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Abstract

It is argued that a main aim of statistics is to produce statistical pro-
cedures which in this article are defined as algorithms with inputs and
outputs. The structure and properties of such procedures are investigated
with special reference to topological and testing considerations. Proce-
dures which work well in a large variety of situations are often based on
robust statistical functionals. In the final section some aspects of robust
statistics are discussed again with special reference to topology and con-
tinuity.

1 Introduction

The view expressed in this article is that one of the main tasks of statisticians is
to produce statistical procedures. By this we mean algorithms with inputs, which
include of course the data, and outputs which vary from numbers to images. A
statistical procedure is not a statistical analysis which will typically involve the
use of several statistical procedures. The idea of a procedure orientated statistics
goes back to Tukey (see the Fifth Bite of Tukey (1993)). Section 2 discusses some
issues concerned with statistical procedures and in particular it is argued that
the topology of statistical procedures is a weak one. It is further argued that a
statistical procedure makes no assumptions about the data but rather that it
should be accompanied by a brief description of the sort of data sets for which
it works well and of those for which it works less well. If the range of data sets
for which the procedure works well is not to be too restrictive some form of
robustness will be required. Section 3 contains some comments about robust
statistics in the light of the discussion of statistical procedures. Again the rôle
of weak topologies is emphasized.
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2 Statistical procedures

2.1 Algorithms

We take a statistical procedure to be a computer algorithm with inputs which
include the data as well as parameters which have, where possible, default values.
The output will typically consist of numbers, graphs, functions and pictures. The
intention is to provide user friendly software which can be used sensibly by users
who are not necessarily qualified statisticians. In the ideal case the user should
have to input only the data and still obtain a reasonable output.

2.2 Assumptions

A statistical procedure does not impose any conditions on the data to which it
is applied. The data can be real, simulated or even deterministic. A statistical
procedure should however be accompanied by a brief description of the sort
of data sets for which it can be expected to work well. Consider the following
description for a procedure which performs a one-way analysis of variance.

The procedure is to be applied only to i.i.d. normally distributed
samples without the slightest form of contamination. The sample
variances must be equal although the procedure does allow for dif-
ferent sample sizes. No responsibility of any form will be accepted
by the author for the use on data not conforming to the above de-
scription.

This may be compared with

The procedure is reliable for (a) different sample sizes but with a
minimum size of 2, (b) at most 50 samples to be compared, (c) dif-
ferent scales, (d) almost symmetric data with up to 30% symmetric
or extreme outliers and/or less than 10% moderate one-sided out-
liers.

2.3 Topologies

The topology of data analysis is a weak topology. This means that minor changes
in the data should result in minor changes in the result of the procedure. Minor
will refer to small changes in the values of the data as well as large changes
in a small number of data points. Although procedures make no assumptions
about data they are very often based on probability models and on functionals
which map probability measures into Euclidean space. The simplest example
is the mean or, more generally, M-functionals. Consider therefore a mapping
T : P → R

k where P is some space of probability measures. In order to define
continuity and differentiability of T we need a metric on P. The metrics we
require are weak ones such as the Kolmogoroff metric

dko(P,Q) = sup{|P (C) − Q(C)| : C = (−∞, c], c ∈ R}
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or more generally

dC(P,Q) = sup{|P (C) − Q(C)| : C ∈ C} (1)

where C is a Vapnik-Cervonenkis class of sets. Strong metrics and discrepancies
such as total variation, Hellinger and Kullback-Leibler are density based. We
refer to the table on page 588 of Donoho and Liu (1988). As a partial justification
of the use of weak metrics we note that random samples are generated at the level
of weak metrics. Thus if (Ui)n

1 is an i.i.d. sample of uniformly distributed random
variables and if F and G are two distribution functions then Xi(F ) = F−1(Ui)
and Xi(G) = G−1(Ui) for i = 1, 2, . . . , n are i.i.d. samples with distributions
F and G respectively. If F and G are close in the Kolmogoroff metric then the
samples (Xi(F ))n

1 and (Xi(G))n
1 are close in the Euclidean metric.

