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1 Introduction

Suppose that we are given k forecasts f1; : : : ; fk for a scalar random variable y. The

forecasts are gathered in a random vector f , i.e. f = ( f1; : : : ; fk)
T. It is a common

procedure to combine the individual forecasts fi, in order to obtain a single improved

forecast for the target variable y.

In this paper we regard improvement with respect to the mean square prediction

error

MSPE(f; y) = E[(y�f)2] (1.1)
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of a forecast f for a target variable y.

Linear combinations have been used predominantly for that purpose, compare e.g.

Clemen (1989) or Thiele (1993) for good overviews on the topic. Linear forecast

combinations are of the form bTf + c with c 2 R and b = ( b1; : : : ; bk)
T 2 Rk , where

it may be appropriate to impose certain restrictions on the combination parameters

b and c. It is well-known (see e.g. Thiele, 1993) that a linear combination fb;c =

bTf + c with suitably chosen b = ( b1; : : : ; bk)
T 2 Rk and c 2 R is optimal among all

combinations if y and f follow a joint normal distribution.

In the absence of joint normality, however, it is worthwhile to consider nonlinear

forecast combinations. Stimulated byTaylor's series expansion formulaTroschke

and Trenkler (2000) introduce linear plus quadratic combinations of the form

fTAf + bTf + c, where A is a k � k real symmetric matrix, b = ( b1; : : : ; bk)
T 2 Rk

and c 2 R. Again, restricting the combination parameters may be reasonable. We

refer to Section 3 for details on the employed restrictions and the classes of linear

plus quadratic combinations evolving from them.

In their paper the authors show how the combination parameters should be chosen

within the corresponding classes in order to minimize the mean square prediction

error of the combined forecast. The optimal combination parameters depend on the

�rst to fourth order moments of the joint distribution of the target variable and its

forecasts. The results are compared to those for several linear combinations, where

only the �rst and second order moments are involved. In practical applications such

moments will hardly be known and the authors suggest to estimate the necessary

moments from a sample of observations on the variables of interest.

For some linear plus quadratic combinations the optimal parameters cannot be given

explicitly but only in terms of a complicated linear equation system. Consequently,

also the optimal MSPE-value which may be achieved within the considered class of

linear plus quadratic combinations cannot be given by an explicit expression. Even

more important, application of linear plus quadratic combination is impeded, since

only those numbers k of forecasts can be dealt with for which the equation system

has been made explicit. Even for the case of k = 2 forecasts this turns out to be a

cumbersome task. Consequently, it is desirable to �nd an easier way to apply linear

plus quadratic combination. This easier approach is presented in the following: Sim-

ilar to the �ndings of Granger and Ramanathan (1984) for linear combinations

we introduce a linear regression approach for linear plus quadratic combinations.

Thus it is straightforward to implement linear plus quadratic combination for any

number k of forecasts and standard computer software becomes applicable.

While the linear regression approach does not further theoretical insights on linear
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plus quadratic combination, it is most helpful in achieving two practical goals: On

the one hand, based on given �rst to fourth order moments of the joint distribution

of y and f we want to calculate which optimal MSPE-values may be reached in that

situation. This allows for numerical comparisons of the potential inherent in di�erent

combination techniques. On the other hand, we want to facilitate application of

the combination techniques to empirical data. By employing the linear regression

approach both is possible for any number k of forecasts without additional e�ort.

Thus we can also carry out investigations on the appropriate choice of k easily.

In Troschke and Trenkler (2000) also the case of k = 1 forecast is investigated,

which results in linear and linear plus quadratic adjustments of single forecasts. The

linear regression approach covers these adjustments as well.

Linear and linear plus quadratic adjustments and combinations of forecasts will be

compared in a small numerical example with respect to their potential as well as

with respect to their performance for empirical data (see Section 4).

In our derivations we will have to consider the �rst to fourth order moments of the

joint distribution of y and f . The following notations will be useful:

Extending the approach from Harville (1985) and utilizing the notations from

Rao and Kleffe (1988) we will assume the following setting: The expectations of

y and f are given by E(y) = �0 and E(f) = �f := (�1; : : : ; �k)
T, respectively, which

gives rise to the model:

�
y

f

�
=

�
�0
�
f

�
+

�
"0
"f

�
=: �+" ; (1.2)

where "f := ("1; : : : ; "k)
T. Consequently, E(") = 0 and the higher order moments of

" are the centered moments of (y; fT)T.

First, let us turn to the second order moments:

� := E(""T) = E

"�
"0
"f

��
"0
"f

�T
#
=:

�
�00 �0f

�f0 ��

�
(1.3)

and

E(""T) = E

"��
y

f

�
�

�
�0
�
f

����
y

f

�
�

�
�0
�
f

��T
#
= Cov

�
y

f

�
:

(1.4)

The lower left (k � 1){submatrix �f0 and the lower right (k � k){submatrix �� of
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� read explicitly

�f0 =

0BBB@
�10

�20

...

�k0

1CCCA and �� =

0BBB@
�11 �12 : : : �1k

�21 �22 : : : �2k

...
...

. . .
...

�k1 �k2 : : : �kk

1CCCA : (1.5)

Note that vectors and matrices are represented by bold face letters. Analogously,

the third order moments of " are given by

� := E("
""T) =

0BBB@
�0

�1

...

�k

1CCCA ; (1.6)

where

�i = E( "i""
T) =

�
�i00 �i0f

�if0 �i�

�
; i = 0 ; : : : ; k (1.7)

and the fourth order moments are given by

	 = E( ""T
""T) =

0BBB@
	00 	01 : : : 	0k

	10 	11 : : : 	1k

...
...

. . .
...

	k0 	k1 : : : 	kk

1CCCA ; (1.8)

where

	ij = E( "i"j""
T) =

�
	ij00 	ij0f

	ijf0 	ij�

�
; i; j = 0 ; : : : ; k: (1.9)

The elements of � are �ijl = E( "i"j"l) and the elements of 	 are 	ijlm =

E("i"j"l"m).

Section 2 resumes the classical linear combinations and their representation in terms

of linear regression. In Section 3 the respective linear plus quadratic combinations are

investigated. Two facets of a linear regression representation are derived to achieve

the above de�ned goals. The already mentioned numerical example is reported in

Section 4. Section 5 concludes the paper. Finally, Section A in the appendix lists

two results which are fundamental for our derivations.
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2 Linear combinations

We will consider four versions of the linear combination approach bTf + c which

vary with respect to the restrictions imposed on the combination parameters b and

c. Granger and Ramanathan (1984) showed that these linear combinations are

closely related to certain linear regression models.

The �rst version is

fb;c = bTf + c : (2.1)

As stated in Section 1, with suitably chosen parameters, this version leads to

the MSPE-optimal combined forecast under joint normality of y and f . Following

Granger and Ramanathan (1984) the optimal combination parameters may be

obtained by regressing the target variable y on the individual forecasts f , using a

constant term in the regression.

A simpler approach is to de�ne the combined forecast to be a weighted average of

the single forecasts

fb = bTf : (2.2)

This corresponds to regressing y on f without a constant term. Clearly, from the

standpoint of regression analysis the goodness of �t decreases by dropping the con-

stant term, but sometimes empirical combination results improve by doing so.

If each of the single forecasts is unbiased it is a well-known fact that the combined

forecast is unbiased as well if, in the second approach, the parameters are chosen

such that they sum up to unity, i.e. bT1 = 1. This leads to the third version of the

linear approach which utilizes this restriction:

fb;rest = bTf ; where bT1 = 1 : (2.3)

The corresponding regression model is to regress y�f1 on f2�f1, . . . , fk�f1 without

a constant term. Thus the parameters b2; : : : ; bk are obtained while b1 results from

b1 = 1�
Pk

i=2 bi.

If the individual forecasts fi are biased it is reasonable to perform a bias correction

fi��i+�0 before combining them. After the correction the individual forecasts are

unbiased and, hence, they should be combined with weights summing up to unity.

This leads to the restricted linear combination with absolute term:

fb;c;rest = bTf+c ; where bT1 = 1 : (2.4)
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Correspondingly, y�f1 should be regressed on f2�f1, . . . , fk�f1, using a constant

term. Again b1 is obtained from b1 = 1�
Pk

i=2 bi.

Clearly, from the point of view of regression analysis the unrestricted combination

with constant term fb;c provides the best �t in general. The other combinations

are appropriate only if the restrictions seem justi�ed in the situation under con-

sideration. The popular restricted combined forecast without constant term fb;rest,

for example, is advantageous, if all single forecasts are unbiased as was mentioned

above. The assumption of unbiasedness for each single forecast, however, seems at

least doubtful. Granger and Ramanathan (1984, p. 200) point out:

There is nothing sacred about the weights adding up to unity, although

that seems to be the common practice. Furthermore, there is no reason

to believe that every alternative forecast will be unbiased.

Our exposition of important linear combinations would not be complete without the

arithmetic mean of the individual forecasts:

fam =
1

k

kX
i=1

fi =
1

k
1Tf : (2.5)

Here no regression is necessary, since the combination parameters are �xed as bi =

1=k, i = 1 ; : : : ; kand c = 0. Nevertheless this simple combination proves to be very

powerful in empirical applications.

If we consider the special case k = 1 we arrive at adjustments of individual forecasts

fi. The performance of fi can be improved by this kind of adjustment. All of the

linear combination approaches described above may be employed in this case. Some

of them, however, are identical to others, as we will see in the following:

The unrestricted linear adjustment with constant term is

(fi)b;c = bfi+ c (2.6)

with b; c 2 R. Granger (1989, p. 169) points out the usefulness of such an adjust-

ment. The unrestricted linear adjustment without constant term reads

(fi)b = bfi (2.7)

with b 2 R. The linear adjustment with constant term and with the restriction of

the weights summing up to unity is

(fi)1;c = fi+ c : (2.8)
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The optimal choice for c 2 R results in the well known bias corrected forecast.

