functionals (�(n+

1)/2�/n) and scale functionals (�n/2�/n) is explained by our main theorem below.

Clearly if no restrictions are placed on the statistical functionals under consideration

then the highest possible breakdown point is one and this is attained by any constant

functional. We claim that the existence of nontrivial upper bounds is an essential

component of the concept of breakdown point and that such nontrivial bounds are

linked to a sufficiently rich equivariance structure. Another way of looking at the

problem is the following. If the structure imposed by the model is very high then

this will restrict the size of the group operating on the parameter space. It will

consequently be easier to find equivariant functionals with a breakdown point of

one. In other words the more highly structured the subset of interest the easier it

is to find it in a sea of noise.
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1.2. Previous work. The success of the concept of breakdown point in location,

scale, linear regression, and related problems has lead many authors to develop def-

initions applicable in other situations. We mention nonlinear regression (Stromberg

and Ruppert (1992)), time series (Martin and Jong (1977), Papantoni-Kazakos

(1984), Tatum and Hurvich (1993), Lucas (1997), Mendes (2000), Ma and Genton

(2000)), radial data (He and Simpson (1992)) and more general situations as in

Sakata and White (1995) and He and Simpson (1993), the latter one restricting

contamination to gross-error models. None of the above articles with the exception

of He and Simpson (1993) mentions a group structure or a corresponding equivari-

ance structure for the class of functionals under consideration. In particular constant

functionals are not excluded and have the highest possible breakdown point of one.

In these more general situations this may be the reason for the general lack of

acceptance of the proposed definitions of breakdown points.

1.3. Two examples. In some cases there is a canonical group acting on the

sample space but it is too small to be of use. The first example is the problem

considered by Ruckstuhl and Welsh (2001) which is formulated in terms of estimat-

ing the parameter θ of a binomial distribution Bin(k, θ) based on different samples.

Breakdown occurs when the estimator takes values arbitrarily close to the boundary

of the parameter space Θ = [0, 1]. Ruckstuhl and Welsh show that the asymptotic

breakdown point of the maximum likelihood estimator is one. A simple estimator

based on a sample x1, . . . , xn ∈ {0, . . . , k} with a breakdown point of one is

(1.2) Tw(xn) =
1
n

∑
min{max{xj , 1}, k − 1}/k.

Rousseeuw (personal communication) has pointed out that there is a canonical

group acting on the sample space which consists of the identity and the mapping g
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defined by g(x) = k − x. A functional T is equivariant with respect to this group if

T (P g) = 1−T (P ) where P g(B) := P (g−1(B)) for any (Borel) set B. The maximum

likelihood estimator is equivariant in this sense as is the functional (1.2). In other

words, even equivariant functionals can have a breakdown point of one.

The second example is taken from time series. We use the basic model of a

stationary autoregressive process of order one xn+1 = θxn + rn+1 so that the

parameter space is Θ = (−1, 1). We take the sample space X to be the set of all

doubly infinite sequences R
Z. The only group we know of which is compatible with

the model is the multiplicative group R\{0} which multiplies each component of a

point x ∈ X by a nonzero number. This leaves the structure of the autoregressive

process unchanged and hence any constant functional with a breakdown point of

one is equivariant with respect to this group.

1.4. Fisher and asymptotic consistency. As already mentioned if no group

structure exists then constant functionals are not excluded and these have a break-

down point of one. It may be thought that the absence of a group structure could be

compensated by imposing additional restrictions on the set of allowable functionals

in the hope of attaining a nontrivial upper bound for the breakdown point. Two

restrictions which are plausible are Fisher consistency and asymptotic consistency.

They at least have the advantage of excluding the constant functionals. Given a

parametric family of distributions Pθ Fisher consistency is defined by T (Pθ) = θ

for all θ ∈ Θ. This will in general not help as the parametric family Pθ is too sparse

in the set of all distributions P , if we define a functional T by

(1.3) T (P ) =




θ if P = Pθ, θ ∈ Θ,

θ0 otherwise.
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Fig. 1. Connections 1

As an example we consider the family of normal distributions on R with Pθ =

N(θ, 1) and θ0 = 0. The functional defined by (1.3) has a breakdown point of one

but is Fisher consistent at the family of normal distributions. A similar argument

shows that asymptotic consistency does not help: there exist functionals which are

Fisher consistent and asymptotically consistent and still have a breakdown point

of one.

2. A general definition of breakdown point. The approach we adopt is

the functional analytic one of Huber (1981) which goes back at least to von Mises

(1937, 1947). We will consider a measurable sample space (X ,B(X )) and the set

P of all non-degenerate probability measures on this space. This clearly includes

all non-degenerate empirical measures. In particular in scale problems we do not

assume that the data points are “in general position”. This latter point is not just

of theoretical interest as problems of collinearity or the rounding of observations

can occasionally be so severe as to necessitate a modification of the scale functionals

used. The problem also occurs in the existence of joint M-estimators of location and

scale (Huber (1981), Chapter 6, Kent and Tyler (1991)) and in structured regression

problems (see the remarks of Huber (1995)). Such problems are rarely discussed in

the literature but see Davies (1993) and Dietel (1993).

The situation we describe is shown in Figure 1. On the left we have a measurable

sample space (X ,B(X )) and the family P of probability measures defined on B(X ).



7

Moreover P is equipped with some pseudometric d : P ×P → [0,∞) which satisfies

(2.1) sup
P,Q∈P

d(P,Q) = 1.

On the right we have a parameter space Θ which is equipped with a pseudometric

D on Θ × Θ which satisfies

(2.2) sup
θ1, θ2

D(θ1, θ2) = ∞.