As a further justification of weak metrics consider the ball with centre P and
radius ε by

B(P, ε, d) = {Q : d(Q,P ) ≤ ε} (2)

then typically for weak metrics the empirical distribution Pn of n i.i.d. random
variables with common distribution P will lie in B(P, εn, d) with εn = c/

√
n.

In other words weak metrics allow direct comparisons of data with purported
models. Similar arguments in favour of weak metrics together with Fréchet differ-
entiability of statistical functionals have been put forward by Bednarski (1993),
Bednarski and Clarke (1998), Clarke (2000) etc.
One functional which plays an almost dominant rôle in statistics is the differ-
ential operator D defined by

D(G) = g for all absolutely continuous G, G(x) =
∫ x

−∞
g(u) du (3)

The functional D is not continuous with respect to a weak metric and is in-
deed pathologically discontinuous. As all likelihood methods make intimate use
of D this means that all likelihood based methods are pathologically discon-
tinuous with respect to weak topologies. There is therefore no good reason for
basing statistical procedures on likelihood based methods; a unified approach
to statistics is only possible if it is based on a weak topology.

2.4 Constructing statistical procedures

There is no prescribed methodology for constructing statistical procedures. Even
if some stochastic model is agreed to be an adequate approximation of a data set
there is not the slightest reason for basing the procedures on likelihood either
in the form of maximum likelihood or Bayes (see Section 2.3). Instead we use
an idea of Tukey’s and write the data in the form

DATA = SIGNAL + NOISE. (4)

We separate SIGNAL and NOISE by assuming that the signal is simple and the
noise is complex. In particular we define what we mean by noise and then choose
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the simplest signal such that (4) holds. We demonstrate this in the context of
nonparametric regression. The stochastic model is

Y (t) = f(t) + σε(t), 0 ≤ t ≤ 1, (5)

where ε(t) is standard Gaussian white noise. We identify the signal with the
function f. The concept of simplicity we use for f is the number of local extreme
values on the interval (0, 1). We identify the noise with the errors or disturbances
ε(t). Given design points 0 ≤ t1 < t2 < . . . < tn ≤ 1 we form the local
standardized means

Mn(I) =
∑
ti∈I

ε(ti)/
√

n(I)

where I denotes an interval and n(I) is the number of design points in I. The
maximum size of the standardized local means is a measure of the deviation of
the Y from the function f at the design points. Under the assumptions of the
model (5) we have approximately

max
I

|Mn(I)| ≤ σ
√

τ log(n) (6)

for some constant 2 ≤ τ ≤ 4. We indicate how the above considerations can be
used to construct a procedure. Consider data y(ti), i = 1, . . . n. For any function
f we write

r(ti) = y(ti) − f(ti), i = 1, . . . , n (7)

and
σn = 1.483Median(|f(t2) − f(t1)|, . . . , |f(tn) − f(tn−1)|)/

√
2. (8)

We agree that the residuals r(ti) approximate Gaussian white noise if

max
I

|mn(I)| ≤ σn

√
τ log(n) (9)

where
mn(I) =

∑
ti∈I

r(ti)/
√

n(I).

This leads to the following problem. Determine a function f with the smallest
number kn of local extreme values such that the residuals r(ti) approximate
white noise in the sense of (9). This is not, as yet, an algorithm in the sense
described in Section 2.1 but it can, with some effort, be turned into one. We
refer to Davies and Kovac (2001) for the details.
The condition (6) is not the only property of white noise which can be used as
a definition of approximation. In (5) we can assume that the median of the ε is
zero and take the definition of approximation to white noise to be based on the
local means of the signs of the residuals r(ti). This gives rise to a robustified
procedure which works well even on test beds with Cauchy noise.
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2.5 Test beds

Before being offered for general use statistical procedures should be tested where
the word “test” is now to be understood in an engineering and not in a statis-
tical sense. A procedure may be based on considerations which derive from a
stochastic model but its range of applicability extends beyond this. It is there-
fore of importance to assess the performance of the procedure under a variety of
conditions. This may be done by testing it under the well controlled conditions
of a test bed defined by a stochastic model. This means that we generate samples
(Xi(P ))n

1 using the probability model P and then apply the procedure to the
sample. The advantage of this is that we are often able to identify the output
of the procedure with properties of P . As an example we again use nonpara-
metric regression. A model P is now defined by the function f and the errors ε
of (5). The result of the procedure will be a function fn which can be directly
compared with the function f. By using different f and different ε one can try
to determine the behaviour of the procedure, that is, the sort of data for which
it works well and the sort of data for which it works less well.
Real data sets should also be used as test beds. They have the disadvantage
that they cannot be controlled and that the result of the procedure cannot be
compared directly with some real f . Nevertheless such testing is important as
it often reveals unsuspected properties of real data sets which were not taken
into account when the procedure was constructed.