Finally, the linear adjustment without constant term and with the restriction of the

weights summing up to unity as well as the adjustment counterpart of the arithmetic

mean equal the original single forecast fi and need no special consideration. The

regression models corresponding to the adjustments are obvious from the above

exposition for k � 2 forecasts.

We now turn to the linear plus quadratic approaches to the combination of fore-

casts. Since the linear combination fb;c = bTf + c with appropriately chosen weights

is MSPE-optimal among all combined forecasts under joint normality of y and f ,

employment of linear plus quadratic approaches only deserves attention under non-

normality. Hence we will assume non-normality in the following.

3 Linear plus quadratic combinations

Linear plus quadratic combinations are of the general form fTAf + bTf + c, where

c 2 R, b = ( b1; : : : ; bk)
T 2 Rk and

A =

0BBB@
a11 a12 : : : a1k
a12 a22 : : : a2k
...

...
. . .

...

a1k a2k : : : akk

1CCCA 2 Rk�k (3.1)

is a symmetric matrix. The versions analyzed here have been introduced in

Troschke and Trenkler (2000). They di�er with respect to the choice of the

symmetric matrix A in the quadratic part:

The strong version

fA;b;c = fTAf +bTf + c (3.2)

uses a full matrix A, the medium version

fa;b;c = fT dg(a)f+bTf+c =
kX

i=1

aif
2
i +b

Tf+c (3.3)

a diagonal matrix

A = dg( a) =

0BBB@
a1 0 : : : 0

0 a2 : : : 0
...

...
. . .

...

0 0 : : : ak

1CCCA 2 Rk�k ; (3.4)
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where a = ( a1; : : : ; ak)
T 2 Rk , and the weak version

f�;b;c = �fTf +bTf + c (3.5)

uses a multiple of the k � k-identity matrix A = �I.

The respective choices of the matrix in the quadratic part may be viewed as restric-

tions on A with the e�ect that the number of parameters involved is reduced from

(k + 1)(k + 2) =2 over 2k+ 1 to k + 2. Since the number of observations from which

the unknown parameters are to be estimated in empirical applications is not so large

in general, this reduction of the number of parameters may be reasonable.

3.1 Strong linear plus quadratic combination

In order to facilitate numerical considerations as well as application of linear plus

quadratic forecast combinations it is important to note, that we may regard the

problem of �nding the optimal combination parameters as a linear regression prob-

lem just like it is the case with the linear combination approaches (cf. Section 2).

We rewrite the MSPE-function belonging to the strong linear plus quadratic com-

bination with the help of Lemma A.1:

MSPE(fA;b;c; y) = E[(y � fA;b;c)
2] = E[( y� fTAf � bTf � c)2]

= E

24 y � kX
i=1

kX
j=1

aijfifj �
kX

i=1

bifi � c

!2
35

= E

24 y � kX
i=1

aiif
2
i � 2

X
i <

X
j

aijfifj �
kX

i=1

bifi � c

!2
35 : (3.6)

Minimization of this function corresponds to the linear regression problem of

regressing the target variable y on the vector g = ( g1; : : : ; gk(k+1)=2+k)
T =

(f 21 ; : : : ; f
2
k ; (fifj)i;j=1;:::;k;i<j; f1; : : : ; fk)

T, i.e. on the vector of squared forecasts f 2i ,

mixed products fifj and forecasts fi, using a constant term, cf. Rao (1965, pp. 222

f.).

The coe�cients (!0;!
T)T = ( !0; !1; : : : ; !k(k+1)=2+k)

T obtained by this regression are

the combination parameters: While !0 = c, the vector ! consists of the elements

aii, i = 1 ; : : : ; k, 2 aij, i; j = 1 ; : : : ; k, i < j (notice the factor 2 premultiplying aij)

and bi, i = 1 ; : : : ; k.

Following Rao (1965) these regression coe�cients, and hence the theoretically op-

timal choices Aopt, bopt and copt based on given moments �, �, � and 	, can be
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calculated as follows: The vector ! is given by

! = Cov( g)�1Cov(g; y) ; (3.7)

where Cov(g) is the covariance matrix of regression variables, while Cov(g; y) is the

vector of covariances between regression variables and target variable. The constant

term !0 is given by

!0 = E( y)�!T E(g) : (3.8)