The two are connected by a functional T

(2.3) T : P → Θ

which associates to every point P ∈ P a point T (P ) ∈ Θ. The breakdown point

ε∗(T, P, d,D) of the functional T at the distribution P with respect to the pseudo-

metrics d and D is defined by

(2.4) ε∗(T, P, d,D) = inf{ε > 0 : sup
d(P,Q)<ε

D(T (P ), T (Q)) = ∞}.

We note that the breakdown point is a local concept.

The replacement finite sample breakdown point of a functional T is defined as

follows. If xn = (x1, . . . , xn) is a sample of size n we denote its empirical distribution

by

Pn =
1
n

n∑
i=1

δxi
.

Let yn,k be a sample obtained from xn by altering k of the xi such that the

two samples differ in exactly k points. Denote the empirical distribution of yn,k by

Qn,k. The finite sample breakdown point (fsbp) of T at the sample xn (or Pn) is

then defined by

(2.5) fsbp (T,xn,D) =
1
n

min{k ∈ {0, 1, . . . , n} : sup
Qn,k

D(T (Pn), T (Qn,k)) = ∞}.
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3. Groups and equivariance.

3.1. An upper bound for the breakdown point. As mentioned in Section 1.1 most

extensions of the concept of breakdown point have considered the situation de-

scribed by Figure 1. We claim that a reasonable definition of breakdown point

requires more structure and this is shown in Figure 2. On the left we still have the

sample space X , the family of probability measures P and the pseudometric d but

we now have the additional structure of a group G of measurable transformations

g of X onto itself, g : (X ,B(X )) → (X ,B(X )). For any P ∈ P and any g ∈ G we

define P g by

(3.1) P g(B) = P (g−1(B)), B ∈ B.

Finally we impose a technical condition on d and require

(3.2) d(αP + (1 − α)Q1, αP + (1 − α)Q2) ≤ 1 − α, P,Q1, Q2 ∈ P, 0 < α < 1.

On the right we also have an additional structure namely a group of transforma-

tions of Θ into itself which is parameterized by the group G on the left. Specifically

we suppose that the group G induces a group HG = {hg : g ∈ G} of transformations
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hg : Θ → Θ which describes the equivariance structure of the problem. A functional

T : P → Θ is called equivariant with respect to G if

(3.3) T (P g) = hg(T (P )) for all g ∈ G, P ∈ P.

We now define

(3.4) G0 = {g ∈ G : D(θ, hg(θ)) = 0 for all θ ∈ Θ}.

The restriction of g ∈ G to a set B ∈ B will be denoted by g|B and the unit

element of G by ι. Given this we define

(3.5) ∆(P ) = sup{P (B) : B ∈ B, g|B = ι|B for some g /∈ G0}.

Theorem 3.1.

With the above notation and under the assumption

(3.6) lim
n→∞ inf

θ
D(θ, hgn(θ)) = ∞ for all g /∈ G0

we have

(3.7) ε∗(T, P, d,D) ≤ (1 − ∆(P ))/2

for all G-equivariant functionals T , for all P ∈ P, for all pseudometrics d and D

satisfying (2.1), (2.2), and (3.2).

Proof: The proof of the theorem follows the lines of Rousseeuw (1983, 1984) and

Davies (1987, 1993). Let B0 and g /∈ G0 be such that g|B0 = ι|B0 . Consider the

measures Q1, Q2 and Qn defined by

Q1(B) = P (B ∩ B0), B ∈ B

Q2(B) = P (B) − Q1(B), B ∈ B

Qn(B) = (Q2(B) + Qgn

2 (B))/2 + Q1(B), B ∈ B.
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As Qg
1 = Qg−1

1 = Q1 we have

Qg−n

n = (Qg−n

2 + Q2)/2 + Q1,

which is indeed an element of P. From this it follows on using (3.2)

d(Qg−n

n , P ) ≤ (1 − P (B0))/2(3.8)

d(Qn, P ) ≤ (1 − P (B0))/2.(3.9)

By the equivariance of T we have

T (Qg−n

n ) = hg−n(T (Qn))

from which it follows

D(T (Qg−n

n ), T (Qn)) ≤ D(T (P ), T (Qg−n

n )) + D(T (P ), T (Qn)).

From (3.6) we have

lim
n→∞D(T (Qg−n

n ), T (Qn)) = ∞

and hence

lim
n→∞(D(T (P ), T (Qg−n

n )) + D(T (P ), T (Qn))) = ∞.

Both D(T (P ), T (Qg−n

n )) and D(T (P ), T (Qn)) cannot remain bounded and we con-

clude that for any ε > (1 − P (B0))/2

sup
d(P,Q)<ε

D(T (P ), T (Q)) = ∞.

As this holds for any B0 such that g|B0 = ι|B0 for some g /∈ G0 the claim of the

theorem follows. �

We can prove a similar result for the finite sample breakdown point.
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Theorem 3.2.

With the above notation and under assumption (3.6) we have

(3.10) fsbp (T,xn,D) ≤
⌊

n − n∆(Pn) + 1
2

⌋
/n.

Proof: Firstly we note that there are exactly n∆(Pn) points in xn for which

g(xi) = xi for some g /∈ G0. We assume without loss of generality that these are

the sample points x1, . . . , xn∆(Pn). If ∆(Pn) = 0 there are no such points and some

obvious alterations to following proof are required. To ease the notation we write

l(n) =
⌊

n − n∆(Pn) + 1
2

⌋
.

We consider the sample y∗
n,k given by

y∗
n,k = (x1, . . . , xn∆(Pn), . . . , xn−l(n), g

m(xn−l(n)+1), . . . , gm(xn))

for some m ≥ 1 and some g /∈ G0. We denote its empirical distribution by Q∗
n,k.

The sample y∗
n,k contains at least n − l(n) points of the original sample xn. The

transformed sample g−m(y∗
n,k) is equal to

(x1, . . . , xn∆(Pn), g
−m(xn∆(Pn)+1), . . . , g−m(xn−l(n)), xn−l(n)+1, . . . , xn)

It contains at least n∆(Pn) + l(n) points of the original sample xn and as

n∆(Pn) + l(n) ≥ n − l(n)

it contains at least n − l(n) points of xn. By the equivariance of T we have

T (Q∗g−m

n,k ) = hg−m(T (Q∗
n,k))

from which it follows

D(hg−m(T (Q∗
n,k)), T (Q∗

n,k)) ≤ D(T (Pn), T (Q∗
n,k)) + D(T (Pn), T (Q∗g−m

n,k ))
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From (3.6) we have

lim
m→∞D(hg−m(T (Q∗

n,k)), T (Q∗
n,k)) = ∞

and hence D(T (Pn), T (Q∗
n,k)) and D(T (Pn), T (Q∗g−m

n,k )) cannot both remain

bounded and we conclude that for any k ≥ �n−n∆(Pn)+1
2 �

sup
Qn,k

D(T (Pn), T (Qn,k)) = ∞

from which the claim of the theorem follows. �

There is in fact a direct connection between the two theorems. We consider the

total variation metric dtv defined by

dtv(P,Q) = sup
B∈B(X )

|P (B) − Q(B)|.

If B(X ) “shatters” every finite set of points in X then

dtv(Pn, P ∗
n) = k/n

where Pn denotes the empirical measure deriving from (x1, . . . , xn) and P ∗
n that de-

riving from (x∗
1, . . . , x

∗
n) with the two samples differing in exactly k points. Suppose

now that ε∗(T, Pn, dtv,D) = (1−∆(Pn))/2. If k < n(1−∆(Pn))/2 then breakdown

in the sense of finite sample breakdown point cannot occur and we see that

(3.11) fsbp (T,xn,D) ≥
⌊

n − n∆(Pn)
2

⌋
/n.

Unfortunately the inequality of Theorem 3.2 seems not to be provable in the same

manner.

3.2. The pseudometric d. The definition of breakdown point in (2.4) is framed

partly in terms of the pseudometric d over the space P of probability measures.

The pseudometric d is required to satisfy only (2.1) and (3.2). This does not mean

that the breakdown point will be the same for all such d. A simple counterexample
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is provided by the scale problem in R. If we use the Kolmogoroff metric then the

breakdown point of the MAD at an atomless distribution is 1/4 (Huber (1981),

page 110). However if we use the Kuiper metric then the breakdown point is 1/2 in

spite of the fact that both metrics fulfill the restrictions. More generally if d′ and

d′′ are two metrics satisfying (2.1) and (3.2) and such that d′ ≤ d′′ then

(3.12) ε∗(T, P, d′,D) ≤ ε∗(T, P, d′′,D) ≤ (1 − ∆(P ))/2.

In particular if ε∗(T, P, d′,D) = (1−∆(P ))/2 then ε∗(T, P, d′′,D) = (1−∆(P ))/2.

A class ordered metrics which are of use for one-dimensional scale problems is

provided by the generalized Kuiper metrics dm/2,m ∈ N, defined as follows. We set

dm/2(P,Q) = sup
{|P (J) − Q(J)| : J = ∪M

j=1Ij ,M = �(m + 1)/2�,

�m/2� = #{Ij finite interval},


m/2� − �m/2� = #{Ij infinite interval}}.(3.13)

Thus d0.5 is the ordinary Kolmogoroff metric, d1 the ordinary Kuiper metric. For

d4.5 the supremum in (3.13) is taken over the union of four finite intervals and one

infinite interval. We note in passing that d9 is the default value for the metric in

Davies and Kovac (2002) in the context of the modality of densities. We have

(3.14) d0.5 ≤ d1 ≤ . . . ≤ dm/2 ≤ d(m+1)/2.

Furthermore all the metrics satisfy (2.1) and (3.2).

3.3. The pseudometric D, a canonical choice. As we have seen in the case of

d in Section 3.2 there seems to be no canonical choice: different choices of d can

lead to different breakdown points. A similar problem exists with respect to the

pseudometric D on Θ. We now indicate a possibility of making D dependent on

d. The idea is that two parameter values θ1 and θ2 are far apart with respect
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to D if and only if the corresponding distributions are far apart with respect to

d. We illustrate the idea using the location problem in R. Suppose we have data

with empirical distribution Pn and two values of the location parameter θ1 and

θ2. We transform the data using the translations θ1 and θ2 which gives rise to

two further distributions Pn(· − θ1) and Pn(· − θ2). If these two distributions are

clearly distinguishable then d(Pn(·−θ1), Pn(·−θ2)) will be almost one. An opposed

case is provided by an autoregressive process of order one. The parameter space is

Θ = (−1, 1) and this may be metricized in such a manner that D(θ1, θ2) tends to

infinity for fixed θ1 as θ2 tends to the boundary. However values of θ close to, on

or even beyond the boundary, may not be empirically distinguishable from values

of θ in the parameter space. A sample of size n = 100 generated with θ1 = 0.95

is not easily distinguishable from a series generated with θ2 = 0.9999 even though

D(θ1, θ2) is large.

We now give a choice of D in terms of d and such that (2.2) is satisfied. We set

G(θ1, θ2) = {g ∈ G : hg(θ1) = θ2}

and then define D by

(3.15) D(θ1, θ2) = DP (θ1, θ2) = inf
g∈G(θ1,θ2)

| log(1 − d(P g, P ))|.

The interpretation is that we associate P with the parameter value θ1 and P g with

the parameter value θ2. The requirement (2.2) will only hold if d(P g, P ) may be

arbitrarily close to one so that the distributions associated with θ1 and θ2 are as

far apart as possible. It is easily checked that D defines indeed a pseudometric on

Θ; namely DP ≥ 0, DP is symmetric and satisfies the triangle inequality. In some

situations it seems reasonable to require that d and D be invariant with respect to
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the groups G and HG respectively. If d is G–invariant, i.e.

d(P,Q) = d(P g, Qg), for all P,Q ∈ P, g ∈ G,

then D, defined by (3.15), inherits the invariance, i.e.

D(θ1, θ2) = D(hg(θ1), hg(θ2)), for all θ1, θ2 ∈ Θ, g ∈ G.

The G–invariance of d can often be met.

4. Examples.

4.1. Location functionals and the translation group. We take X to be k-

dimensional Euclidean space R
k and G is the translation group with elements

g(x) = x+ a with a ∈ R
k. The parameter space Θ is R

k and the group HG is again

the translation group, with hg = g. The pseudometric D on Θ is now a metric

with D(θ1, θ2) = ‖θ1 − θ2‖k. It clearly satisfies (2.2). G0 consists only of the unit

element of G which clearly implies (3.6). The pseudometric d is not so important.

One possibility is

(4.1) d(P,Q) = sup
B∈C

|P (B) − Q(B)|

where

C = {C : C = {x : xtb + a ≤ 0}},

with b a point in R
k and a a real number. This is a weak metric defined over a class

of subsets with polynomial discrimination. The pseudometric d satisfies (3.2). As

there is no set B which satisfies the definition of ∆ in (3.5) we have ∆(P ) = 0 for

all P. Theorem 3.1 now states that ε∗(T, P, d) ≤ 1/2 for any translation equivariant

functional.
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4.2. Scatter functionals and the affine group. X is again the k-dimensional Eu-

clidean space R
k but G is now the group of affine transformations

(4.2) g(x) = Ax + a, x ∈ R
k,

where A is a nonsingular k × k-matrix and a is a point in R
k. The parameter

space Θ is the space Σk of nonsingular symmetric k × k-matrices. The group HG

of transformations of the parameter space is given by

(4.3) hg(σ) = AσAt, σk ∈ Σk,

where g is given by (4.2). The pseudometric on Σk is given by

(4.4) D(σ1, σ2) = | log(det(σ1σ
−1
2 ))| σ1, σ2 ∈ Σk.

It is easily checked that D satisfies (2.2). G0 is given by

G0 = {g : g(x) = Ax + a,det(A) = 1}

from which (3.6) follows. The pseudometric d is again not so important but we

define it by

(4.5) d(P, Q) = sup
B∈C

|P (B) − Q(B)|

where

C = {C : C = {x ∈ R
k : xtcx + xtb + a ≤ 0}},

with c is a non-negative definite k× k-matrix, b a point in R
k and a a real number.

This is a weak metric defined over a class of subsets with polynomial discrimination,

and it clearly satisfies (3.2). We now show that

(4.6) ∆(P ) = sup{P (B) : B is a hyperplane of dimension ≤ k − 1}.

Suppose g|B = ι|B with g(x) = Ax+a. Then for x ∈ B we have Ax+a = Ikx where

Ik denotes the k × k identity matrix. This implies (A − Ik)x + a = 0 for all x ∈ B.
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As g 
= ι this cannot hold for all x and hence B is contained in the hyperplane

{x : (A − Ik)x + a = 0} which is of dimension at most k − 1. On the other hand if

B is a lower dimensional hyperplane given by

B = {x : Ax + a = 0}

then we may choose α 
= 0 such that αA + Ik is nonsingular. Define g by

g(x) = (αA + Ik)x + αa

Then g is a nonsingular affine transformation and g(x) = x if and only if x ∈ B.

Theorem 3.1 is now Theorem 3.2 of Davies (1993).

4.3. Regression functionals and the translation group. X is now the k + 1-

dimensional Euclidean space R
k ×R where the first k components define the design

points and the k + 1 component is the corresponding value of y. The group G

consists of all transformations

(4.7) g((xt, y)t) = (xt, y + xta)t, (xt, y)t ∈ R
k × R,

with a ∈ R
k. The space Θ is R

k and a functional T : P → Θ is equivariant with

respect to the group if

T (P g) = T (P ) − a

with g as in (4.7). The group HG is the translation group

(4.8) hg(θ) = θ + a

with g as in (4.7). The pseudometric D is simply the Euclidian distance D(θ1, θ2) =

‖θ1 − θ2‖k which satisfies (2.2). G0 consists only of the identity and it is clear from

(4.8) that (3.6) holds. Again the pseudometric d is not of great importance and we
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define it by

(4.9) d(P, Q) = sup
B∈C

|P (B) − Q(B)|

where

C = {C : C = {(xt, y)t ∈ R
k × R : |xtθ + y| ≤ c}},

with θ ∈ R
k and c ≥ 0. The metric d satisfies (3.2). We now show that

(4.10) ∆(P ) = sup{P (C × R) : C ⊂ R
k is a plane of dimension ≤ k − 1}.

Suppose g|B = ι|B with g((xt, y)t) = (xt, y + xta)t. Then for (xt, y)t ∈ B we

must have xta = 0 so that B ⊂ C × R with C = {x;xta = 0} a plane. As

g((xt, y)t) = (xt, y + xta)t 
= (xt, y)t for all (xt, y)t ∈ R
k × R it follows that a 
= 0

and so the plane C is indeed one of dimension at most k − 1. On the other hand if

C is a plane of dimension at most k−1 then we can express it as C = {x : xta = 0}
for some a ∈ R

k, a 
= 0. On setting B = C × R we see that g|B = ι|B with

g((xt, y)t) = ((xt, y + xta)t) proving (4.10). The result is now Theorem 3.1 of

Davies (1993).

