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Abstract

In this paper we discuss the distribution of the ratio of the maximum and the

appropriately standardized median of a (sub-) sample consisting of the m small-
est observations in a sample of size N coming from a one-parameter exponential

distribution. A statistics of this kind is useful when testing for the presence of out-

liers, especially when implemented within an inward or outward testing procedure.

Besides giving a tractable expression for the survival function of this statistic we

tabulate the critical values needed for corresponding outlier identi�cation rules for

samples of size up to N = 50.

1 Introduction

Let xN = ( x1; : : : ; xN) be a sample occuring in a lifetime experiment. A simple but
nevertheless useful model for such lifetimes assumes that the xi come i.i.d. from a one-
parameter exponential distribution Exp(�) with scale parameter � > 0 and distribution
function

F�(t) = 1� exp(�t=�); t > 0:

Howerver, often one is concerned with the problem that an unknown number k � k� =
b(N � 1)=2c of observations in xN indeed do not come from Exp(�) but are outliers with
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respect to this distribution. To give the notion of an outlier a more formal meaning we
adopt the concept introduced in Davies and Gather (1993) and call any x 2 R+ an �-
outlier with respect to a distribution F if it is contained in the so-called �-outlier region
of F . In case of F = Exp(�) this �-outlier region is given by

out(�;Exp(�)) = fx > 0 : x > �� ln(�)g:

Usually � is chosen depending on the sample size N as � = �N = 1� (1� ~�)1=N for some
given ~� 2 (0; 1). The task of identi�ng all outliers in in xN can then be formalized as the
problem of deciding for each xi whether it is located in out(�N ; Exp (�)) or not.

Beginning with Cochran (1941) there is a vast literature on the topic of outlier identi�ca-
tion in exponential samples, contributions have been made e.g. by Kale (1976), Kimber
(1982), Sweeting (1983), Chikkagoudar and Kunchur (1987), Like�s (1967, 1987), Bala-
sooriya (1989), Balasooriya and Gadag (1994), Tse and Balasooriya (1991), Jeevanand
and Nair (1998), Schultze and Pawlitschko (2000a, 2000b). There are mainly three di�er-
ent types of identi�cation rules: (i) one-step outlier identi�ers, (ii) inward testing proce-
dures, and (iii) outward testing procedures. A one-step outlier identi�er is an empirical
version, say OR, of the �N -outlier region that is constructed from the given sample so that
any observation located in OR is classi�ed as outlier. The other two rules proceed in a
stepwise manner. With an inward testing procedure, �rst the \most extreme" observation
of the entire sample is checked with an appropriate discordancy test whether it is an out-
lier. If the test fails to reject the corresponding null hypothesis, no observation is declared
as outlier and the procedure stops. Otherwise, the most extreme observation is identi�ed
as outlier and removed from the sample. Then in a second step the most extreme ob-
servation of the remaining subsample is tested. The procedure terminates if for the �rst
time a discordancy test does not reject or if a given maximal number k� of observations
has been classi�ed as outliers. The largest reasonable choice for k� is k� = b(N � 1)=2c
which is assumed furtheron. Outward testing procedures work in the reverse direction.
In a �rst step, the k� most extreme observations are removed from the sample. Then the
least suspicious of these observations is rejoined with the remaining ones and checked by
a discordancy test whether it sticks out as an outlier in this subsample of size N � k�+1.
If the discordancy test rejects, all k� removed observations are declared as outliers and
the procedure terminates. Otherwise, the next of the removed observations is added to
the subsample and tested with respect to its outlyingness. The procedure terminates if
the �rst time a discordancy test rejects or if all observations that have been removed in
the �rst step are eventually rejoined with the reduced sample.

In general the question which observations should be regarded as the k� \most extreme"
ones of a given sample has no unique solution. In the exponential case, however, clearly
the k� largest observations stand out as the most susceptible ones. Let x(1) � � � � �
x(N) denote the ordered values in the sample and xN�i+1;N = ( x(1); : : : ; x(N�i+1)); i =
1; : : : ; k�; the subsample considered in the i-th step of the inward testing procedure or
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(k�� i+1)-th step of the outward testing procedure. Principally, for inward and outward
testing procedures the same test statistics can be used for a certain subsample (of course
some kind of standardization for the whole procedure has to be taken into account, see
Section 3). However, many inward testing procedures su�er from their proneness to
masking which generally means that an outlier is not discovered because it is hidden by
further large outliers in the sample. This disadvantage has lead most authors to prefer
outward testing procedures which are not susceptible to masking. However, as Davies and
Gather (1993) already noted in the case of normal samples and Schultze and Pawlitschko
(2000b) discuss in detail for the exponential case, the masking trap of inward testing
procedures can be avoided if robust discordancy tests are applied.