2.6 Mathematical probes

Given a parametric test bed the performance and properties of a procedure are
often accessible to a mathematical analysis. If we again consider the problem
of nonparametric regression described in Section 2.4 then properties such as
consistency and rates of convergence can be established mathematically (Davies
and Kovac (2001)) on appropriate test beds. As a further example consider the
behaviour of the location M-functional TL defined by

∫
ψ

(
x − TL(F )

TS(F )

)
dF (x) = 0 (10)

∫
χ

(
x − TL(F )

TS(F )

)
dF (x) = 0 (11)

where

ψ(x) = (exp(x/5) − 1)/(exp(x/5) + 1) (12)
χ(x) = (x4 − 1)/(x4 + 1). (13)

TL can be analysed mathematically by calculating breakdown points as well
proving asymptotic normality in a locally uniform sense (see Davies (1998) for
the latter). Beran has called such a mathematical analysis a “mathematical
probe” (see his discussion of Davies and Kovac (2001)).
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2.7 Simulations

In many situations the behaviour of a procedure for finite sample sizes is not
amenable to a mathematical analysis. In such cases valuable information about
a procedure can be obtained by simulations. Again if we return to the example
of nonparametric regression then the function f and the distribution of the
errors ε can be varied and information obtained on the limits of applicability
of the procedure. In nonparametric regression standard test beds such as those
developed by Donoho, Johnstone, Kerkyacharian and Picard (1995) play an
important rôle.

2.8 Efficiency and blandness

To judge by the literature one main concern when evaluating the performance
of a procedure seems to be its efficiency on certain test beds. Indeed the fact
that a procedure is asymptotically efficient is often taken to be a general seal of
approval. To illustrate the problems of using the concept efficiency as a measure
of performance we consider the procedure based on the location functional TL

of (10) and (11). To calculate the asymptotic efficiency on the test bed specified
by the distribution F one calculates an asymptotically optimal (in the sense of
efficiency) location functional T

opt
L for this F . To simplify matters we assume

that F is symmetric about 0 so that there is no ambiguity about what is to be
estimated. The asymptotic efficiency of TL at F for a sample of size n is defined
as the ratio

Eff(TL, n) = V(Topt
L (Pn(F )))/V(TL(Pn(F ))) (14)

where Pn(F ) denotes the empirical measure defined by n i.i.d. random vari-
ables with common distribution F and V denotes the variance. The important
question and one that is not often discussed in the literature is the choice of
F . Traditionally the Gaussian distribution is chosen so that T

opt
L is the mean.

The choice is a sensible one for the reason that it is very difficult to estimate
the mean of a Gaussian distribution. More precisely the Gaussian distribution
maximizes the asymptotic variance limn→∞ nV(Topt

L (Pn(F ))) amongst all dis-
tributions F with finite variance. In Tukey’s words the Gaussian distribution is
“bland” or “hornless”. If the distribution F is chosen without due care it may
offer, again in Tukey’s words, a free lunch. This means that quantiles based on
this distribution will lead to smaller confidence intervals than are justified by
the data. The model is allowing an increase in precision at no cost. It is not al-
ways obvious that this is happening. Table 1 shows the relative efficiency of the
M-functional TL defined above by (10) - (13) for samples that follow the Cauchy
and the slash (Z/U with Z = N(0, 1) and U uniform on [0, 1]) distributions.
The relative efficiencies are with respect to the maximum likelihood estimators.
The results of Table 1 show that the relative efficiency of TL on the Cauchy test
bed is about 9% lower than on the slash test bed. The reason for this is that
the Cauchy distribution is not bland. It has horns which are exploited by the
optimal method to give an increase in efficiency. The horns of the Cauchy distri-
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n 10 20 50 100
Cauchy 47.9 50.3 51.8 50.9
Slash 53.0 58.1 59.8 59.9

Table 1: Relative efficiencies of TL on the Cauchy and slash test beds.

bution are its peakedness at the origin (see Cohen (1991)). Figure 1 shows the
two densities and the somewhat greater peakedness of the Cauchy distribution.
Although this is not excessive it is sufficient to give the increase in precision.
The Cauchy distribution is usually taken as an example of a distribution with
a heavy tail and hence outlier prone. The greater peakedness at the origin is
rarely mentioned although it is this which causes the increase in precision. For
this reason Tukey favours the slash distribution.
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Figure 1: The figure shows the Cauchy and slash densities standardized to have
the same value at 0. The Cauchy density is more peaked.

One can of course take this game even further. If Φ denotes the distribution
function of the standard normal distribution then for any ε > 0, for example
ε = 10−100 there exist distributions F with

sup
x

|Φ(x) − F (x)| < ε (15)

7



and for which V(Topt
L (Pn(F ))) can be made arbitrarily small. We indicate how

such a distribution can be constructed. For any m there exist real numbers
ei, i = 1, . . . , m such that

m∑
i=1

αiei = 0, αi rational ⇒ α1 = . . . = αm = 0. (16)

Such numbers are related to the idea of a Hamel basis for R. For statisticians
it is of interest to note that the proof of the existence of a Hamel basis given in
Hewitt and Stromberg (1969) makes use of Tukey’s lemma. As multiplication
with a rational number does not alter the condition (16) we can for any given
ε > 0 choose m, the ei and weights pi such that the following holds:

m∑
i=1

pi = 1 (17)

P =
m∑

i=1

piδei
, δx = Dirac mass at x (18)

dko(N(0, 1), P ) < ε (19)

Let X1, . . . , Xn be an i.i.d. sample of size n from the distribution P (· − λ) for
some λ. Then with probability which can be made arbitrarily close to one by
choosing m sufficiently large the sample contains at least two observation which
are different. We take these to be X1 and X2. We can write X1 = λ + ei1 and
X2 = λ + ei2 . From this

X2 − X1 = ei2 − ei1 . (20)

It follows from (16) that the difference (20) determines ei1 and ei2 uniquely.
From this it follows that we can determine λ exactly. In other words there exist
distributions arbitrarily close to the Gaussian distribution with the property
that given an i.i.d. sample from P (· − λ) we can determine λ exactly with very
high probability. If we replace the δei

in (18) by N(ei, σ
2
i ) with σi very small ie

Ps =
m∑

i=1

piN(ei, σ
2
i ) (21)

then we can no longer determine λ exactly but we can determine λ with an
arbitrarily high precision. Further more this smoothed version Ps of P has an
infinitely differentiable density. Between Ps and the normal distribution we have
a continuum of possibilities so there is no breakpoint between Ps and N(0, 1).
We note that if the real data are such that a goodness-of-fit test for normality
is not rejected neither will the same test reject the distribution Ps.
For the distribution Ps and similar distributions all the information about the
location parameter is carried in the tail of the decimal expansion. If the optimal
functional T

opt
L is applied to real data or to data from some other distribution

the results will be nonsensical. Statistical modelling is an ill-posed problem.
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Given any data set there are an infinite number of models which can be used
to model it. Applying a goodness-of-fit test will not help as indicated by (15).
Optimal methods tuned to a precise model will produce nonsense unless the
problem is regularized in some manner. Minimizing the Fisher information is
one form of regularization and results in the arithmetic mean which, although
not perfect, will often give excellent results. There is as far as I am aware no
theorem which states that the optimal functional for the regularized model will
work well although in some specific cases it does (Huber (1981)).