4.4. Time series and realizable linear filters. As far as we know there are no

results corresponding to the location, scale and linear regression problems for time

series. We are aware of some work corresponding to a breakdown point concept

for time series, namely Martin and Jong (1977), Papantoni-Kazakos (1984), Tatum

and Hurvich (1993), Lucas (1997), Mendes (2000), Ma and Genton (2000), de Luna

and Genton (2001), and references given in these papers. In none of these papers

are any equivariance properties or group structures imposed. We now present what

would seem to be a first result in this direction. The problem is that of specifying

an autocorrelation matrix or a Toeplitz form for a given probability measure. We
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set

(4.11) X = Xδ = {x ∈ C
Z :

∞∑
j=0

|xn−j |(1 + δ)−j < ∞ for all n ∈ Z}

for some δ > 0 and equip X with the usual Borel σ-algebra. We suppose that P is

the set of all probability measures on X . The group G is given by

(4.12)

G = {g : g : Γ1+ε → C, homomorphic and bounded with inf
z∈Γ1+ε

|g(z)| > 0}

where Γr denotes the open disc in C of radius r. Each such g has a power series

expansion

(4.13) g(z) =
∞∑

j=0

gjz
j

with g0 
= 0 and

(4.14) |gj | ≤ K(g, η)(1 + η)−j

for each η, 0 < η < ε and some constant K = K(g, η). If ε > δ then each g in G

defines a linear filter on X , which by an abuse of notation, we also denote by g. It

is defined by

(4.15) (g(x))n =
∞∑

j=0

xn−jgj , n ∈ Z.

We define

(4.16) A = {α ∈ C
Z : αj = 0, j ≥ n for some n, |αj | ≤ K(1 + ε)j , j → −∞}

with ε as in (4.12). The inner product of α ∈ A with an x ∈ X is defined by

(4.17) αtx :=
∞∑

j=−∞
xjαj .

The conditions placed on A guarantee that αtx is well defined. The pseudometric

d on P is defined by

(4.18) d(P,Q) = sup
α∈A,b∈R

|P ({x ∈ X : αtx ≤ b}) − Q({x ∈ X : αtx ≤ b})|.
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It can easily be checked that d satisfies the conditions of Theorem 3.1.

We take the parameter space Θ to be the space of finite distribution functions

F on (−π, π] which may be identified with the corresponding Toeplitz form

(4.19) r(n) =
∫

(−π,π]

exp(inλ)dF (λ), n ∈ Z.

The group HG is defined as follows. For F ∈ Θ and g ∈ G we define hg(F ) by

(4.20) hg(F ) = Fg where dFg(λ) = |g(exp(iλ))|2dF (λ).

Finally the pseudometric D on Θ is defined by

(4.21) D(F1, F2) =




∫ π

−π

∣∣∣log
(

dF1
dF2

)∣∣∣ dλ F1 � F2

∞ otherwise

where dF1/dF2 denotes the Radon-Nikodym derivative of F1 with respect to F2

and F1 � F2 means that the two measures are absolutely continuous with respect

to each other. The conditions placed on the group G imply that

inf
λ∈(−π,π]

|g(exp(iλ))| > 0

from which it follows that Fg and F are mutually absolutely continuous for any

g ∈ G and any F ∈ Θ. Furthermore

dFg/dF = |g(exp(iλ))|2

from which it easily follows that

(4.22) D(F, hg(F )) = 2
∫ π

−π

| log(g(exp(iλ)))|dλ

for any F in Θ and g ∈ G. Finally from (4.22) we have

D(F, hgn(F )) = 2n
∫ π

−π

| log(g(exp(iλ)))|dλ.

The continuity properties of |g(exp(iλ)| imply

lim
n→∞n

∫ π

−π

| log(g(exp(iλ)))|dλ = ∞
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unless |g(exp(iλ))| = 1,−π < λ ≤ π. This however would imply g(z) = z and so

we see that (3.6) holds for any g which is not the identity. Hence D also satisfies

all the assumptions of Theorem 3.1. G0 is seen to consist only of the identity. The

theorem then implies

ε∗(T, P, d,D) ≤ (1 − ∆(P ))/2.

5. Attaining the bound.

5.1. Location functionals. In Section 4.1 we proved that the maximum break-

down point for translation equivariant location functionals is 1/2. This bound is

sharp as is shown by the location equivariant L1-functional

(5.1) T (P ) = argminµ

∫
(‖x − µ‖ − ‖x‖)dP (x).

In general the L1-functional is not regarded as a satisfactory location functional as

these are often required to be affinely equivariant. The attempt to prove Theorem

3.1 for affine equivariant functionals fails as there are affine equivariant location

functionals with a higher breakdown point than would be suggested by Theorem

3.1. This is most clearly seen in one dimension where the breakdown point of the

median is 1/2 at all distributions. The cause of the failure is (3.6) which no longer

holds. The upper bound of 1/2 remains valid but it is not clear whether this can

be attained for dimensions greater than one. Work has been done in this direction

but it is not conclusive (Rousseeuw (1983), Niinimaa, Oja and Tableman (1990),

Lopuhaä and Rousseeuw (1991), Gordaliza (1991), Lopuhaä (1992), Donoho and

Gasko (1992)).

We first point out that the bound 1/2 is not globally sharp. Take a discrete mea-

sure in R
2 with point mass 1/3 on the points x1 = (0, 1), x2 = (0,−1), x3 = (

√
3, 0).

The points form a regular simplex. For symmetry reasons every affinely equivari-
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ant location functional must yield the value (1/
√

3, 0). Replacing now (
√

3, 0) by

(η
√

3, 0), it is easily shown that each affinely equivariant location functional must

result in (η/
√

3, 0). On letting η → ∞ it follows that the breakdown point of every

affinely equivariant location functional cannot exceed 1/3. In k dimensions one can

prove in a similar manner that 1/(k+1) is the maximal breakdown point for points

on a regular simplex with k + 1 sides.

