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Abstract: The one-way analysis of variance is concerned with
comparing the locations of several one-dimensional samples. This
paper gives a simple unified semi-graphical and semi-analytical
approach to the problem based on approximation intervals for
the locations of the samples. The intervals are standardized for
normally distributed data to achieve given coverage probabilities.
No assumptions placed on the sample sizes or the sample scales.
All questions concerning the relationships between the locations
of the samples are reduced to questions concerning the approxi-
mating intervals. The procedure is stable in that small perturba-
tions either of the data or the standardizing model lead to only
small changes in the analysis

1 Introduction

1.1 Procedure orientation

Tukey’s work on the analysis of variance spans almost forty-five years from
Tukey (1949) to Tukey (1993) with perhaps earlier and later works of which I
am not aware. Particularly relevant for the one-way table are Tukey (1952a),
Tukey (1952b) and Tukey (1953). Possible reasons for Tukey’s long interest
in the analysis of variance are its continuing importance for practical data
analysis and its use as an exemplar to demonstrate more general problems.



In particular we mention Tukey’s emphasis on procedures which, in a narrow
sense, may be seen as computer programs designed for some specific task.
We quote from Tukey (1993):

Theoretical results typically have assumptions. However ap-
plicable procedures, even those suggested by theoretical results,
are typically never used where theory’s assumptions apply exactly
and in detail. Thus applicable procedures do not themselves have
assumptions - only some circumstances in which they work (i.e.
serve our purposes) better, and some in which they work less well.
... I know some will think these statements heretical, but I find
no escape from them and their implications.

Seen in this light one task for the statistician is provide statistical procedures
in the form of software which are accompanied by some indication of their
range of applicability. Suppose we wish to do this for a procedure for the one-
way-analysis of variance. The indication should not be narrow and precise as
in

Procedure to be used only for i.i.d. Gaussian data with equal vari-
ances. Different sample sizes are allowed.

which would preclude its use but wide and somewhat fuzzy as in

Procedure is reliable for (a) different sample sizes but with a min-
imum size of 2, (b) at most 50 samples to be compared, (c)
different scales, (d) almost symmetric data with up to 30% sym-
metric or extreme outliers or less than 10% moderate one-sided
outliers.

Such an indication of the range of applicability of a procedure requires that
it has been subject to some form of evaluation. This will include simulations
and mathematical probes on various test beds as well as tests using real data.

1.2 Approximating data

In this paper stochastic models are consistently treated as approximations to
real data (Davies 1995, Tukey 1993). No assumptions are made concerning a
true data generating mechanism. In particular it is not assumed that there
exists a true distribution function F' or a true mean p which lie behind the



data. Apart from avoiding the ontological excesses of most of the statistical
literature this approach has more radical implications in that there is almost
no role for density based methods such as likelihood. A stochastic model P is
regarded as an adequate approximation to a real data set @, = (x1,...,x,)
if “typical” data sets X, (P) = (X1(P), ..., X,(P)) generated under P “look
like” x,,. One can imagine the following thought experiment. Using the model
P we generate 999 samples X ;,(P) = (Xia(P),..., Xi(P)),i =1,...,999, of
size n under P. The real data set are inserted at random giving 1000 samples
in all. The word “typical” is quantified by a real number o, 0 < o < 1, such
as 0.95. The statistician is required to specify 0.95 x 1000 = 950 of the data
sets as being typical. If the real data set is included in the typical data sets
then P is regarded as an adequate approximation. In order to specify the
typical data sets a decision rule is required which may then be seen as a
precise definition of what is meant by approximation. We indicate how to do
this when the main interest is location defined by some location functional
Tr. The proposed rule requires an auxiliary scale functional Ts. The model
we consider is a normal distribution N(u,o?). For each of the 1000 samples
we calculate (T, — p)/Ts and define as atypical those samples associated
with the 25 smallest and the 25 largest values of (T, — u)/Ts. If the real
sample is one of the remaining typical samples then u is regarded as an
adequate approximation. We can repeat this not for 999 but for arbitrary
many simulated samples. In the limit as the number of samples tends to
infinity it is seen that the set of p-values which are regarded as an adequate
approximation is given by the interval

[Tr(x,) — qu(0.975,n)Ts(x,) /v/n, Tr(x,) + qu(0.975,n)Ts(x,)/vn ] (1)

where qu(0.975, n) denotes the 0.975-quantile of (77, —u)/Ts under the N (u, o%)
distribution. In this particular case qu(0.975,n) is independent of the param-
eters p and o.