Appealing are tests with test statistics of type

T S
N�i+1(xN�i+1;N) =

x(N�i+1)
SN�i+1(xN�i+1;N)

; i = 1 ; : : : ; k�; (1)

where Sn denotes an estimator of the scale parameter � based on n observations. There
are many possible choices for Sn that are also robust, see e.g. Gather and Schultze (1999).
One possible choice is the standardized median (SM) which for a sample xn = ( x1; : : : ; xn)
of size n is de�ned as

SMn(xn) =
1

ln 2
Med(xn) =

1

ln 2

8><
>:
x((n+1)=2); n odd,

1

2

�
x(n=2) + x(n=2+1)

�
; n even.

The constant 1= ln 2 is needed to achieve Fisher-consistency. When used as component of a
test statistic T SM

N�i+1 of type (1), multiplication with this constant is actually not necessary.
However, we prefer to keep the constant since interpretation of the test statistic becomes
easier and comparability with other possible test statistics of type (1) is guaranteed.
Gather and Schultze (1999) prove that SM is a most B-robust scale estimator which has
optimal explosion breakdown point 1=2. As Schultze and Pawlitschko (2000a, b) show,
these good robustness properties also carry over to outlier identi�cation rules that are
based on SM .

When discordancy tests with test statistics of type (1) are applied within an inward or
outward testing procedure, the corresponding critical values can usually be determined
only via simulations since the �nite sample distribution of these test statistics becomes
intractable. However, it is possible to give explicit expressions for the survival function
of T SM

N�i+1; i = 1 ; : : : ; k�; that are simple enough to allow the exact calculation of critical
values if N is not too large. These expressions and their derivation are presented in
Section 2. Section 3 contains some remarks concerning the choice of critical values and
some tables for sample sizes up to N = 50.
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2 Finite sample distribution of the test statistics

The following theorems give more general results than needed for the determination of
critical values for inward and outward testing procedures based on the standardized me-
dian. We set

C(N; m; r; ` ) =
(�1)m�`

(m� `)! (`� r � 1)! (N � `+ 1)
;

1 � r < ` � m � N; for short.

Theorem 1 Let XN = ( X1; : : : ; XN) be a random sample with elements coming i.i.d.
from an Exp(�)-distribution and let X(1) � � � � � X(N) denote the corresponding order
statistics. Then for 1 � r < m � N and a > 0

P
� X(m)

a X(r)

> t
�

=
N !

(N �m)!

mX
`=r+1

C(N; m; r; ` )
rY

i=1

1

(N � `+ 1) ( a t� 1) + (N� i+ 1)

for t > 1=a.

Proof. From a well known result for order statistics from an exponential distribution
we have that for i = 1 ; : : : ; N

X(k)
d
= �

kX
i=1

Ui

N � i+ 1

where Ui; i = 1 ; : : : ; N;are independent Exp(1)-distributed random variables and
d
= de-

notes equality in distribution. Hence

P
� X(m)

a X(r)

> t
�

= P
� mX
i=r+1

Ui

N � i+ 1
> (a t� 1)

rX
i=1

Ui

n� i+ 1

�

=

Z
� � �

Z
Rr
+

P
� mX
i=r+1

Ui

N � i+ 1
> (a t� 1)

rX
i=1

ui
N � i+ 1

�
� � � �

� � � � exp
�
�

rX
i=1

ui

�
dur : : : du1: (2)
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Now
Pm

i=r+1 Ui=(N � i + 1) has a so-called general gamma distribution with survival
function

P
� mX
i=r+1

Ui

N � i+ 1
> y

�
=

mX
i=r+1

mY
j=r+1
j 6=i

N � j + 1

i� j
exp
�
�(N � i + 1) y

�
(3)

for y > 0 (see e.g. Johnson et al., 1995). Inserting this result in (2), integrating out
u1; : : : ; ur; and making use of

mY
j=r+1
j 6=i

N � j + 1

j � i
=

(�1)m�i

(m� i)! (i� r � 1)!

mY
j=r+1
j 6=i

(N � j + 1)

= C(N; m; r; i )
mY

j=r+1

(N � j + 1) (4)

yields the representation of the survival function as stated in the theorem. �

Theorem 2 Under the assumptions of Theorem 1, for 1 � r < m � 1; m � N; and
a > 0

P
� X(m)

a=2 ( X(r) +X(r+1))
> t

�

=
N !

(N �m)!

mX
`=r+2

C(N; m; r; ` )
1

(N � `+ 1) ( a y= 2� 1) + (N� r)
� � � �

� � � �
rY
i=1

1

(N � `+ 1) ( a t� 1) + (N� i + 1)

for t � 2=a and

P
� X(m)

a=2 ( X(r) +X(r+1))
> t

�

=
N !

(N �m)!

mX
`=r+2

C(N; m; r; ` )
1

(N � `+ 1) ( a y= 2� 1) + (N� r)
� � � �

� � � �

� rY
i=1

1

(N � ` + 1) ( a t� 1) + (N� i+ 1)
� � � �

� � � �
rY
i=1

1

(N � r)
a t� 1

1� a t= 2
+ (N� i+ 1)

�
+ � � �
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� � �+
rY
i=1

N � i + 1

(N � r)
a t� 1

1� a t= 2
+ (N� i + 1)

for 1=a < t < 2=a.

Proof. With the same notations as in the proof of Theorem 1 we have

P
� X(m)

a=2 ( X(r) +X(r+1))
> t

�

= P
� mX
i=r+2

Ui

N � i + 1
> (a t� 1)

rX
i=1

Ui

N � i+ 1
+ ( a t= 2� 1)

Ur+1

N � r

�
: (5)

Now we have to distinguish between two cases:

(i) t � 2=a: In this case the right hand side of the inequality that occurs in (5) is always
nonnegative. Hence the proof can be carried through with similar arguments as the proof
of Theorem 1.

(ii) 1=a < t < 2=a: Now the right hand side of the above inequality may also take on
negative values so that conditional on the realizations of U1; : : : ; Ur+1 the corresponding
event may occur with probability one. Thus (5) becomes

Z
� � �

Z
Rr+

�Z M

0

P
� mX
i=r+1

Ui

N � i+ 1
> (a t� 1)

rX
i=1

ui
N � i+ 1

+ ( a t= 2� 1)
ur+1
N � r

�

exp(�ur+1) dur+1

�
exp
�
�

rX
i=1

ui

�
dur : : : du1 + � � �

� � �+

Z
� � �

Z
Rr
+

�Z 1

M

exp(�ur+1) dur+1

�
exp
�
�

rX
i=1

ui

�
dur : : : du1

= (I) + (II);

say, where

M = ( N� r)
a t� 1

1� a t= 2

rX
i=1

ui
N � i+ 1

:

Integrating out (I) immediately gives

(I) =
rY
i=1

N � i+ 1

(N � r)
a t� 1

1� a t= 2
+N � i+ 1

:
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A lengthy but straightforward calculation using again the distributional result (3) and
equation (4) now with r + 2 instead of r + 1 leads to

(II) =
N !

(N �m)!

mX
`=r+2

C(N; m; r; ` )
1

(N � `+ 1) ( a t= 2� 1) + (N� r)
� � � �

� � � �

� rY
i=1

1

(N � `+ 1) ( a t� 1) + (N� i + 1)
� � � �

� � � �
rY
i=1

1

(N � r)
a t� 1

1� a t= 2
+ (N� i + 1)

�
:

Combining these results gives the assertion of Theorem 2. �

3 Critical values

The results from the previous section are now used to �nd critical values for the discor-
dancy tests based on SM which can be used within stepwise outlier identi�cation rules.
First we have to specify the test levels for each step. Usually, an outlier identi�cation rule
based on test statistics TN�i+1; i = 1 ; : : : ; k�; is standardized such that under the null
model H0 that Xi � Exp(�); i = 1 ; : : : ; N;one has

PH0(no observation is identi�ed as �N -outlier) � 1� ~�: (6)

For an inward testing procedure this requirement is already ful�lled if the critical value
tN(~�) for the discordancy test used in the �rst step is chosen such that this test keeps the
level ~�, that is

PH0
�
TN(XN) > tN (~�)

�
� ~�:

The critical values tN�i+1(~�); i = 2 ; : : : ; k�; for the following steps then can be chosen
arbitrarily. Mostly they are also determined according to

PH0
�
TN�i+1(XN�i+1;N) > tN�i+1(~�)

�
� ~�: (7)

For an outward testing procedure (6) is equivalent to the requirement that

PH0

� k�[
i=1

�
TN�i+1(XN�i+1;N) > tN�i+1(~�)

	�
� 1� ~�:

For most choices of the test statistics their joint distribution is not tractable. However,
a simple Bonferroni argument shows that (6) is ful�lled if the critical values are chosen
according to

PH0
�
TN�i+1(XN�i+1;N) > tN�i+1(~�)

�
= ~�=k�: (8)

7



The following tables contain the critical values tSMN�i+1(~�); i = 1 ; : : : ; k�; for the inward and
outward testing procedures with test statistics (1) based on the standardized median for
sample sizes N = 10(10)50 and ~� = 0 :05;0:1. The null distribution of the test statistics
is obtained from Theorems 1 and 2 by choosing a = 1 =ln 2 and r = b(m � 1)=2c for
m = N � k� + 1 ; : : : ; N. The local levels of the tests are chosen according to (7) and (8),
respectively.