The necessary covariances and expectations may be obtained from Lemma A.2 under

the setting

~Y =

�
y

f

�
; ~� =

�
�0
�
f

�
= � and ~" =

�
"0
"f

�
= " (3.9)

leading to

~� = � ; ~� = � and ~	 = 	 (3.10)

as de�ned in (1.3) and (1.6) { (1.9). We observe that for i; j = 1 ; : : : ; k

fifj = ~Y
T ~A ~Y with ~A =

1

2
(Eij +Eji) symmetric

fi = ~b
T ~Y with ~b = �

(k+1)
i

y = ~b
T ~Y with ~b = �

(k+1)
0 : (3.11)

Here Eij denotes the (k + 1) � (k + 1) matrix with elements ~alm, l; m = 0 ; : : : ; k,

where ~alm = 1 if ( l; m) = ( i; j) and ~alm = 0 otherwise. Further �
(k+1)
i denotes the

(k + 1){dimensional vector with elements ~bl, l = 0 ; : : : ; kwhere ~bl = 1 if l = i and
~bl = 0 otherwise.

By applying Lemma A.2 we then obtain the elements of the matrix Cov(g) from

Cov(fifj; flfm) = �i�l�jm + �i�m�jl + �j�l�im + �j�m�il

+ �i�jlm + �j�ilm + �l�ijm + �m�ijl +	ijlm � �ij�lm

Cov(fifj; fl) = �i�jl + �j�il + �ijl

Cov(fi; fj) = �ij (3.12)

for i; j; l;m = 1 ; : : : ; k. The elements of the vector Cov(g; y) are given by

Cov(y; fifj) = �i�0j + �j�0i + �0ij

Cov(y; fi) = �0i (3.13)
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for i; j = 1 ; : : : ; k. Finally, the necessary expectations are

E(fifj) = �ij + �i�j

E(fi) = �i

E(y) = �0 (3.14)

for i; j = 1 ; : : : ; k.

From the optimal combination parameters the optimal value of the MSPE-function

within the class of strong linear plus quadratic combinations can be calculated for

given �, �, � and 	 (goal one from the introduction). To do so we insert the

optimal combination parameters into the general formula for the MSPE-function,

which is derived in Troschke and Trenkler (2000) and given in Appendix B.

Even more important, the regression representation facilitates the application of

the strong linear plus quadratic combination to empirical data (goal two from the

introduction): Here we construct the regression matrix X from a column of ones

(for the constant term), k columns with the squared observations on the individual

forecasts, k(k � 1)=2 columns with the mixed products of the observations and k

columns with the observations themselves. The observations on the target variable

y yield the vector y. Then we may apply any estimator from linear regression theory

to estimate the regression parameters and thus the combination parameters. In our

numerical studies for the combination of k = 2 forecasts we have observed that using

the common least squares estimator (c!0; b!T)T = ( XTX)�1XTy for this purpose

leads to the same results as replacing the true moments �, �, � and 	 by the

respective sample moments in the formulae for the optimal combination parameters

derived in Troschke and Trenkler (2000). Thiele (1993, Section 4.2.3) proves

a corresponding result for the linear combinations fb;rest and fb;c;rest.

The advantage of the linear regression representation is that it allows for easier

implementation of linear plus quadratic combination for both goals. Now they can

be handled for any number k of forecasts to be combined without further e�ort like

in the direct representation developed in Troschke and Trenkler (2000).

The formulae for the optimal combination parameters in the linear regression rep-

resentation, however, are even less explicit than in the direct representation where

the dependence of bopt on Aopt and of copt on bopt and Aopt becomes obvious. Thus

the regression representation is less suitable for theoretical considerations. Not even

the unbiasedness property of the optimal strong linear plus quadratic combination

fTAoptf +bT

optf + copt could have been concluded from the regression representation.

Consequently, the linear regression representation should be used for numerical pur-

poses while the direct representation should be used for theoretical considerations.
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3.2 Medium linear plus quadratic combination

The medium linear plus quadratic approach fa;b;c =
Pk

i=1 aif
2
i + bTf + c emerges

from restricting the full matrix A in the strong approach to a diagonal matrix

dg(a), a = ( a1; : : : ; ak)
T 2 Rk . Again numerical considerations as well as empirical

applications may be facilitated by a regression point of view:

Analogously to the previous section we may regard minimization of the MSPE-

function for fa;b;c

MSPE(fa;b;c; y) = E

24 y � kX
i=1

aif
2
i �

kX
i=1

bifi � c

!2
35 (3.15)

as a linear regression problem, namely that of regressing the target variable y on

the vector g = ( g1; : : : ; g2k)
T = ( f21 ; : : : ; f

2
k ; f1; : : : ; fk)

T, i.e. on the vector of squared

forecasts f 2i and forecasts fi, using a constant term. The coe�cients obtained by

this regression are the combination parameters: (!0;!
T)T = ( !0; !1; : : : ; !2k)

T =

(c; a1; : : : ; ak; b1; : : : ; bk)
T.

For the calculation of the theoretically optimal choices aopt, bopt and copt based on

given moments �, �, � and 	 again we use

! = Cov( g)�1Cov(g; y) and !0 = E( y)�!T E(g) ; (3.16)

but of course with a smaller covariance matrix of regression variables Cov(g) and

a smaller vector of covariances between target variable and regression variables

Cov(g; y) than in the previous case, since the mixed products fifj are excluded

here. Equations (3.12), (3.13) and (3.14) are applied again. By inserting the optimal

combination parameters into Equation (B.1) we obtain the corresponding optimal

MSPE-value within the class of medium linear plus quadratic combinations (goal

one from the introduction).

For empirical applications (goal two from the introduction) we construct the regres-

sion matrix X from a column of ones, k columns with the squared observations on

the individual forecasts and k columns with the observations themselves.

3.3 Weak linear plus quadratic combination

In the weak linear plus quadratic approach f�;b;c = �fTf + bTf + c the full matrix

A from the strong approach is restricted to �I, a real scalar multiple of the k � k

identity matrix.

It should be pointed out again, that the weak linear plus quadratic combination

increases the number of combination parameters by only one with respect to the
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best linear combination, but it involves k� 1 parameters less than the medium and

even k(k+1)=2�1 parameters less than the strong linear plus quadratic combination.

Consequently, it may be practical in empirical applications where the number of data

available for parameter estimation is not large.

Even though it is possible to express the optimal combination parameters and hence

also the optimal MSPE-value within the class of weak linear plus quadratic combi-

nations explicitly (cf. Troschke and Trenkler (2000)), it is reasonable to take a

regression point of view for numerical considerations and empirical applications.

Similarly to the previous sections we may regard minimization of the MSPE-function

for f�;b;c

MSPE(f�;b;c; y) = E

24 y � �
kX

i=1

f 2i �
kX

i=1

bifi � c

!2
35 (3.17)

as a linear regression problem, namely that of regressing the target variable y

on the vector g = ( g1; : : : ; gk+1)
T = ( fTf ; f1; : : : ; fk)

T, i.e. on the vector of the

sum of squared forecasts fTf and forecasts fi, using a constant term. The coef-

�cients obtained by this regression are the combination parameters: (!0;!
T)T =

(!0; !1; : : : ; !k+1)
T = ( c; �; b1; : : : ; bk)

T.

For the calculation of the theoretically optimal choices �opt, bopt and copt based on

given moments �, �, � and 	 again we use

! = Cov( g)�1Cov(g; y) and !0 = E( y)�!T E(g) ; (3.18)

but of course with an even smaller covariance matrix of regression variables Cov(g)

and a smaller vector of covariances between target variable and regression variables

Cov(g; y) than before. Equations (3.12), (3.13) and (3.14) are applied again after

using the bilinearity of the covariance operator and the linearity of the expectation

operator

Cov(fTf ; y) =

kX
i=1

Cov(f 2i ; y)

Cov(fTf ; fj) =
kX

i=1

Cov(f 2i ; fj)

Cov(fTf ; fTf) =
kX

i=1

kX
j=1

Cov(f 2i ; f
2
j )

E(fTf) =
kX

i=1

E(f2i ) : (3.19)
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Inserting the optimal combination parameters into Equation (B.1) leads to the cor-

responding optimal MSPE-value within the class of weak linear plus quadratic com-

binations (goal one from the introduction).

For empirical applications (goal two from the introduction) we build the regression

matrixX from a column of ones, a column with the sum of the squared observations

on the individual forecasts and k columns with the observations themselves.

Since additional explanatory variables have been included in the regression, all three

versions of optimal linear plus quadratic combination are superior to all linear com-

binations in theory and, consequently, have the potential to outperform them in

empirical applications.

3.4 Linear plus quadratic adjustment

All three linear plus quadratic combined forecasts coincide in the case of k = 1

forecast, i.e. we only need to consider one linear plus quadratic adjustment

(fi)�;b;c = �f 2i + bfi+ c (3.20)

with �; b; c 2 R. The corresponding regression models are obvious from the preceding

subsections.

In Section 4 we will report about �rst investigations on the quality of all the above

linear and linear plus quadratic adjustments and combinations in the case of k = 2

forecasts.

4 Empirical and theoretical comparisons

In this section we will present an empirical example illustrating the various adjust-

ments of single forecasts as well as the combination of k = 2 forecasts on the basis of

the new methods. This will be followed by a theoretical comparison of these meth-

ods based on a given set of moments �, �, � and 	 obtained from the data of the

example. It should be pointed out, however, that these comparisons are only meant

to provide a �rst impression of the possible usefulness of the linear plus quadratic

approaches. Detailed analyses are bound to follow, and they will be presented in a

future paper.

The data for the numerical example are taken from a larger data set of German

macro economic variables and corresponding forecasts investigated by Klapper

13



Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

y 3.6 3.1 3.4 3.2 1.7 -1.2 -2.2 1.1 0.6 1.8 4.3

f1 3.0 4.5 3 3.5 2.0 1 -0.5 -0.5 0 1.5 3.5

f2 2.5 4.5 3 3.5 1.5 1 0.0 -0.5 1 1.5 3.0

Year 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

y 3.5 2.7 1.7 4.7 3.6 1.7 0.2 0.6 1.8 1.3

f1 3.0 3.0 2.0 3.5 3.5 2 0 -1.5 0.5 2.0

f2 3.5 2.5 2.5 4.0 3.0 2 0 -1.0 0.5 2.5

Table 1: Real change of German private consumption (y) and corresponding DIW

and Ifo forecasts (f1, f2) for the period from 1976 to 1996

(1998). We picked out the DIW (Deutsches Institut f�ur Wirtschaftsforschung, f1)

and Ifo (Ifo-Institut f�ur Wirtschaftsforschung, f2) forecasts for the target variable

'real change of private consumption' (y). These yearly data are available for a period

of 21 years from 1976 to 1996. They are given in Table 1.

When evaluating the data it is important to take their availability into account:

The forecasts f1 and f2 for year t, say, are made at the end of year t � 1 and

the true value of the target variable y for the year t � 2 are not published by the

Statistisches Bundesamt before the end of year t�1. Consequently, at the time when

the individual forecasts for year t are to be combined, namely at the end of year

t� 1, we can only use the past data up to year t� 2.

These past data serve to estimate the optimal combination parameters at each point

of time with the help of the regression models for empirical data from the previous

sections. Due to structural changes in the data set the optimal combination parame-

ters may not be stable over time. A common procedure in this situation is to use only

the latest observations for parameter estimation. Of course the amount of past data

should not be too small either so that the regression �t is at least fairly reasonable.

As a compromise we chose a history of 10 data points for parameter estimation.

Altogether we will use the data from 1976 to 1985 to estimate the combination

parameters for the 1987 forecasts, the data from 1977 to 1986 to estimate the com-

bination parameters for the 1988 forecasts, and so on. This leads to a time span of

10 years (1987 to 1996) in which the performance of the various methods is evalu-

ated by means of the average of the squared forecast errors. This is the empirical

counterpart of mean square prediction error and will consequently be denoted as
\MSPE.

A very simple strategy for the combination of the single forecasts is their arithmetic

14



Forecast f� \MSPE(f�; y)

DIW forecast f1 = fDIW 1.14

Adjustments: fDIW;�̂opt ;̂bopt;ĉopt
0.61

fDIW;̂bopt;ĉopt
0.83

fDIW;̂bopt
1.30

fDIW;1;ĉopt 1.01

Ifo forecast f2 = fIfo 0.97

Adjustments: fIfo;�̂opt;b̂opt;ĉopt 0.60

fIfo;̂bopt;ĉopt 0.93

fIfo;̂bopt 1.11

fIfo;1;ĉopt 0.99

Linear combinations: f
b̂opt;ĉopt

1.03

f
b̂opt

1.41

f
b̂opt;rest

1.16

f
b̂opt;ĉopt;rest

1.10

LPQ combinations: f
Âopt;b̂opt;ĉopt

1.14

f
âopt;b̂opt;ĉopt

0.66

f�̂opt;b̂opt;ĉopt 0.64

Table 2:\MSPE-values of adjusted and combined forecasts in an empirical application

(all values relative to the \MSPE of the arithmetic mean)

mean. Since it is easy to apply and also quite successful in empirical investigations,

any other combination technique is measured against the arithmetic mean. Therefore

we decided to present all\MSPE-values relative to the\MSPE-value of the arithmetic

mean, which is 0.7538 in the considered time period. All decimals have been deleted

following the second decimal such that methods outperforming the arithmetic mean

can be identi�ed immediately. Proceeding in this way makes the results directly

comparable to those in Klapper (1998).

The results of this evaluation are presented in Table 2. It can be seen that in this

example the weak linear plus quadratic combination is the best of all combination

methods followed by the medium linear plus quadratic combination technique. Only

these two combinations perform better than both individual forecasts. Their\MSPE-

values are about two third of the value for the arithmetic mean. The best linear

combination technique is the unrestricted combination with constant term which is

about as good as the arithmetic mean. The strong linear plus quadratic combination
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performs equally to the worse of the two individual forecasts which is 14% worse

than the arithmetic mean. The commonly used linear combination without constant

term and with restriction on the elements of b performs even slightly worse.

The best adjustments of individual forecasts in this example are the linear plus

quadratic adjustments. Both of them have \MSPE-values of about 60% of the value

belonging to the arithmetic mean. Thus they are the best of the considered tech-

niques even better than all combination methods. Also the linear unrestricted ad-

justments with constant term perform quite well.

It is interesting to note that the linear unrestricted adjustments and combination

without constant term perform worst in their respective groups.