We illustrate the difference using the concept of estimation. In statistics this
typically means estimating the parameter 6 of the true underlying distribu-
tion FPy. From our point of view this makes no sense as there is no underlying
distribution Py. A similar point of view is taken by Donoho (1988) who also
expresses his disquiet about statistical inference for objects whose very ex-
istence cannot be shown. Donoho was referring to densities but his remarks
apply with equal force to theoretical distribution functions. Looked at from
the point of view of approximation the problem is to specify those parameter
values 6, if any, such that P, is an adequate approximation for the data.
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There is no need to make untenable assumptions about the real data. We
note that if the data have been generated on a test bed, that is with some
specified distribution Fp,, then it does make sense to talk of estimating 6.
When analysing real data sets the statistician often wishes to estimate some
aspect of the real world such as the amount of nitrate in a sample of drink-
ing water. The identification of such real existing quantities with the values
of parameters in stochastic models is and will remain speculative: statistics
has an irreducible speculative element which is rarely discussed. For a more
detailed discussion of this and other matters we again refer to Tukey (1993),
Davies (1995) and the introduction of Davies and Kovac (2001).

2 Approximation intervals

2.1 Construction

The procedure we propose is based on calculating an approximation intervals
I;,5 =1,...,k, for each sample as given by (1). To operationalize this we
must specify the location functional T, and the scale functional Ts. The
performance of the procedure will be determined solely by the choice of T},
and Tg. If stability of analysis is required, that is small to moderate changes
in the data or the model should cause only small to moderate changes in the
analysis, then it would seem necessary to choose robust functionals 77, and
Ts. The default ones we propose will be denoted by T}, and T}, and are as
follows. In a first step any possible outliers are eliminated using the following
version of Hampel’s rule (Hampel (1985)). Values x; for which

|z; — Med(x,)| > c¢(n)Mad(x,)

are eliminated from the sample. Here Med and Mad denote respectively the
median and median absolute deviation of the sample. The factor ¢(n) is given

by

30 n =23,
c¢n)=¢ 10 n=4,5,6,7, (2)
7 n>8.

This choice of ¢(n) is motivated by Davies and Gather (1993). For the sake of
notational simplicity we continue to denote the sample by «,, even after the
elimination of the outliers. The median and median absolute deviation of the



sample are calculated and a truncated sample !, = (2}, ..., 2!) is defined as

follows;

Med(x,,) — 3Mad(x,,) if z; < Med(x,) — 3Mad(x,,)
zi =< Med(z,) + 3Mad(z,) if z; > Med(z,) + 3Mad(z,) (3)

(]
T otherwise.

For normally distributed data this is roughly equivalent to truncating at the
mean plus or minus two standard deviations. The location functional T3,
is defined to be the mean of the truncated sample and the scale functional
T;s to be the standard deviation together with the following finite sample
correction

Tys(zn) = SD(a},)/ fshscl(n) (4)

to make it an unbiased estimate for the standard deviation of a Gaussian
distribution. The function fshscl(n) is given by

~f 0.964 —1.21/n, if n odd,
Fshscl(n) = { 0.964 — 0.89/n%%,  if n even. (5)

The quantity qu(a,n) is the a-quantile of the statistic (T3, — p)/T}s under
the N(u,0?) distribution. This implies

Plp1 € [T — qu((1 + 0)/2,0)Tis /7, Tin + qui(1 + 0)/2,0) T /v/0 ]) = a

(6)
for Gaussian data. An exact analytic expression for qu(3,n) is not possible
but using simulations a simple analytic approximation of the form

@(8,m) = t((1+ B)/2,n—1) exp(A(n) + B(N) log(1 — ) + C(n) log(1 )
7
can be derived where gt(3, k) denote the S-quantile of the ¢-distribution with
k degrees of freedom. The coefficients A(n), B(n) and C(n) were determined
on the basis of 100000 simulations. For  in the range 0.95 < # < 0.9995
the percentage error compared with the simulated values is less than 2% for
n = 3 and less than 1% for n > 4. Our final approximation interval is then
given by
[Tim — G0, 1) Tos/\/7, Tim + (0, ) Trg/ /1| (8)



2.2 Test beds: covering probabilities and efficiency

As mentioned above statistical procedures should in general be designed to be
stable. One way of checking this is to examine the behaviour of the procedure
on different test beds. The procedure described in the last section is gauged so
that the probability that the approximation interval (8) contains the mean p
of a Gaussian distribution is a. If the procedure is stable then this probability
should be close to a for symmetric distributions other than the Gaussian.
Table 1 gives the results for the slash distribution for various samples sizes
and values of a.

n 0.9 0.95 0.99  0.999
3 109291 0.9645 0.9930 0.9994
5 10.9352 09728 0.9942 0.9993
10 1 0.9093 0.9650 0.9958 0.9997
25 1 0.8826 0.9432 0.9905 0.9995
50 | 0.8747 0.9339 0.9871 0.9989
100 | 0.8685 0.9272 0.9833 0.9983

Table 1: Covering probabilities for the slash distribution.

The efficacy of a procedure is of importance and can be quantified by compar-
ison with other procedures. In the case of approximation intervals given by
(8) the efficacy on a test bed can be measured by the lengths of the approx-
imation intervals for a given probability of the interval covering the location
value used for the simulations. This depends to a large extent on the relative
efficiency of the location functional T},,. If care is taken the efficiency can
also be measured relative to the optimal location estimator on the test bed.
A necessary condition for this is that the distribution defining the test bed
should be “bland” or “hornless” (Tukey) and not offer any handles allowing a
gratuitous increase in efficiency. An example of a hornless distribution is the
normal distribution. Because the normal distribution minimizes the Fisher
information for a given variance it is difficult to estimate the mean of a nor-
mally distributed sample. This is the justification for the wide spread use of
the normal distribution as a test bed. An example of a horned distribution is
the Cauchy whose peakedness at the origin does permit a gratuitous increase
in efficiency (Cohen (1991)). For this reason we use the slash distribution
rather than the Cauchy as in Morgenthaler and Tukey (1991). Indeed Mor-
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genthaler and Tukey (1991) argue that the Gaussian and slash test beds are
in a sense sufficient for testing robust location functionals and so we confine
ourselves to these two challenges. We compare the functional 73, with the
mean, the median and with the maximum likelihood estimator T, for the
location parameter of the slash distribution. The functional T}, is calculated
after the elimination of the outliers. The other three location functionals are
calculated with the initial data. The relative efficiencies on the Gaussian and
slash test beds for several different sample sizes are shown in Table 2. The
results are based on 10000 simulations.

‘ ] Gauss ‘ Slash ‘
n | mean median Ty, Ty | mean median 7T}, Ty
3 | 100.0 73.8 86.2 66.0| 0.0 50.2 21.1  100.0
4 | 100.0 83.5 926 758 | 0.1 88.8  64.0 100.0
5 | 100.0 69.6 914 719]| 0.0 98.0  74.5 100.0
6 | 100.0 76.6 94.2 708 | 0.0 92.9  65.3 100.0
7 | 100.0 68.3 94.1 73.4| 0.0 84.3  64.6 100.0
8 | 100.0 73.7 952 T71.1| 0.0 90.8  77.3 100.0
9 | 100.0 66.9 951 726| 0.0 85.7  76.3 100.0
10 | 100.0 720 959 71.3| 0.0 90.1 78.7 100.0
20 | 100.0 69.0 97.6 729 | 0.0 85.4  80.2 100.0
50 | 100.0 63.6 979 70.8| 0.0 79.8  80.6 100.0

Table 2: Relative efficiencies of the mean, the median, 7}, and T}, expressed
as a percentage of the most efficient functional.