3 Robust statistics

3.1 Folklore and small print

Although statistics makes use of mathematics and has its own mathematical
theorems it not an exact science in the sense that mathematics is. All theorems
are proved under assumptions which for the purpose of this paragraph we shall
refer to as the small print. As statistical theorems are no more than mathe-
matical theorems we may assume that they are correct but, as with all applied
sciences, they must be interpreted to be of use to a practising statistician. When
discussing the results of a theorem the small print is sometimes not mentioned
and maybe even forgotten. As an example we mention the folklore that the
MAD has the highest possible finite sample breakdown point for a scale func-
tional. As it stands this statement is false as there are scale functionals whose
finite sample breakdown point is never less than that of the MAD and which is
at some distributions strictly higher. In Davies and Gather (2002) the highest
possible breakdown point for a scale functional at any distribution is calculated
(see also Davies (1993)) and they also give a scale functional which attains this
at every distribution. The small print for the MAD is that all the sample val-
ues are different. If this is not the case the finite sample breakdown point of
the MAD can be zero. Although it is rarely stated the finite sample breakdown
point of a functional is a local property of the functional. One should speak of
the finite sample breakdown point of the functional at a particular distribution.
Sometimes this is done explicitly when reference is made to points “in general
position” but often it is not. In other cases the folklore exists because of the
lack of a theorem. It has for example been claimed that the middle of the short-
est half-sample does not have an influence function. This is a very vague claim
which may be interpreted as that there does not exist any distribution F at
which the functional has an influence function. In this sense the claim is false.
The influence function exists for Gaussian and other distributions (see Davies
(1993)). A similar calculation for the Hampel-Rousseeuw least median of squares
estimator for certain regression models can be made (Davies (1993)). In spite of
the formal nature of such calculations they do seem to aid the understanding of
the behaviour of the LMS-functional with respect to inliers (see Ellis (1998) and
Sheather, McKean and Hettmansperger (1998)). Although every discipline has
folklore and probably cannot do without it, it does pose a danger. It is easier to
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make plausibility statements than prove results and if this becomes an accepted
practice in statistics it can lead to a situation where we no longer know what
always holds, what often holds, what occasionally holds and what never holds
and under what conditions these various alternatives are correct. On the other
hand the danger with mathematical theorems is that the small print is often
not taken very seriously. Statistics is not the only discipline with this problem.
In Hooft (1997) the Physics Nobel prize winner Gerard ’t Hooft describes his
problems with so called “no-go theorems” in physics. He writes

One often forgets to mention the small-print, so that such theo-
rems sometimes unjustifiably keep us from investigating important
possibilities.

3.2 Boundedness, continuity and differentiability

Given a functional T on the space of probability measures the modulus of con-
tinuity or bias of T at the point F with respect to the metric dC is defined
by

b(T, F, ε, dC) = sup{‖T (G) − T (F )‖ : G ∈ B(F, ε, dC)}. (22)

In (22) we have assumed that the functional is uniquely defined at each distri-
bution at least in the appropriate ball centred at F. In fact we do not require
this as we can take the supremum over all possible values and if the functional
is not defined at all for some G in B(F, ε, dC) then we set b(T, F, ε, dC) = ∞.
If T is locally bounded, that is b(T, F, ε, dC) < ∞ for some ε > 0 then it has
a non-zero breakdown point. Such a functional is useful at least in exploratory
data analysis as it can in principal be used to detect outliers or observations
which do not conform to the structure of the majority of the observations, as-
suming such a structure to exist. The usefulness of T will depend on the size of
b(T, F, ε, dC) and this will in general be larger if T is set-valued at some G in
the ball. If T is continuous at F then

lim
ε↓0

b(T, F, ε, dC) = 0

This will in general be of help in exploratory data analysis but it is of little help
in confirmatory data analysis by which we mean attempting to answer questions
of significance and the size of approximation intervals. For this a much stronger
property is required namely that the functional should be locally uniformly
Fréchet differentiable. In other words for all F there should exist functions
I(x, T,G) and positive constants C and ε satisfying