The forecasts for the years 1987 to 1996 produced by the weak linear plus quadratic

combination of f1 and f2 are given by 2.4075, 2.9264, 1.6082, 4.2094, 4.1306, 1.4047,

0.0789, 1.6358, 0.5785 and 1.9407. Together with the target variable, the individual

forecasts and their arithmetic mean they are visualized in Figure 1.

It should be pointed out that the preceding analysis represents only a single example

and cannot be generalized. In our �rst investigations there have been examples

where the linear plus quadratic techniques, especially the strong linear plus quadratic

technique, perform signi�cantly worse. Presumably this is due to the very small

amount of past data available for the regression, only 10 data points seem to be

very little. Again we must refer to a more detailed analysis of the performance of

the linear plus quadratic techniques which is bound to follow.

To judge the potential of the linear plus quadratic techniques it is interesting to

compare the optimal MSPE-values within the various approaches for the case where

the moments �, �, � and 	 of the joint distribution of y, f1 and f2 are known. In

order to base these considerations on realistic grounds we are now going to use the

sample moments, which may be calculated from the whole set of 21 data points in

Table 1, as the true moments.

From these moments we may then determine the optimal adjustment or combina-

tion parameters belonging to the di�erent methods. Following the formulae from

Section 3.1 we obtain, for example, the optimal parameters for the strong linear

plus quadratic combination approach:

Aopt =

�
2:3910 �2:7544

�2:7544 3:3331

�
; bopt =

�
3:3049

�3:3753

�
; copt = 0 :6113:

(4.1)

Inserting the respective optimal combination parameters into the general MSPE-

function (B.1) we derive the optimal MSPE-values for all the considered methods.
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Figure 1: Target variable real change of private consumption, together with its DIW

and Ifo forecasts, their arithmetic mean and their weak linear plus quadratic com-

bination.
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Forecast f� MSPE(f�; y)

DIW forecast f1 = fDIW 0.98

Adjustments: fDIW;�opt;bopt;copt 0.88

fDIW;bopt;copt 0.93

fDIW;bopt 0.98

fDIW;1;copt 0.97

Ifo forecast f2 = fIfo 1.09

Adjustments: fIfo;�opt;bopt;copt 1.04

fIfo;bopt;copt 1.06

fIfo;bopt 1.08

fIfo;1;copt 1.09

Linear combinations: fbopt;copt 0.92

fbopt 0.98

fbopt;rest 0.98

fbopt;copt;rest 0.97

LPQ combinations: fAopt;bopt;copt 0.73

faopt;bopt;copt 0.86

f�opt;bopt;copt 0.86

Table 3: MSPE-values of adjusted and combined forecasts for certain known mo-

ments �, �, � and 	 (all values relative to the MSPE of the arithmetic mean)

Note that a linear combination is a linear plus quadratic combination with A = 0.

For all adjustments and all combinations except strong and medium linear plus

quadratic combination we might as well use the respective direct formulae for the

optimal MSPE-value developed in Troschke and Trenkler (2000) for that pur-

pose.

Again we report all these MSPE-values relative to the MSPE of the arithmetic mean,

which is 1.0894. All values in Table 3 have been deleted after the second decimal.

Since the moments �, �, � and 	 are assumed to be known, the calculations can

be done on a theoretical basis and, hence, the MSPE-values re
ect the theoretical

ranking of the various methods: strong linear plus quadratic combination is not

worse than medium linear plus quadratic combination, which in turn is not worse

than weak linear plus quadratic combination, which in turn is not worse than the

linear unrestricted combination with constant term, and so on.

In the situation under consideration the expected squared error loss of the strong

linear plus quadratic combination is 27% less than that of the arithmetic mean.
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Medium and weak linear plus quadratic combinations are expected to be only 14%

better than the arithmetic mean. We may conclude that in the above application

medium and weak linear plus quadratic combinations performed much better than

might have been expected, especially when taking into consideration that the ne-

cessity to estimate the optimal combination parameters leads to an even worse the-

oretical MSPE. In addition the linear plus quadratic adjustments performed much

better in the application than might have been expected.

It can be seen that there is some potential in the linear plus quadratic approaches

to outperform the arithmetic mean. How well this potential is exploited will depend

on how good the regression re
ects the true relationship between target variable y

and forecasts fi. Clearly, the more suitable data are available for that regression, the

better. Consequently, the linear plus quadratic approaches should be more valuable

for monthly, weekly or even daily data (e.g. from the stock market) than they are

for yearly data. Also the data should not be subject to extreme structural changes

during the considered period.

5 Conclusions

In this paper we have introduced the linear regression approach for the linear plus

quadratic combination of forecasts. We have also considered the classical linear ap-

proaches as competitors to the new approaches as well as adjustments of individual

forecasts which emerge from the special case k = 1. The most important advantage

of the regression approach is that it allows for easy implementation for any number

k of forecasts to be combined.