In spite of the above example we now show that there are probability distribu-

tions at which the finite sample replacement breakdown point is 1/2 even if this

cannot be obtained globally. We consider a sample xn = (x1, . . . , xn) of size n in R
k

and form the empirical measure Pn given by Pn = 1/n
∑n

i=1 δxi
. To obtain our goal

we define an appropriate affinely equivariant location functional T at PA
n for all

affine transformations A and also at all measures of the form P ∗A
n . Here P ∗

n is any

empirical measure obtained from xn by altering the values of at most �(n − 1)/2�
of the xi. The new sample will be denoted by x∗

n = (x∗
1, . . . , x

∗
n). We have to show

that the values of T (P ∗A
n ) can be defined in such a way that

T (PA
n ) = A(T (Pn))(5.2)

T (P ∗A
n ) = A(T (P ∗

n))(5.3)

and

(5.4) sup
P∗

n

|T (Pn) − T (P ∗
n)| < ∞.

This is done in Appendix A.

We note that the Sample conditions 1 and 2 in Appendix A are satisfied for an

i.i.d. Gaussian sample of size n if n is sufficiently large. We indicate how this may

be shown for Sample condition 2 in Appendix B.
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5.2. Scatter functionals. The results given in this section are new even for the

one dimensional case. In example (1.1) the median absolute deviation MAD has

a finite sample breakdown point of 1/11 compared with the upper bound of 3/11

given by Theorem 3.1. We propose a modification of the median absolute deviation

which does attain the upper bound.

For a probability measure P we define the interval I(P, λ) by

I(P, λ) = [med(P ) − λ,med(P ) + λ]

and write

∆(P, λ) = max{P ({x}) : x ∈ I(P, λ)}.

The new scale functional MAD∗ is defined by

MAD∗(P ) = min{λ : P (I(P, λ)) ≥ (1 + ∆(P, λ))/2}.

Suppose we use the Kuiper metric d1. Then as in Davies (1993) we find that

(5.5) ε∗(MAD∗, P, d1,D) = (1 − ∆(P ))/3.

We now show that for the metric d3 the upper bound for the breakdown point is

attained. Given η > 0 we define λ∗(P,Q, η) by

(5.6) λ∗(P,Q, η) = inf{λ : P (I(Q,λ)) ≥ 1 − η}.

To ease the notation we write λ∗ for λ∗(P,Q, η) of (5.6). Suppose now that Q is

such that

(5.7) d3(P,Q) ≤ (1 − ∆(P ))/2 − δ

with δ > 0. As the breakdown point of the median is 1/2 it follows that

(5.8) sup{λ∗ : d3(P,Q) ≤ (1 − ∆(P ))/2 − δ} < ∞.
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Let ∆(P, λ∗) and ∆(Q,λ∗) respectively denote measures of the largest G-invariant

sets of P and Q in I(Q,λ∗).

(1) Case 1: ∆(Q,λ∗) ≤ ∆(P, λ∗)

From (5.7) it follows that

Q(I(Q,λ∗)) ≥ P (I(Q,λ∗)) − (1 − ∆(P ))/2 + δ

≥ 1 − η − (1 − ∆(P ))/2 + δ

≥ (1 + ∆(P ))/2 + δ − η

≥ (1 + ∆(P, λ∗))/2 + δ − η

≥ (1 + ∆(Q,λ∗))/2 + δ − η.(5.9)

As η may be chosen to be less than δ it follows from (5.8) that

(5.10) sup{MAD∗(Q) : d3(P,Q) ≤ (1 − ∆(P ))/2 − δ} < ∞.

(2) Case 2: ∆(Q,λ∗) = ∆(P, λ∗) + γ, γ > 0

Let x be a point in I(Q,λ∗) with Q({x}) = ∆(Q,λ∗) and set I \{x} = I1∪ I2

for intervals I1 and I2. From the definition of d3 it follows that

|Q(I1) − P (I1)| + |Q({x}) − P ({x})| + |Q(I2) − P (I2)| ≤ (1 − ∆(P ))/2 − δ.

As

|Q({x}) − P ({x})| = ∆(Q,λ∗) − P ({x}) ≥ ∆(Q,λ∗) − ∆(P, λ∗) = γ

we may deduce

Q(I1 ∪ I2) ≥ P (I1 ∪ I2) − (1 − ∆(P ))/2 + δ + γ.
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It follows that

Q(I(Q,λ∗)) ≥ P (I1 ∪ I2) − (1 − ∆(P ))/2 + δ + γ + ∆(Q,λ∗)

= P (I(Q,λ∗)) − P ({x}) − (1 − ∆(P ))/2 + δ + γ + ∆(Q,λ∗)

≥ 1 − η − ∆(P, λ∗) − (1 − ∆(P ))/2 + δ + γ + ∆(Q,λ∗)

= 1 − η − (1 − ∆(P ))/2 + δ + 2γ

= (1 + ∆(P ))/2 − η + δ + 2γ

= (1 + ∆(Q) − γ)/2 − η + δ + 2γ

= (1 + ∆(Q))/2 − η + δ + 3γ/2

≥ (1 + ∆(Q))/2.(5.11)

for η sufficiently small. Again we have

(5.12) sup{MAD∗(Q) : d3(P,Q) ≤ (1 − ∆(P ))/2 − δ} < ∞.