sup{‖I(x, T,G)‖ : x,G ∈ B(F, ε, dC)} < C

and such that for every δ > 0 there exists an η > 0 for which

‖T (H) − T (G) −
∫

I(x, T,G) d(H − G)‖ ≤ δdC(H,G)
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for all H ∈ B(G, η, dC) (see Davies (1998) and Clarke (2000)). If this form of lo-
cally uniformly Fréchet differentiability does not hold then one can expect some
form of non-smooth behaviour such as non-Gaussian limiting distributions or
non-uniform asymptotics. In the one dimensional location-scale problem it is
quite easy to produce functionals which are locally uniformly Fréchet differen-
tiable (Davies (1998)). In higher dimensions it is more difficult. Kent and Tyler
(1991) have shown that M-functionals based on the multivariate t-distributions
have a non-zero breakdown point and, although no-one seems to have done the
necessary calculations, it seems quite clear that their functional is locally uni-
formly Fréchet differentiable. The conditions for the existence and uniqueness of
their functional are weak in that they can be expressed in terms of a weak metric.
They involve only the amount of mass on lower dimensional hyperplanes. The
only drawback is that the breakdown point is at most 1/(1 + k) for dimension
k. It seems to be a very difficult problem producing high breakdown location
and scatter functionals which are well defined at each non-degenerate distribu-
tion. This has been done by Dietel (1993) for the multidimensional location and
scatter and the linear regression problems. He even managed to obtain a locally
uniform Lipschitz condition but not locally uniform Fréchet differentiability. No
progress seems to have been made since his work.

3.3 The gross error model

The gross error neighbourhood of size ε, 0 ≤ ε ≤ 1 of a distribution F is defined
by

GE(F, ε) = {G : G = (1 − ε)F + εH H arbitrary}. (23)

The interpretation is that we have a model F which is not thought to hold
exactly and to allow for this one considers an amount of contamination ε which is
represented by the distribution H. If samples are generated from a G in GE(F, ε)
then on average a proportion 1−ε of the observations will come from the model
F and a proportion ε of observations, the so called contaminants, will come from
the distribution H. The gross error model is therefore often regarded as a simple
and reasonable way of modelling deviations from a purported model F and can
therefore be used to investigate and evaluate the behaviour of functionals under
deviations. Its main advantage from the point of view of research is that it is
relatively easy to analyse, compared with other ways of considering deviations
such as those defined in terms of metrics. We refer to the discussion on pages
400-401 of Hampel, Rousseeuw, Ronchetti and Stahel (1986). This programme
is only justified if the results obtained from the gross error model offer an insight
into the behaviour of functionals when applied to real data. In this section we
argue that this is sometimes but not always the case.
The use of the gross error model for generating outliers or contaminants was
mentioned above. It has been criticized by Tukey (1960) and Gather (1990). The
data are usually generated as i.i.d. using a distribution G ∈ GE(F, ε). Although
the i.i.d. random variables may be a reasonable approximation for the main set
of data there is no reason why this should be the case for the outliers or exotic
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observations. An example is the balloon data of Davies and Gather (1993) where
the outliers are clearly dependent and cannot be adequately approximated by
i.i.d. random variables. A further criticism is that the number of contaminants
in the sample is itself a random variable and that they may lie within the body
of the data set and not be extreme values. Tukey (1960) (see also Gather (1990))
considered the model G with F = N(0, 1), H = N(0, 9) and ε = 0.1. A sample of
size n = 1000 generated using this model has on average about 12 observations
from the N(0, 1) distribution which lie outside the interval (−2.5, 2.5 whereas
only about 4 of the observations from the N(0, 9) distribution lie outside of it.
A better way of generating outliers is described in Davies and Gather (1993).
The main criticism of the gross error neighbourhood is that it is too small. The
use of strong metrics such as total deviation was criticized above. In one sense
the gross error model is even worse as for any ε > 0 we have

GE(F, ε) ⊂ B(F, ε, dtv) (24)

