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Abstract

We investigate the combination of the dimension reduction meth-
ods SIR (Li, 1991) and DAME (Gather et al., 2001) with fuzzy-
clustering to validate a given classification. We consider certain eco-
nomic variables which are assumed to contain the information rele-
vant to determine the current phase of economics. For a period of
about 40 years, observations of these variables are available, together
with an experts’ judgement about the corresponding business cycle
phase. We show that the combination of dimension reduction and
fuzzy—clustering leads to a classification reflecting the experts’ opin-
ion better than other classification methods. Moreover, the proposed
method can be used also in high—dimensional situations where other

procedures are no longer applicable.
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1 Introduction

We consider the problem of classifying economic data into business cycle
phases. The long-term objective is to find a method by which we can predict
the current business cycle phase based on actual economic data. The basis

for our investigation is a data set of quarterly observations of several selected



economic variables from about 40 years. Moreover, the data contain an
experts’ judgement about the business cycle phase corresponding to each
quarter. The data set and the four phases are described in more detail in

Section 4.

The data have already been investigated with respect to the given objective
by two different approaches. The first approach consists of directly cluster-
ing the economic data, trying to rediscover the four business cycle phases
found by the experts (Theis and Weihs, 1999). In the second approach,
a certain subset of the given variables is extracted which is in some sense
optimal for predicting the experts’ classification (Weihs, R6hl and Theis,
1999). Both approaches lead to fair results, but are less suitable for being
applied to high—dimensional data sets. For this reason, we investigate an-
other approach, where we try to reduce the dimension of the data set of
economic variables in a first step, followed by a clustering of the dimension—
reduced data. As mentioned before, the long—term objective is to predict
the current business cycle based on the current economic data. The given
data set contains the past information about economics and business cy-
cles. We also include the experts’ information in the dimension reduction
procedure. To the reduced data, we then apply a fuzzy—clustering method
which already turned out to be suitable in the first approach described above
(Theis and Weihs, 1999). If the data themselves contain appropriate infor-
mation about the business cycle phases, and if the experts’ classification is
congruent with the information in the data, we should be able to rediscover
the given business cycles by clustering the dimension—reduced data. In this
case, the main conclusion would be that the chosen data can indeed be used
to decide upon business cycle phases. Hence, the combination of directed
dimension reduction and (undirected) fuzzy-clustering can be regarded as a
tool for validating given classifications which were obtained by at least par-
tially subjective methods. Together with this, we get a suitable projection
of the high—dimensional data and a corresponding classification which allows
for determining the actual business cycle phase.

The paper is organized as follows. Section 2 is dedicated to the dimension
reduction methods SIR and DAME which are able to take a certain depen-
dence structure of the data into account and hence are suitable for including

the experts’ judgement into the process of reducing the dimensionality. In



Section 3 the clustering algorithm is explained, including the choice of the
distance measure and the measure of separateness, which is used for the
comparison of different clusters. Finally, in Section 4 the data are briefly

described and the results are collected.

2 SIR and DAME

The classification of business cycles can also be seen as a regression prob-
lem. The four distinct phases represent certain classes of response and
thus correspond to a discrete univariate response variable Y with values
in {1,2,3,4}. The economic variables can be seen as explanatory variables
Xi,...,X,, and we assume that there exists some functional relationship
between X = (Xi,...,X,)T and Y. We adopt the idea of Li (1991) for a

dimension reduction in this setting. He assumes that

Y = f(BIX,....B5X,¢), (1)

i.e., the response Y depends on X, ..., X, only via the linear combinations
BYXx ...,BEX. A dimension reduction from p to K is achieved, if K < p.
Here, X = (X1,...,X,)", X, e are stochastically independent, and B, €
RP, 2 = 1,...,K. Such an assumption is well motivated in our problem,
as it surely can be assumed that there are interdependencies between the

economic variables.

The so-called effective dimension reduction (edr) directions B, ..., B span
the edr space B. We assume that B equals the intersection of all possible
edr spaces, the so-called central dimension reduction subspace (Cook, 1994,

1996, 1998a,b), and we assume further that this central subspace exists.

The sliced inverse regression (SIR) method of Li does not aim at estimating
the function f itself, but it is designed as a means to estimate the space B
in which the functional relationship takes place. In a second step then f can
be estimated in the reduced space (see Becker, 2001). Here, we apply SIR
in the sense that we try to find the subspace in which a certain structure
of the data (in the form of fuzzy—clusters) manifests. In the second step
we will not try to estimate f but to re-reveal this structure in the reduced
space. This is just a slightly different view to the same situation, as we may

interpret the result of a fuzzy—clustering procedure as a discrimination rule



by taking the maximum of the memberships. We may then also be able to
use the SIR directions instead of the whole set of p variables (in our case we
have p = 13) to predict a current business phase.

Let (y;, 2l )", i=1,...,n, ; € R?, y; € R, be a given dataset according to
(1), then the SIR procedure consists of:

~—1/2 ~
1. Standardizing: z; = ¥ / (x;—x),i=1,...,n, where X = > " (x;—

Z)(z, — %) /n,T=Y . xi/n.

2. Slicing: Split zq,..., 2, into H slices Sy, h = 1,..., H, according to

the order of the corresponding values of yy, ..., y,; let ny, = |Sy|.
3. Calculating slice means: my, = dos, Zi/nn, h=1,... H.

4. (Weighted) principal component analysis for the slice means:
SIR = Zle nhmhﬁz\,{’/n with eigenvalues A\; > ... > ), and respec-

tive normalized eigenvectors 7, ..., 7,

~—1/2__

5. Estimating the K edr directions S3;: BZ =3 1=1,..., K.

7

To estimate K, we follow Li’s (1991) suggestion of performing successive
tests of hypotheses Hg K =7 vs. Hf : K > j, starting with 7 = 0. We
take K to be the value of j, for which Hg is not rejected for the first time.

The test statistic used in each of the aforementioned tests is
ti=n(p— j))‘(p—j) ’

where \(,_;) denotes the mean of the (p — j) smallest eigenvalues of SIR,
and Hg is rejected if ¢; exceeds an appropriate quantile of the x? distribution
with (p—j)(H — j — 1) degrees of freedom. For details see Li (1991, p. 321).

In the original work of Li (1991), it is assumed that Y € R. But in the
second step of SIR only the ordered values of Y are used to categorize the
corresponding X observations. Thus, the SIR procedure can easily be ap-
plied to the case of a discrete response Y as it is done here (also see Cook
and Lee, 1999). Chen and Li (2001) show how SIR can be used in the
context of linear discriminant analysis. The slices S} can be chosen in the
natural way given by the categories of the response. Hence, we take H = 4

as given by the business classification, and select the slices according to the



Y categories. We come up with K = 3 which is also the maximum value we
can test for if H = 4.

For our analysis we do not take into account the structure of the data which
is given by the time-series aspect. We just consider the X values as if they
were i.i.d. observations. This is surely justified to get a first impression
of how SIR (and DAME, see below) may be helpful in the context of the
classification of business cycles. Further work will be concerned also with

the dynamical aspect given by the time-series structures (for first approaches
cf. Becker and Fried, 2001, Becker et al., 2001).

The SIR procedure is not robust against outliers in the X-space (Gather et
al., 2001b). A straightforward approach to robustify SIR is given in Gather
et al. (2001a), where Li’s basic idea is maintained, while all classical esti-
mators are replaced by suitable robust versions. The resulting dimension
adjustment method (DAME) then proceeds similar to SIR. In the first step
of the procedure, the estimators & and 3 are replaced by S-estimators T';, C;
of location and covariance. These estimators are calculated as described by
Davies (1987), and are based on a modified biweight function as introduced
by Rocke (1996) with parameters chosen to achieve maximum breakdown
point and an asymptotic rejection probability of 0.1. The second step of
DAME equals the second step of SIR. In step 3, the slice means m,;, are
replaced by Ty, the L;- or spatial medians within the hth slice. In the
principal component analysis of the fourth step, instead of S/I\R, we use
an estimator DAME = CQ(]/W\ ), where the set M contains all estimated
locations Ty, and C, denotes a projection pursuit covariance estimator
according to Li and Chen (1985), based on the univariate robust scale esti-
mator RC'Q, introduced by Rousseeuw and Croux (1993) with « chosen to
be 0.5. The last step of DAME consists of estimating the edr directions:

Bi:(cflﬁi)/m,i:L...,K.

