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Abstract

In this paper we describe the special role of moment theory for the construction of
optimal designs in statistical regression models. A careful introduction in the problem of
designing experiments for certain polynomial regression models is given, and it is demon-
strated that the maximization of certain Hankel determinants over the moment space
plays a particular role for the construction of optimal designs in these models. We intro-
duce the theoy of canonical moments, which povide a powerful tool for the maximization
of functionals of Hankel determinants and illustrate its application in several statistical
problems. On the other hand these results can be used for the derivation of several new
results in approximation theory. As examples we give simple proofs for the asymptotic
distribution of the zeros of classical orthogonal polynomials, generalize the trigonometric
identity sin® @ + cos? 0 = 1 to abitrary systems of polynomials orthogonal with respect to
a measure with compact support and give a solution of a nonlinear extremal problem for
polynomials.
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1 Optimal designs for polynomial regression

1.1 Introduction to regression models

In the following section we give a careful explanation of the application of moment theory in
the construction of optimum designs for polynomial regression models. For a more general
description of optimum experimental designs we refer to the monographs of Fedorov (1972),
Silvey (1980) and Pukelsheim (1993). For the sake of brevity we will only mention the results
which are relevant for the discussion presented in this paper.

An important model in statistics is the univariate polynomial regression model of degree d € Ny

d
Y = Zﬁjxj +e = fl@)"0+¢, (1.1)
=0
where 6 = (6p,01,..., 04)7 is a vector of unknown parameters, f(z) = (1,z,...,2%)7 is the

vector of monomials up to the order d and ¢ is a random error with mean E(¢) = 0 and variance
Var(g) = 02 > 0. The interpretation of the model (1.1) is that Y is the result of a measurement
at a point x € X which is the sum of the expectation, the deterministic mean effect f(z)T0,
and an additive error term . