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Abstract

It is shown that the null distribution of the F-test in a linear

regression is rather non-robust to spatial autocorrelation among

the regression disturbances. In particular, the true size of the test

tends to either zero or unity when the spatial autocorrelation

coefficient approaches the boundary of the parameter space.
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1 Introduction and summary

The null distribution of the F-test under nonspherical errors has concerned

applied statisticians and econometricians for many decades. Let

y = Xβ + u = X(1)β(1) + X(2)β(2) + u (1)

be the model under test, where y and u are T×1, X is T×K and nonstochastic

of rank K < T , β is K × 1, and the disturbance vector u is multivariate

normal with mean zero and (possibly) nonscalar covariance matrix V . The

design matrix is partioned into X(1)(T ×q) and X(2)(T × (K−q)) and the null

hypothesis to be tested is Ho : β(1) = b(1).

The standard F-test rejects for large values of

F =
(ũ′ũ − û′û)/q

û′û/(T − K)
, (2)

where û = y − Xβ̂, β̂ = (X ′X)−1X ′y, ũ = y − X(1)b(1) − X(2)β̃(2), β̃(2) =

(X(2)′X(2))−1X(2)′(y−X(1)b(1)). It has a central F-distribution with q and T−K

degrees of freedom, given H0 and V = σ2I, and the problem to be studied here

is the robustness of this null distribution to deviations from V = σ2I.

So far, this problem has been addressed mainly for given specific forms of

V , with various bounds for the size of the test being derived as the design

matrix X is allowed to vary across all T ×K-matrices of rank K (Vinod 1976,

Kiviet 1980). Below we take a different approach, following Krämer (1989) and

Krämer et al. (1990), by fixing X and letting V vary across a certain range of

disturbance covariance matrices. In particular, we allow the disturbance vector

u to be generated by the spatial autoregressive scheme

u = ρWu + ε, (3)

where ε is a T ×1 normal random vector with mean zero and scalar covariance

matrix σ2
εI, and W is some known T ×T -matrix of nonnegative spatial weights

with wii = 0 (i = 1, . . . , T ). Such patterns of dependence are often entertained
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when the objects under study are positioned in some ”space”, whether geo-

graphical or sociological (in some social network, say) and account for spillovers

from one unit to its neighbors, whichever way ”neighborhood” may be defined.

They date back to Whittle (1954) and has become quite popular in economet-

ric recently. See Anselin and Florax (1995), Kelejian and Prucha (2001) or

Anselin (2001) for a convenient survey of this literature.

The coefficient ρ in (3) measures the degree of correlation, which can be both

positive and negative. Below we focus on the empirically more relevant case of

positive disturbance correlation, where

0 ≤ ρ <
1

λmax

and where λmax is the Frobenius-root of W (i.e. the unique positive real eigen-

value such that λmax ≥ |λi| for arbitrary eigenvalues λi). The disturbances are

then given by

u = (I − ρW )−1ε, (4)

so V := Cov(u) = σ2
ε [(I − ρW )(I − ρW )′]−1 and V = σ2

εI whenever ρ = 0.

Below we consider the null distribution of the F-test for ρ �= 0. This is shown

to be extremely non-robust, with the size of the test tending to either zero

or unity as ρ → 1/λmax. The same limits are also obtained for the power of

the test. Which of these limits obtains is easily seen from X and W , which

are both observed and known. Therefore, our result provides an easy guide to

the interpretation of both a significant and insignificant F-test when there is

possible spatial correlation among the regression disturbances: If H0 is rejected,

and X and W are such that the size of the test tends to unity, an error of the

first kind has to be suspected. And if H0 is not rejected, and X and W are

such that the size and the power of the test tends to zero, one has to beware

of an error of the second kind.
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2 The null distribution of the F-test as auto-

correlation increases

We first rewrite the test statistic (2) as

F =
u′(M (2) − M)u/q

u′Mu/(T − K)
, (5)

where M = I − X(X ′X)−1X ′ and M (2) = I − X(2)(X(2)′X(2))−1X(2)′. Let

Fα
q,T−K be the (1−α) quantile of the central F-distribution with q and T −K

degrees of freedom, respectively, where α is the nominal size of the test. Then

P (F ≥ Fα
q,T−K) = P (u′(M (2) − M)u − q

T − K
Fα

q,T−Ku′Mu ≥ 0)

= P (u′(M (2) − dM)u ≥ 0)

(where d = 1 +
q

T − K
Fα

q,T−K)

= P (ε′V 1/2(M (2) − dM)V 1/2ε ≥ 0)

(where ε = V −1/2u ∼ N(0, I))

= P (
T∑

i=1

λiξ
2
i ≥ 0)

= P ((1 − ρλmax)
2

T∑

i=1

λiξ
2
i ≥ 0), (6)

where the ξ2
i are iid χ2

(1) and the λi are the eigenvalues of V 1/2(M (2)−dM)V 1/2,

and therefore also of V (M (2) − dM).

The limiting rejection probability as ρ → 1/λmax depends upon the limiting

behavior of (1 − ρλmax)
2V . Let

W =
T∑

i=1

λiωiωi
′ (7)

be the spectral decomposition of W , with the eigenvalues λi in increasing order.

Then

V =
T∑

i=1

1

(1 − ρλi)2
ωiωi

′ (8)
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is the spectral decomposition of V , and

limρ→1/λmax(1 − ρλi)
2V = ω′

T ωT , (9)

a matrix of rank 1. Therefore, all limiting eigenvalues of (1−ρλmax)
2V (M (2)−

dM) are zero except one, which is given by

tr(ωT ωT
′(M (2) − dM)) = ωT

′(M (2) − dM)ωT . (10)

If ωT
′(M (2) − dM)ωT is positive, the rejection probability tends to one. If

ωT
′(M (2) − dM)ωT is negative, the rejection probability tends to zero.

As ωT
′(M (2) − dM)ωT is known, it is easy to determine in practice which

of these cases obtains. For illustration, figure 1 shows both an example

where rejection probability tends to one, and an example where the rejection

probability tends to zero. The weight matrix is 25 × 25 and is derived from a

regular 5 × 5 lattice using the queen criterion, which assigns a weight of one

to all cells immediately surrounding a given cell, and zero otherwise. The case

where the rejection probability tends to zero corresponds to a 25×2 X-matrix

with a first column of ones, and a second column given by (1, 2, 3, . . . 25)′,

where we test wether the coefficient of the second regressor is zero. The case

where the rejection probability tends to one corresponds to an X-matrix

where the second column was generated as nid(0, 1) variables.

(figure 1 here)

The figure shows that convergence to zero of the rejection probability need

not be monotone and that an X-matrix which induces a limiting rejection

probability of zero might, for certain regions of the parameter space, engender

higher rejection probabilities than X-matrices where the rejection probability

eventually tends to one.

Whether a limit of the rejection probability of zero or one obtains depends on

the interplay of the design matrix X, the weight matrix W , and the nominal

size of the test. For T = 25, a nominal size of 5%, a weight matrix defined by the
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queen criterion, and an X matrix given by a first column of ones, and a second

column of nid(0, 1) variables (whose significance is to be tested), a Monte

Carlo experiment was performed with 1000 independent runs. We obtained a

limiting rejection probability of one in about 10% of all cases. Ceteris paribus

the incidence of this irregular behavior diminishes as sample size increases, but

it is possible to find examples where the rejection probability tends to one also

for larger samples and for different types of spatial weights.

3 Spatial autocorrelation and the power of the

test

Let g := X(1)β(1) − X(1)b(1). Under the alternative, g �= 0, and the expression

(5) becomes

F =
[u′(M (2) − M)u + 2g′M (2)u + g′M (2)g]/q

u′Mu(T − K)
, (11)

with rejection occurring if and only if

(1 − ρλmax)
2u′[M (2) − (1 +

q

T − K
Fα

q,T−k)M ]u

+ (1 − ρλmax)
2[2g′M (2)u]

+ (1 − ρλmax)
2g′M (2)g ≥ 0. (12)

Since the last two terms in expression (12) are easily seen to tend to zero as

ρ → 1/λmax, the power of the test has the same limiting behavior as the size.
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Figure 1: Rejection probability of the F-Test
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