Note that the critical values are not always monotone decreasing in i as might have
possibly been expected. This is due to the fact that in case that N � i + 1 is even the
median of the subsample xN�i+1;N is de�ned as the mean of the two order statistics with
greatest depth.

Inward testing Outward testing
~� = ~� =

i 0.05 0.1 0.05 0.1

1 6.6208 5.3039 9.7130 8.0825
2 5.0377 4.0302 7.4780 6.1785

3 3.9756 3.2207 5.8028 4.8300

4 3.9184 3.0912 6.0392 4.8906

Table 1. Critical values for N = 10

Inward testing Outward testing

~� = ~� =

i 0.05 0.1 0.05 0.1

1 7.0150 5.9053 10.9172 9.6113

2 5.1973 4.4351 7.8639 6.9717

3 4.3264 3.7251 6.4171 5.7193

4 3.9624 3.4023 5.9441 5.2771

5 3.5763 3.0852 5.3120 4.7280

6 3.4529 2.9576 5.2477 4.6369

7 3.2005 2.7518 4.8259 4.2727

8 3.1814 2.7060 4.9600 4.3457

9 2.9805 2.5448 4.6111 4.0479

Table 2. Critical values for N = 20
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Inward testing Outward testing

~� = ~� =

i 0.05 0.1 0.05 0.1

1 7.2223 6.2111 11.3471 10.2082

2 5.3631 4.6932 8.0338 7.3027

3 4.5275 3.9957 6.6249 6.0534

4 4.1027 3.6253 5.9960 5.4785

5 3.7444 3.3212 5.4185 4.9614

6 3.5520 3.1450 5.1795 4.7324

7 3.3312 2.9572 4.8256 4.4153

8 3.2300 2.8580 4.7380 4.3208

9 3.0709 2.7230 4.4805 4.0906

10 3.0195 2.6652 4.4801 4.0724

11 2.8934 2.5589 4.2722 3.8874
12 2.8755 2.5280 4.3376 3.9252

13 2.7683 2.4384 4.1560 3.7646

14 2.7773 2.4281 4.2837 3.8534

Table 3. Critical values for N = 30

Inward testing Outward testing

~� = ~� =

i 0.05 0.1 0.05 0.1

1 7.3808 6.4265 11.6317 10.5878

2 5.5083 4.8888 8.1743 7.5289

3 4.6856 4.1937 6.7716 6.2702

4 4.2372 3.8024 6.0798 5.6368

5 3.8866 3.4999 5.5194 5.1276

6 3.6686 3.3035 5.2180 4.8450

7 3.4551 3.1182 4.8830 4.5395
8 3.3263 2.9985 4.7265 4.3882

9 3.1756 2.8675 4.4906 4.1729

10 3.0937 2.7882 4.4099 4.0902

11 2.9778 2.6876 4.2276 3.9241

12 2.9251 2.6334 4.1955 3.8851

13 2.8308 2.5518 4.0456 3.7488

14 2.7985 2.5148 4.0498 3.7419

15 2.7185 2.4458 3.9206 3.6249

16 2.7020 2.4218 3.9557 3.6449

17 2.6316 2.3615 3.8399 3.5403

18 2.6286 2.3481 3.9048 3.5854
19 2.5646 2.2937 3.7969 3.4886

Table 4. Critical values for N = 40
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Inward testing Outward testing

~� = ~� =

i 0.05 0.1 0.05 0.1

1 7.5130 6.5960 11.8595 10.8762

2 5.6345 5.0474 8.3005 7.7085

3 4.8181 4.3525 6.8941 6.4373

4 4.3575 3.9495 6.1681 5.7706

5 4.0097 3.6464 5.6144 5.2629

6 3.7784 3.4387 5.2821 4.9523

7 3.5673 3.2531 4.9549 4.6508

8 3.4249 3.1225 4.7664 4.4716

9 3.2765 2.9917 4.5387 4.2616

10 3.1803 2.9016 4.4234 4.1494

11 3.0673 2.8019 4.2502 3.9896
12 2.9994 2.7364 4.1794 3.9184

13 2.9086 2.6563 4.0399 3.7897

14 2.8597 2.6075 3.9998 3.7465

15 2.7840 2.5409 3.8827 3.6386

16 2.7491 2.5042 3.8660 3.6166

17 2.6840 2.4471 3.7643 3.5232

18 2.6601 2.4197 3.7671 3.5185

19 2.6028 2.3696 3.6765 3.4355

20 2.5879 2.3497 3.6966 3.4461

21 2.5364 2.3049 3.6140 3.3706

22 2.5294 2.2914 3.6510 3.3958
23 2.4822 2.2505 3.5739 3.3255

24 2.4826 2.2429 3.6282 3.3655

Table 5. Critical values for N = 50
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