For detailed comparisons of the performance of SIR and DAME see Gather
et al. (2001a,b).



3 Fuzzy—clustering and choice of distance

As described in Theis and Weihs (1999) and Theis, Vogtlinder and Weihs
(1999), the experts’ classification of the data cannot be easily reproduced
by means of standard statistical methods like, for example, time series anal-
ysis procedures or k—means clustering. Therefore fuzzy—clustering based on
euclidean distances has been used in the search for the number of groups,
which can be found empirically. This was combined with a variable selection
by a greedy-search—-algorithm. As this dimension reduction did not lead to
a “proper” clustering, a modified distance measure was introduced, which
turned out to model the differences between business cycle phases better
than the euclidean distance (Theis and Weihs, 1999). Hence, we also apply

this improved combination of fuzzy-clustering and variable selection here.

Let S ={x,...,x,}, ; € R, be an observed set of data. Fuzzy—clustering
does not divide these data into well-separated groups but assigns every
point a probability (membership) to belong to a certain group. That means,
instead of constructing a partition P = {Py,..., P} of the data set S,
S cly,P, (NP =0, Vi # j), fuzzy—k-means—clustering constructs a
covering C = {C},...,Cy}, S C U, C,. Each element x; € S does not belong
definitely to a set C,, but ; may belong to several of the Cs. For each
observation a;, this can be seen as well as an estimation of & membership
functions w, : R? — [0,1] with S2F_, u,(@;) = 1,4 = 1,...,n. The number
k of clusters has to be chosen beforehand, motivated by knowledge of the
problem at hand or by hints from descriptive analysis.

Figure 1 shows on the left hand side a typical partition generated by k—
means—clustering and on the right hand side a data set for the fuzzy approach
and the sort of groups constructed by it.

Points x; lying in overlapping regions get memberships u,(x;) =: u; smaller
than 1 to belong to a specific group C),, whereas points lying in only one
group get a membership of 1 to belong to this group and 0 for all other
groups. Hence, fuzzy-clustering leads to the same result as the k-means
approach if there are well separated groups of data points.

The membership values of the n observations in a data set can be combined

in the so—called membership matrix U:
U = (uiv)iZI,...,n;vzl,...,k .
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Figure 1: Difference between hard partition and fuzzy—partition

We use fuzzy—k-means clustering as implemented in the R/S—function FANNY
(Kaufman, Rousseeuw, 1992, pp. 164-197). The membership values of the

observations are obtained as solutions of minimizing the following term:
k n 2.2 12
Zz‘,j:1 Uy U, (i, z;)

z 2 ZZL: 1 uz?v ,

v=1

where d(x,y) denotes a suitably chosen distance measure.
To judge the goodness of “separation” into the groups, we use the normalized

Dunn—coefficient (Kaufman and Rousseeuw, 1992, p. 187)

By = "=

where F}, denotes the usual Dunn—coefficient,

FU) =33 "
v=1 i=1

The normalized coefficient F}, takes values between 0 for no partition (total

fuzziness) and 1 for a hard partition.

To perform fuzzy-clustering, an appropriate distance measure is needed.
The usually chosen euclidean distance does not fit very well here. Words
like “upswing” or “downswing”’, which characterize certain business cycle
phases, describe directions of development. In Theis and Weihs (1999) a
new distance was developed to model this fact. The data points are normal-

ized with the euclidean norm because this reduces the information in the



observations to the direction in p—dimensional space and therefore the direc-

tions of two points relative to the origin can be compared by the euclidean
T Y

]yl

distance of these points. This leads to the distance d(z,y) := ‘
(see Figure 2).