2.3 Other possibilities

The approximation interval (8) is the default version. The software also allows
for approximation intervals based on the mean and standard deviation and
also on the M-estimator T,,, = (T}, Tsm) defined by

o () e =0 @
[y ) e = o w



where

d(x) = (exp(x/5) —1)/(exp(x/5) + 1) (11)
x(@) = (@' =1)/@" +1). (12)

The advantage of having several different procedures is that the results can
be compared. Tukey recommends two or three.

3 The one-way table

3.1 The problem and a procedure

The one-way table is concerned with differences in location of k samples
which we denote by

Lin; = (xﬂ?'”axini),i:].,..., k.

At the most restrictive level it is assumed that the data are normally dis-
tributed with equal variances but possibly different means (see for example
Christensen (1987)). Within this framework questions concerning the loca-
tions are often formulated in terms of hypotheses which are then tested.
For example the question of whether the first three samples have relevantly
different locations is answered by testing the hypothesis

Hy: = po = pa. (13)

Apart from the questionable assumption of normally distributed samples
the null hypothesis Hy of (13) is unlikely to be true or believed in its stated
precision. This places the statistician in the somewhat uncomfortable position
of formally testing a hypothesis whose falsity is not doubted whatever the
result of the formal test.

The ideal of normally distributed samples with equal variances is one not
likely to occur in practice: the samples may have different scales and shapes
and include possible outliers or exotic observations. We refer to Miller (1986).
We propose here a very simple partly analytic and partly graphical procedure
which allows a decision about any question concerning the location values.
As a first step we construct the approximation intervals I;,,7 = 1,...k, as
described in Section 2.1 for each of the k samples x;,,,7 = 1,...k. The
default value of o we use is

o= ay = 0.95"%, (14)
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The approximation (7) is accurate for k& < 50 for a; as in (14). Consider
now the case of Gaussian test beds where the samples are independent and
the i-th sample is distributed as N(u;,07). On such test beds and with the
choice of a in (14) it follows that

P el,i=1,... k) =095 (15)

Having constructed the intervals all questions concerning relationships be-
tween the location values are reduced to questions concerning the intervals.
Using the terminology of approximation we can replace the testing of the
hypothesis (13) by the question as to whether the first three samples can be
adequately approximated by some common location values. As [I; is the set
of approximating values for the ¢-th sample the set of joint approximating
values is the intersection I; N[5 N I35. We now describe the procedure in more
detail.

3.2 Grouping the samples

In forming groups considerations of simplicity are taken as a guiding princi-
ple. The number of groups is the number of different values of the location
parameters required to give an adequate description of the data. The sim-
plest situation is where there is at least one value which is simultaneously
adequate for all the k samples. This is the case if and only if the intersection
of the I;,,7 = 1,...,k, is non-empty. For data generated on Gaussian test
beds with

Hi=Hf2 = ... = Hg = H
it follows from (15) that

P(ue (L) =0.95. (16)

i=1

Thus with probability 0.95 there exists at least one value adequate for all
k intervals and furthermore the intersection of the intervals gives a 0.95-
confidence interval for pu.

If the intersection of all the intervals is empty then at least two different
values of the location parameter will be required to adequately approximate
the data. We describe how the minimum number of values can be calculated.
Suppose that I; = [a;, b;] and without loss of generality we assume that the
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a; are monotone increasing, that is a; < ay < ... < ag. If not then we simply
relabel them so that they are. Consider the smallest ¢; such that

min b; < a;,.

1<i<iy
Such an i, exists as the intersection of all the intervals is empty. The first
group G is given by

Glz{i:1§i<i1andbi<ai1}.

It is clear that Mi<;<;, [; # 0 so that all the samples @;,, with 1 < i < 4y
can be approximated by a common location value. We now define 75 as the
smallest integer such that

iy, S iz

and define the group G, by
ng{i:i1§i<i2andbi<ai2}.