From (5.10) and (5.12) it follows that

(5.13) sup{MAD∗(Q) : d3(P,Q) ≤ (1 − ∆(P ))/2 − δ} < ∞

which shows that MAD∗(Q) does not explode for Q satisfying (5.7) for any fixed

δ > 0. It is not difficult to show that MAD∗(Q) does not implode so that we have

(5.14) ε∗(MAD∗, P, d3,D) = (1 − ∆(P ))/2

and the upper bound is attained globally.

In higher dimensions it seems plausible that by an appropriate choice of the

metric and by a similar modification of known functionals (minimum volume

ellipsoid, minimum covariance determinant) the upper bound given by Theorem

3.1 can be attained globally. We do not consider this any further.
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5.3. Regression functionals. The remarks at the end of the last section also

apply here. We suspect that by an appropriate choice of the metrics and by a

modification of known functionals (least median of squares) the upper bound given

by Theorem 3.1 can be attained globally. Again we do not consider this any further.

5.4. Time series. Here we have no results to offer for the simple reason that

we are not aware of any functional T which is well defined on P. It may be a topic

worthy of further research.

6. Two further examples.

6.1. Logistic regression. We now consider the logistic regression model defined

by

(6.1) P (Y = 1|x) = exp(θ0 + xtθ̃)/(1 + exp(θ0 + xtθ̃)), θ = (θ0, θ̃
t)t ∈ R

k+1,

where xt = (x1, . . . , xk) are the covariates associated with the random variable Y.

The sample space is given by

(6.2) X = {0, 1} × R
k

and P is the set of all nondegenerate probability measures on the Borel sets of X .

The metric d on P is defined by

(6.3)

d(P,Q) = sup{|P (B) − Q(B)| : B = {(y, xt)t : u0y + xtu ≤ v}, u ∈ R
k, u0, v ∈ R}.
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The parameter space Θ is R
k+1. The group G on X is generated by the compositions

of transformations of the form

(y, xt)t → (1 − y, xt)t(6.4)

(y, xt)t → (y,A(x)t)t,(6.5)

where A is a nonsingular affine transformation A(x) = Ax + a. The group HG of

transformations of Θ induced by G is given by

hg(θ) = −θ, g as in (6.4)(6.6)

hg((θo, θ̃
t)t) = (θ0 − at(At)−1θ̃, ((At)−1(θ̃))t)t, g as in (6.5)(6.7)

The metric D on Θ will be defined as in Section 3.3 for a suitable choice of P. We

define P as follows. Under P the random variable (Y,Xt)t is such that X is N(0, Ik)

and, given X = x, the random variable Y satisfies (6.1) with θ = (1, . . . , 1)t.

With this P and g such that A(x) = Ax + a, det A > 1, under P g, the random

variable X is N (0, AtA). Hence under P gn

it is N (0, (AtA)n). From this it follows

lim
n→∞ d(P gn

, P ) = 1 so that (2.1) and (2.2) are satisfied. All the conditions for

Theorem 3.1 are satisfied apart from the condition (3.6) which is not satisfied.

Indeed if we define the functional T : P → Θ by T (P ) = 0 for all P then it is seen

that T (P g) = hg(T (P )) = hg(0) = 0 and T is equivariant with respect to the group

structure. As a constant functional its breakdown point is one.

The parameter value θ = 0 corresponds to Y being Bin(1, 0.5) independent of X.

Some authors have tried to alter the definition of breakdown point in such a way that

θ = 0 is regarded as a breakdown. We are not convinced by these arguments. Firstly,

if observed y-values have little dependence on the observed x-values (toss a coin and

take the x-values to be the share prices of all companies listed on the London Stock

Exchange at the time of tossing the coin) then a value of θ = 0 would seem perfectly
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reasonable. It is not clear why it should be judged as a breakdown. Secondly, even

if all the y values are one the probability under the model with θ = 0 is 2−n which

is not zero. To say this is a breakdown seems rather odd for n = 3 say, irrespective

of everything else. Of course one could define breakdown if 2−n < 10−10 but this is

rather arbitrary. It is similar to saying a location functional has broken down if its

value exceeds a certain specified finite bound. If we accepted such a definition for

location functionals then the theory of breakdown, affine equivariance etc. would

itself be broken down. Breakdown is a limiting behaviour and its elegance derives

from this and an appropriate equivariance structure. It should not be confused with

exceeding a finite but arbitrary bound.

6.2. Nonlinear regression We consider the model

(6.8) Y = h(x, θ) + ε

where h(·, θ), θ ∈ Θ, is a parametric family of functions. Stromberg and Ruppert

(1992) proposed the following definition of finite sample breakdown point for the

above model. Given a data set

χ = ((x1, y1), . . . , (xn, yn))

they define the upper breakdown point at x by

(6.9) ε+(x, h, θ̂, χ) = min
0≤m≤n

{
m

n
sup
χm

h(x, θ̂(χm)) = sup
θ

h(x, θ)
}

where χm denotes a sample obtained from χ by altering m points. The lower break-

down point ε−(x, h, θ̂, χ) is defined similarly and the breakdown point at x is then

given by

ε(x, h, θ̂, χ) = min{ε+(x, h, θ̂, χ), ε−(x, h, θ̂, χ)}.
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Finally the finite sample breakdown point is defined by

ε(h, θ̂, χ) = inf
x

ε(x, h, θ̂, χ).

As Stromberg and Ruppert impose no restrictions on the functionals we may con-

sider the constant functional T (P ) = θ0. It is clear that this functional has a finite

sample breakdown point of one.

APPENDIX

A. We consider the constraints imposed upon us when defining T (P ∗
n). We

start with the internal constraints which apply to each P ∗
n without reference to the

other measures.

• Case 1 P ∗A1
n 
= P ∗A2

n for any two different affine transformations A1 and A2.

This is seen to reduce to P ∗A
n 
= P ∗

n for any affine transformation A which is

not the identity. If this is the case then there are no restrictions on the choice

of T (P ∗
n). Having chosen it we extend the definition of T to all the measures

P ∗A
n by T (P ∗A

n ) = A(T (P ∗
n)).