Furthermore, we have reported on �rst comparisons of the classical and the new

approaches in a small example. A realistic empirical situation was considered on the

one hand. On the other hand a numerical comparison of the optimal MSPE-values

possible based on given moments of the joint distribution of y and f was carried out.

For the latter each of the linear plus quadratic approaches requires knowledge about

the moments up to order four, whereas linear approaches only need the moments

up to order two to be known.

We have seen that employing linear plus quadratic adjustments and combinations

may be bene�cial, but also that this is not always the case. Due to the smaller

number of parameters involved the weak linear plus quadratic combination seems

to be suitable if only a small amount of data is available for combination parameter

estimation.

A much more detailed analysis of the possible bene�ts of the linear plus quadratic
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approaches has to follow, as was explained in Section 4. It will be carried out in

a follow-up paper by the same authors. A point of special interest would be to

�nd a guideline for potential users identifying situations beforehand in which linear

plus quadratic combination of forecasts is promising. Especially the question of how

much data should be available is interesting. Another point is to �nd out whether

it is worthwhile to consider the combination of more than k = 2 forecasts via the

linear plus quadratic approaches. It may also be interesting to generalize the linear

plus quadratic approaches to the combination of multivariate forecasts, i.e. to the

situation where each forecaster does not only predict the outcome of one variable

but of a set of variables.
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Appendix

A Two useful results

This section lists two results which are important for our considerations. The �rst

lemma gives explicit representations of some matrix or vector expressions in terms

of the elements involved.

Lemma A.1 Let A = ( aij) 2 R
m�n , x = ( xi) 2 R

m and y = ( yj) 2 R
n . Then

xTAy =
mX
i=1

nX
j=1

aijxiyj :

In the special case where m = n and A = In we obtain

xTy =
nX

i=1

xiyi :

The second lemma is concerned with the �rst and second order moments of quadratic

forms. It should be pointed out that no distributional assumption is made. Assuming

(multivariate) normality would lead to much simpler formulae on the one hand. But

on the other hand the normality assumption would render the whole linear plus

quadratic approach to the combination of forecasts unnecessary, as has been made

clear in the introduction.

Lemma A.2 (Rao and Kleffe, 1988, p. 32, (iv)) Let ~Y = ~�+~" where ~� is a

constant vector and ~" is a vector random variable with moments E(~") = 0, E(~"~"T) =
~�, E(~"
 ~"~"T) = ~� and E(~"~"T 
 ~"~"T) = ~	. Further let ~a and ~b be vectors and let
~A and ~B be symmetric matrices of appropriate dimensions. Then

(a) E(~aT ~Y + ~Y
T ~A ~Y) = ~aT ~�+ ~�T ~A~�+ tr( ~A ~�) ,

(b) Cov(~aT ~Y + ~Y
T ~A ~Y; ~b

T ~Y + ~Y
T ~B ~Y)

= ~b
T
h
2 ~� ~A~�+ ~�~a+ ~�

�

( ~A)
i

+ tr
�
~B
h
4~�~�T ~A ~�+ 2~�( ~A~�) + 2 ~�

�

( ~A)~�T

+ ~	( ~A) + 2~�~aT ~�+ ~�(~a)� tr( ~A ~�) ~�
i�

:
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Here the following abbreviations have been used: For a vector ~c = (~ci) and a matrix
~C = (~cij) we de�ne

~	( ~C) =
X
i

X
j

~cij ~	ij ;

~�(~c) =
X
i

~ci ~�i ;

~�
�

( ~C) = (tr( ~C ~�i))i ;

i.e. the �rst two quantities are matrices, whereas the last one is a vector.

B General MSPE-function for linear plus quad-

ratic combinations

In Troschke and Trenkler (2000) the authors derive the following expression

for the mean square prediction error of a general linear plus quadratic combination

fA;b;c, where the terms have been ordered with respect to the occurring unknowns:

MSPE(fA;b;c; y) =

= 4 �T
f
A��A�f + 4'T

A
A�

f
+ tr(A 

A
) + ( �T

f
A�

f
)2 + 2 �T

f
A�

f
tr(A�� )

� 4�T

f0A�f � 2 tr(A�0� )� 2�0�
T

f
A�f � 2�0 tr(A�� )

+ 4 bT��A�f + 2 bT'A + 2 �T
f
A�fb

T�f + 2 tr(A�� )b
T�f

+ bT��b+ bT�
f
�T

f
b

� 2bT�f0 � 2�0b
T�

f

+ 2 �T
f
A�fc+ 2 tr(A�� )c

+ 2 bT�
f
c

+ c2

� 2�0c

+ �00 + �20 ; (B.1)

where

'A =

0B@ tr(A�1� )
...

tr(A�k� )

1CA (B.2)
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is a k{dimensional vector and

 
A
=

0B@ tr(A	11� ) : : : tr(A	1k� )
...

. . .
...

tr(A	k1� ) : : : tr(A	kk�)

1CA (B.3)

is a symmetric k � k matrix.
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