.“~~;.9,(X'y)

Figure 2: Tllustration of distances of normalized data

4 Results

The data set considered here consists of p = 13 so-called stylized facts for the
german business cycle listed in Table 1 and n = 157 quarterly observations
from 1955/4 to 1994/4 (price index base=1991, y=yearly growth rates).

These 13 variables have been selected by Heilemann and Miinch (1996) from
a total of 120 variables. The experts’ belief is that these 13 variables contain
all information necessary to classify the observations into four business cycle
phases called “upswing” (1), “upper turning point phase” (2), “downswing”
(3) and “lower turning point phase” (4) as described in Heilemann and
Miinch (1996).

In the following, we compare the results of various analyses of these data.
We investigate two general classification methods, namely quadratic dis-
criminant analysis and fuzzy-clustering . These methods are applied to the
original data (the observations of the 13 stylized facts), to the projected
data according to the directions given by SIR and DAME, and to a spe-

cial selection of three of the original variables. This latter selection is that



Abbr. variable

Y GNP, real (y)

C Private consumption, real (y)
GD | Government deficit, percent of GNP
L Wage and salary earners (y)

X Net exports, percent of GNP
M1 Money supply M1 (y)

IE Investment in equipment, real (y)
IC | Investment in construction, real (y)
LC Unit labour cost (y)

PY GNP price deflator (y)

PC Consumer price index (y)

RS Short term interest rate, nominal
RL Long term interest rate, real

Table 1: The 13 Stylized Facts

combination of three stylized facts which yields the best result in the fuzzy—
clustering classification. To gain these optimal variables, an extensive search
algorithm has to be performed. The total number of 13 stylized facts out
of which the optimal three have to be found, is surely close to the upper
limit for the effective use of this algorithm. Hence, especially with regard to
the possible application to higher—dimensional data, alternative procedures
are sought for. In the following section, we first describe how the dimension

reduced spaces are composed of the original variables.

4.1 Results of dimension reduction

The outcome of applying SIR and DAME to the data set are reduced spaces
of dimension three. Since we choose the natural four slices given by the ex-
perts’ classification, this is at the same time the maximum dimension we can
test for. Hence, an optimal reduced space may even consist of more direc-
tions, but it is impossible to find them with this type of method. We restrict
the detailed discussion exemplary to the outcome of SIR. The reduced space

is spanned mainly by linear combinations of PY, L, RL (first direction), C,



PY, RS (second direction), and PY, RL, LC (third direction). Seen over all
directions together, the variables contributing most to the reduced space are
the GNP price deflator (PY), the long and short term interest rates (RL, RS)
and the private consumption (C). This selection of main influential variables
is at first sight rather different from the optimal selection with respect to the
goodness of fuzzy—clustering (L, IE, PC). Nevertheless, there are some de-
pendencies between the choices. First of all, obviously variable L (wage and
salary earners) is chosen in both selections. Second, from various analyses
of the data set the variables PY and PC seem to be exchangeable. Methods
for variable selection tend to choose the one or the other of them without
showing any obvious pattern of choice. Hence, one of the main influential
variables in dimension reduction can also be found in the variables best for
fuzzy—clustering. From the rest of the variables adding mainly to the direc-
tions for dimension reduction, we can see that SIR can be interpreted as a
classification method to some extent. This is due to the fact that the set of
variables chosen is similar to the sets chosen when determining the variables
optimal for classification of the data. For example, the set of three variables
which are best for quadratic discriminant analysis of the data contains the
variables L, LC, and RL, which are all contained in the projections found
by SIR (for a more detailed discussion on selecting optimal variables for
discrimination see Weihs, R6hl and Theis, 1999). In the following section,
we discuss the results of a quadratic discriminant analysis of the various

selected data sets.