Again it is clear that Ny <<, I; # 0 so that all the samples x;,, with i; <
1 < i3 can be approximated by a common location value. We continue in this
manner until all the samples have been treated. If the procedure results in g
groups G;,7 = 1,..., g, then it is clear from the construction that the samples
can be approximated by ¢ different values of the location parameter and that
this is the minimum number required. The final division into groups gives
then the minimum number of groups required, the defining samples for each
group, the approximation intervals for each group and all possible allocations
to the groups for the remaining samples. For each sample the set of other
samples which cannot be approximated by the same parameter value is listed.

3.3 Linear combinations of location

Let m; and s; denote respectively the value of the location and the scale
functional for the i-th sample. Given a set of k£ numbers ¢;,7 = 1,...,k, the

set of points
> _cili

1

10



where each [; ranges over I; forms an interval of length

22 |cil siq(a, ni) [/mi (17)

with ¢(a,n) given by (7) and centred at

k

E C;m;.
1

If this interval is denoted by I(cy, .. ., ¢x) then the following holds on Gaussian
test beds

k
P <Z cipt; € I(cq, ..., cp) forall ¢ ... ,ck> > 0.95 (18)

1

In other words the intervals are simultaneous 0.95-confidence intervals for
the linear combination Z’f cip; of the means p;. For large n; the length of
the interval is approximately

k
22 (0.975"/%0) > " |eioi )/
1

where z(«) is the a-quantile of the standard Gaussian distribution.

3.4 Further options

The software allows for other procedures. Apart from the default construc-
tion of approximation intervals given by (8) they can also be constructed as
described in Section 2.3. In all cases a global scale functional can be used,
that is the same scale is used for each sample. This is a case of “borrowing
strength”. The factor ¢(n) of (2) can be defined by the user and the value 0.95
used in (14) can be altered. Finally if the samples are in some given order
the minimum modality of a function required to describe the approximation
values is calculated. By this we mean a function

fil1 2,..., k] = Rwith f(i) € I; for all i. (19)

A simple example is the question as to whether there exists a nondecreasing
set of approximation values. This is the case if and only if it is possible to
choose the function f in (19) to be monotone increasing,.
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3.5 Real data

We give an example of real data. It is taken from Rice (1988), page 397
and give the results of an inter-laboratory test. The left panel of Figure
1 shows the box-plots, the center panel shows the default approximation
intervals whereas the right panel shows the approximation intervals base on
the mean and standard deviation and under the standard assumption that
the samples have the same variance. The default location and scale values are
given in Table 3 as well as the end points of the corresponding approximation
intervals.

nnnnnnnnnnnnnnnnnnnnnnnn

Figure 1: Box-plots and approximation intervals for the data from Rice
(1988). Second panel shows intervals based on the default functionals with
local scales, the third panel shows intervals based on the mean and a global
standard deviation.

Two groups are required for the data. Group 1 consists of laboratory 4 and
the set of allowable values of the location parameter is [3.872, 3.968]. Group
2 consists of the laboratories 1 and 3 and the set of acceptable location pa-
rameters is [4.021, 4.036]. The result of the procedure described in Section
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3.2 is as follows. The locations of the laboratories 1 and 3 can be simultane-
ously approximated by any value in the interval [4.021, 4.036]. The remaining
laboratories can be simultaneously approximated by any value in the inter-
val [3.936, 3.968|. There are other possibilities. Thus laboratories 1,2,3, 5,
6 and 7 can be simultaneously approximated by any value in the interval
[3.872, 3.968] and laboratory 4 by any value in the interval [3.872, 3.968|.

Lab | location scale lower upper
4.059  0.0300 4.021 4.097
3.997  0.1015 3.868 4.126
4.003  0.0262 3.970 4.036
3.920 0.0377 3.872 3.968
3.957  0.0647 3.875 4.039
3.961  0.0623 3.882 4.040
4.022  0.0565 3.936 4.109

N O Ol W N

Table 3: Default locations, scales and intervals for the data from Rice (1988).

We consider the difference in locations between Laboratory 1 with the largest
location and Laboratory 4 with the smallest location values. Using the results
of Section 3.3 with ¢; = 1, ¢4 = —1 and the remaining ¢; zero we obtain
[0.053, 0.225] as the approximation interval for the difference in locations.

3.6 Software

The software is available on my web site

http://www.stat-math.uni-essen.de/"davies/flway.html
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