In particular for any continuous distribution F no empirical measure Gn deriv-
ing from any G ∈ GE(F, ε) lies in GE(F, δ) for any δ < 1. This means that
results which apply for all G ∈ GE(F, ε) are not guaranteed to hold for any
Gn, not even approximately. This is not to say that a particular result does not
hold, it may well as is shown by Huber’s proof of the fact the median minimizes
the maximum bias over the gross error neighbourhood GE(N(0, 1), ε) for any
ε < 0.5. His proof however can be carried over to the Kolmogoroff neighbour-
hood B(N(0, 1), ε, dko). Indeed the idea of the proof can be used to give a lower
bound for the maximum bias over B(F, ε, dko) for any F , even empirical distri-
butions, which can then be compared with the behaviour of the median. Another
example of where results based on the gross error neighbourhood are applicable
is Martin and Zamar (1993). The authors consider the class of M-functionals
and then within this class they determine that functional which minimizes the
bias over a gross error neighbourhood. The restriction to M-functionals means
that the resulting functional can be applied to real data sets and its performance
compared with those of others. Finally we give an example where considerable
care in interpreting the result is required to avoid misleading conclusions. As in
He and Simpson (1993) we set

b(T, F, ε,GE) = sup{‖T (G) − T (F )‖ : G ∈ B(F, ε,GE)} (25)

and consider a parametric family Fθ of distributions. The minimum distance
functional Tmdtv based on the total deviation metric dtv is defined by

Tmdtv(G) = argminθ dtv(G,Fθ). (26)

Suppose now that Fθ is the multinormal family N(θ, Ip) which is the final ex-
ample in Section 2.4 of He and Simpson (1993). It follows from Theorem 2.1
and Corollary 2.2 of He and Simpson (1993) that for small ε

c1ε ≤ b(Tmdtv, Fθ, ε,GE) ≤ c2ε (27)
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where c1 and c2 are independent of the dimension p (see Section 2.2 of He and
Simpson (1993)). If TM denotes an M-functional with a bounded and sufficiently
smooth ψ-function then TM is locally linear and Theorem 2.2 of He and Simpson
(1993) gives

b(TM , Fθ, ε,GE) ≤ c3
√

pε. (28)

Consider now the metric Dhsp on the set of probability measures on R
p

dhsp(P,Q) = sup{|P (H) − Q(H)| : H half-space}. (29)

It follows from results of empirical process theory that if εn = C/
√

n then with
probability one as C → ∞ the empirical measures Fθ,n deriving from n i.i.d.
random with the distribution Fθ will lie in B(Fθ, εn, dhsp). If TM is based on a
sufficiently smooth ψ-function (28) continues to hold with dhsp in place of GE
and with ε = εn. Suppose that (27) also continues to hold. In this case we can
deduce

‖Tmdtv(Fθ,n) − θ‖ ≤ c4/
√

n (30)

with c4 independent of the dimension p. In other words we can estimate the mean
of a normal distribution in p dimensions with the same order of accuracy as in
one dimension. Of course if the model is continuous the one cannot apply the
minimum distance functional to empirical distributions using the total variation
distance. He and Simpson (1993) therefore suggest smoothing the empirical
distributions using say a kernel method so that a comparison is now possible.
Apart from the considerable difficulties of doing this it would still not alter that
fact that (30) is not possible. In other words (27) cannot be applied to data
situations in contrast to the result on the bias optimality of the median. The
reason why (27) holds is because of the extremely small size of the gross error
neighbourhood. Other results in He and Simpson (1993) which are based on the
gross error model can be carried over to data situations, in particular when the
measures involved are discrete. The point is however that it is not immediately
clear when this is possible and when it is not possible. The best advice is not to
use the gross error model and to replace it by neighbourhoods defined by weak
metrics or, if it is used, to indicate to what extent the results are relevant to
the analysis of data.

3.4 Densities

The relationship between robustness and densities with respect to Lebesgue
measure is somewhat ambiguous. Two examples where densities are of little
import are the following. Consider the bias b(T, F, ε, d) of a functional T at the
distribution F with respect to the metric d as defined by (22). If d = dC is a weak
metric of the form (1) then it is immaterial as whether F has a density or not.
A second example is where we calculate the efficiency of a robust functional on
some test bed. As argued above it only makes sense to do this for bland models
and as blandness implies smoothness we are lead to investigating the behaviour
of robust functionals on test beds with densities. Again this is innocuous.
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In other situations densities are important but not innocuous. Davies (1987) con-
sidered S-functionals in the context of the k-dimensional location-scale problem.
In order to show that the functional is well defined at some distribution F he
assumed that F had a density of the form cf(‖x−µ‖Σ) where f is a smooth de-
creasing function on R+ = [0,∞). These assumptions have since been weakened
by Tatsuoka and Tyler (2000) but it remains the case that it must be assumed
that F has a density which satisfies some regularity conditions. Similar assump-
tions are required in other situations such as linear regression. Unfortunately
there is a tendency to dismiss these and similar assumptions with phrases such
as “under weak conditions” or “under general conditions”. Such conditions are
at variance with the aims of robust statistics which are to provide tools which
will help to stabilize the analysis of data. If in any neighbourhood of a distri-
bution there are distributions at which the functional is not uniquely defined
then the suspicion is that it will not be stable. The gold standard for everyday
stability of analysis is locally uniform Fréchet differentiability and this cannot
hold if the functional is not even well defined within any non-trivial neighbour-
hood. This does not mean that such functionals are of no use. They may indeed
be very valuable but their use will be restricted to exploratory data analysis.