4.2 First approach to classification: quadratic discrim-

inant analysis

The simplest approach to classify the given data into four phases or classes
would be to directly perform a discriminant analysis. Here, we choose
quadratic discriminant analysis because it was the best method found by
Weihs, Rhl and Theis (1999). The results are compared here for the original
data as well as for the projected (SIR, DAME) and selected ones (optimal
choice). We report (see Table 2) the leave-one-out crossvalidation error
rates for all these data sets. It is obvious that working with the projected

space found by SIR decreases the error rate while the decrease gained by
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DAME is only slight. The three variables selected to be optimal for the
clustering perform badly when used for the classification. This is not sur-
prising since they are not the optimal 3-dimensional set for discriminating
between the different phases, and as stated in Weihs, R6hl and Theis (1999)
at least four variables are needed to reach a cv—error similar to the other
cv—errors reported here. Good cv-error-rates in the classical LDA or QDA
with variable selction are around 22-24%. Although the use of the projected
data according to SIR yields a clearly better error rate than the use of the
original data set, the result may be improved by applying a different classi-
fication procedure. Since fuzzy-clustering turned out to be an appropriate
choice in this context (Theis and Weihs, 1999), we follow this approach in
the next section.

Data Set CV—error
Original 24.8
SIR 3D 17.8
DAME 3D 23.5
Variables L,IE,PC 38.8

Table 2: Cross—validated errors of QDA in the different data sets

4.3 Second approach to classification: fuzzy—clustering

As before, the classification is performed for the four versions of the data,

where we now apply a fuzzy-clustering procedure as described in section 3.

The selection of the three variables optimal with respect to fuzzy—clustering
is done by a greedy—search algorithm, which deletes each variable once and
applies FANNY to the new data set. The variable for which the Dunn—
coefficient is increased most in this step, is discarded from the set of possible
optimal variables and is therefore deleted from the data set for the rest of
the algorithm, and the search is applied to the resulting data. The usual
approach would be to proceed until there is no further increase in the Dunn—
coefficient. For the sake of comparability with the results of the dimension
reduction by SIR and DAME, we continue until only 3 variables are left and

thus use the algorithm here to choose an “optimal” set of 3 variables. As
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mentioned before, the greedy—search algorithm has the important drawback
of being an exhaustive search and would not be feasible in the case of more

variables in the original data set.

The number £ of classes is determined by calculating the Dunn-—coefficient
for the possible choices k = 4, k = 3, k = 2, starting with k£ = 4 classes like in
the experts’ classification. For most versions of our data, a clustering with
visibly non—zero Dunn—coefficient is reached for a number of two classes.
Thus, we choose k& = 2. Table 3 reports the normalized Dunn—coefficients
for the choice k& = 2 for all versions of our data. We see that, with the
optimal variables, we reach the largest value of the Dunn—coefficient, hence
there is a way to achieve better separated clusters than with the projected
data from SIR or DAME. But the investigations of the following Section 4.4
show that these clusters are not as close to the experts’ classification. It can
also be seen from the table, that using the new distance in FANNY leads to
larger values of the Dunn—coefficient, hence this appears to be much more
appropriate for our problem than using the euclidean distance. As we have

seen before, it adds to the interpretability of the results.

We can interpret the two classes found as the two “main” phases, namely
upswing and downswing. Although the “turning—point” phases, which can
be seen as a state of the economy in between the “main” phases, are not
identified directly, they are inherently found by looking at the membership
value of each observation. This idea is illustrated in Figure 3. The nor-
malized observations are represented as points on the circle in the centre.
Assume that these data points move around the circle in the given direc-
tion, representing the cyclic movement through the four business phases.
The ellipses stand for the main phases upswing and downswing which are
identified by the clustering procedure. Then it is obvious that the mem-
berships should be high in the main phases and decrease toward the edges,
and with two groups it is possible to interpret memberships around 0.5 as
points in between the two phases. So this is the best we can get if we cannot
identify all four groups directly. Plotting the memberships in one of the
groups over time we expect to find times of high memberships alternated
with low membership and in between some points with membership near
0.5, belonging to the respective turning—point phase. The type (upper or

lower turning point) can be deduced from the time-related context.

12



______Upper turning point

- Lower turning point

Figure 3: Idea of two groups with the new distance

In the next subsection we compare the memberships in the clusters with the

classification into the four phase scheme of Heilemann and Miinch.