• Case 2 P ∗A
n = P ∗

n for some affine transformation A which is not the iden-

tity. If this is the case then A is unique and there exists a permutation π of

{1, . . . , n} such that A(xi) = xπ(i). This implies that for each i we can form

cycles

(xi, A(xi), . . . , Ami−1(xi))

with Ami(xi) = xi. From this we see that for some sufficiently large m

Am(xi) = xi for all i. On writing A(x) = α(x) + a we see that if the

xi, i = 1, . . . , n, span R
k then αm = I where I denotes the identity trans-

formation on R
k. This implies that α must be an orthogonal transformation
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and that

(A.1)
m−1∑
j=0

αj(a) = 0.

It follows that if we set T (P ∗
n) = µ, we must have A(µ) = µ for any affine

transformation for which P ∗A
n = P ∗

n . The choice of µ is arbitrary subject only

to these constraints. Having chosen such a µ the values of T (P ∗B
n ) are defined

to be B(µ) for all other affine transformations B.

The above argument shows the internal consistency relationships which must be

placed on T so that T (P ∗A
n ) = A(T (Pn)) for any affine transformation A. We now

consider what one may call the external restrictions.

• Case 3 Suppose that P ∗
n is such that there does not exist a P ′∗

n and an affine

transformation A such that P ∗A
n = P ′∗

n . In this case the choice of T (P ∗
n) is

only restricted by the considerations of Case 2 above if that case applies and

otherwise not at all.

• Case 4 Suppose that P ∗
n is such that there exists a P ′∗

n and an affine transfor-

mation A such that P ∗
n = P ′∗A

n . In this case we require T (P ∗
n) = A(T (P ′∗

n )).

We now place the following conditions on the sample xn:

Sample condition 1: There do not exist two distinct subsets of xn each of

size at least k + 2 and an affine transformation A which transforms one subset into

the other.

Sample condition 2: If

|A(xn) ∩ B(xn)| ≥ �(n + 1)/2� − 2k
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for two affine transformations A and B then A = B.

Sample condition 3: k < �(n − 1)/2�.

We now construct a functional T which satisfies (5.2), (5.3) and (5.4). If the

sample conditions hold then for any affine transformation A 
= I we have PA
n 
= P ∗

n

where P ∗
n derives from a subset x∗

n which differs from xn by at least one and at

most �(n − 1)/2� points. This follows on noting that at most k + 1 of the A(xi)

belong to xn by Sample condition 1. Because of this we can define the T (Pn)

without reference to the values of T (P ∗
n). We set

T (Pn) =
1
n

n∑
i=1

xi.

If P ∗
n satisfies the conditions of Case 3 above we set

T (P ∗
n) =

1
n∗

n∗∑
i=1

xπ(i)

where the xπ(i) are those n∗ ≥ 
(n + 1)/2� points of the sample xn which also be-

long to the sample x∗
n. Finally we consider Case 4 above. We show that the sample

assumptions and the condition P ∗
n = P ′∗A

n uniquely determine the affine transfor-

mation A. To see this we suppose that there exists a second affine transformation

B and a distribution P ′′∗
n such that P ∗

n = P ′′∗B
n . Let x∗

π(1), . . . , x
∗
π(N ′) denote those

points of x∗
n not contained in the sample xn. Because of Sample condition 1 this set

contains at least 
(n+1)/2�−k−2 points of the form A(xi). Similarly it also contains

at least 
(n + 1)/2� − k − 2 points of the form B(xi). The intersection of these two

sets is of size at least �(n+1)/2�− 2k and we may conclude from Sample condition

2 that A = B. The representation is therefore unique. Let xπ(1), . . . xπ(m) be those

points of xn which belong to the sample x′∗
n and for which A(xπ(1)), . . . , A(xπ(m))
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belong to the sample xn. It is clear that m ≥ 1. We define

T (P ′∗
n ) =

1
m

m∑
i=1

xπ(i)

and by equivariance

T (P ∗
n) =

1
m

m∑
i=1

A(xπ(i)).

It follows that T (P ∗
n) is well defined and in both cases the sums involved come

from the sample xn. The functional T is extended to all Pn∗B and P ′
n∗B by affine

equivariance. In all cases the definition of T (P ∗
n) is as the mean of a subset of xn.

From this it is clear that (5.4) is satisfied.

B. Let A = A + a and B = B + b with A and B nonsingular matrices and

a and b points in R
k. We suppose that A 
= B. On taking differences we see that

there exist sample points Xi1 , . . . , Xik+1 and Xj1 , . . . , Xjk+1 such that

A(Xil
− Xik+1) = B(Xjl

− Xjk+1), j = 1, . . . , k.

This implies that B−1A and B−1(b − a) are functions of the chosen sample points

B−1A = C(Xi1 , . . . , Xik+1 ,Xj1 , . . . , Xjk+1)(B.1)

B−1(b − a) = c(Xi1 , . . . , Xik+1 ,Xj1 , . . . , Xjk+1).

For n sufficiently large there exist four further sample points Xi, i = 1, . . . , 4 which

are not contained in {Xi1 , . . . , Xik+1 ,Xj1 , . . . , Xjk+1} and for which

A(X1) + a = B(X2) + b, A(X3) + a = B(X4) + b.

This implies

(B.2) B−1A(X3 − X1) = X4 − X2.
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However as the Xi, i = 1, . . . , 4, are independent of Xi1 , . . . , Xik+1 ,Xj1 , . . . , Xjk+1

it follows from (B.1) that (B.2) holds with probability zero. From this we conclude

that A = B. Similarly we can show that a = b and hence A = B.
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