3.5 Calculability

Apart from the problems of definability and uniqueness mentioned above the
difficulty in calculating multidimensional location and scatter functionals is one
of their main weaknesses. As far as I am aware the only multidimensional lo-
cation and scatter functionals with a non-zero breakdown point and which can
be easily calculated using a convergent algorithm are those of Kent and Tyler
(1991). Other functionals can be calculated such as the Hampel-Rousseeuw least
median of squares (Hampel (1975) and Rousseeuw (1984)) but the only known
algorithm which yields the correct solutions is that of Stromberg (1993). This is
however of such a complexity that it is not possible to compute it in reasonable
time for samples of size n = 500 even in the case of a simple linear regression.
Fortunately it is not the case that the lack of exact calculability makes the
functionals non-applicable. There exist some ingenious algorithms which per-
form very well in practice although they do not yield the exact solution (Rocke
and Woodruff (1996)). They are an invaluable tool in exploratory data analysis
and for detecting outliers in high dimensions.

3.6 Breakdown

The most successful area of robust statistics and the one which seems to have
been the subject of the most research is the location-scatter problem in Eu-
clidean space. Apart from the fact that it is an important and difficult problem
the reason for this attention may be the fact that it is possible to define affinely
equivariant functionals which attain at least asymptotically the highest possi-
ble breakdown point. This emphasis on functionals with the optimal breakdown
point may have been taken too far and lead to a situation where other approaches
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have not been sufficiently investigated. We mention two examples. Firstly the
emphasis on breakdown point is too pessimistic. There are examples where it
makes more sense to talk of breakdown patterns as the breakdown of a func-
tional may depend not only on their number but also on their position in the
data set. We mention the two-way table where the breakdown patterns for the
case of one observation per cell were characterized in Terbeck and Davies (1998).
Thus in the two-way table where each factor has five levels the breakdown point
is 0.12. However the L1- functional can withstand up to 6 aberrant observa-
tions depending on their location and this is optimal. A more general result
for L1-regression is given by Ellis and Morgenthaler (1992)). The existence of a
highest possible breakdown point is only then of importance if it is non-trivial.
In Davies and Gather (2002) it is argued that this is intimately connected with
a large group of transformations which leave the problem unchanged. In the
location-scatter problem this is the group of affine transformations. If the group
of transformations which leave the problem unchanged is not sufficiently large
then the breakdown point will be 1 and this can often be attained by the con-
stant functional. As an example we mention an autoregressive process of order
p. This problem remains invariant under the shift operator and non-zero scalar
multiplication. However the constant functional T0(P) = (0, . . . , 0)t is consistent
with this group of transformations and has breakdown point 1. This functional is
not Fisher consistent but may be modified to be so as follows: put Tm(P) = T (P)
if T (P) defines a stationary process and Tm(P) = (0, . . . , 0)t otherwise. Then
Tm is Fisher consistent at Gaussian models and consistent in the usual sense at
empirical Gaussian data derived from a Gaussian model. The breakdown point
remains 1. It seems that Fisher consistency alone is not sufficiently stringent
in order to be able to give a useful definition of breakdown point. Rather it is
the lack of a sufficiently large group of transformations which has defeated all
attempts to provide a satisfactory definition of breakdown in time series. This
would also seem to apply to other structured situations such as those defined
by graphical models. Some other ideas would seem to be required.
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