4.4 Comparison of classifications

In Figures 4, 5, and 6 the membership values of the observations with re-
spect to one of the found clusters (standing for “upswing”) is plotted in the
course of time. The 4—phase—scheme of Heilemann and Miinch is depicted
as an additional line in the plots. To make comparison easy the highest
value of the line stands for upswing, the lowest for downswing, the lower in
between for lower turning—point phase and the higher in between for upper
turning—point phase. The heights chosen for the line are to some extent

arbitrary, they are chosen in a way that the “middle” values (standing for

Data set Fp(U) eucl. Dist. | Fp(U) new Dist.
Original data 4.6629367e-15 4.440892e-16
SIR 3D 1.052491e-13 0.1082308
DAME 3D 2.087219e-14 0.08069364
Variables L,IE,PC 0.2773638 0.5204419

Table 3: Normalized Dunn—coefficient for the different projections of the

data set and the different distances
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the turning point phases) lie around 0.5, corresponding to our interpretation
of the membership values.

Figures 4 and 5 correspond to the results of reducing the dimension with SIR
and DAME, respectively, and then applying the fuzzy-clustering. Figure 6
corresponds to selecting the three “best” variables by the greedy—search al-
gorithm and applying the fuzzy-clustering procedure to the observations of
these variables. Obviously, the clustering is more fuzzy in Figures 4 and 5
than in Figure 6, where the membership values are closer to 1 (definite mem-
bership in the class) or 0 (definitely not belonging to the class), respectively.
Nevertheless there are some advantages. These can be seen especially at the
left-hand side of Figure 5. Instead of being clustered mainly to one group as
in Figure 6, the observations are divided between the groups with a pattern
which looks similar to the 4-phase-scheme of the experts. The greater fuzzi-
ness may be caused by some of the badly discriminating variables, which are
deleted by greedy-search but are used by the optimal projections. Consid-
ering the discussed interpretation of memberships around 0.5 in our current
context, a certain amount of fuzziness is asked for to get some ideas about
the turning—point phases.

As in previous investigations (Theis and Weihs (1999)), again the cycle at
the beginning of the seventies is a difficult area. As pointed out there, this
is the time of the first oil-crisis, and the corresponding observations were

found to be a third group in the original data set.
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5 Conclusions

The aim of our investigation was to check whether a given classification of
a 13—dimensional dataset can be reproduced by a combination of dimension
reduction and fuzzy-clustering. Using a compound method of this type was
motivated by results of former analyses where the application of a dimension
reduction method as a pre-step led to improved results (Weihs, R6hl and
Theis, 1999). This is true here as well. Comparing the results of the fuzzy-
clustering using the 3-dimensional projections by SIR and DAME with the
results when using the original data, a better separation can be reached by
the former methods. This is reflected in an increase of the Dunn—coefficient.
Although using the variables selected by the greedy—search leads to even bet-
ter separated groups, the clustering of the projected data can be interpreted
in a way which is much more similar to the expert’s classification. Implicitly,
we are even able to distinguish three different classes, corresponding to the
two main phases “upswing” and “downswing” and to an in—between phase
including both turning—point phases. This is not possible with the clustering
of the data from the optimally chosen variables. Hence, the combination of
dimension reduction and fuzzy—clustering seems to be a good alternative to
the time—expensive search for optimal variables as performed by the greedy—
search algorithm. It can be expected that using a larger set of variables in
the data set to start with will improve the classification. To include a larger
number of variables does not pose a problem for the dimension reduction
methods, since they are designed for exactly such a situation. On the other
hand, it will barely be possible to apply the greedy—search algorithm to such
a larger number of variables. Moreover, also the dimension reduction meth-
ods offer the possibility to choose an “optimal” set of variables instead of
linear combinations of the variables (see Chen and Li , 1998, for details).
To conclude, the proposed method seems to be quite promising for checking
a given classification, especially with respect to high-dimensional problems

where the greedy-search algorithm is not feasible.
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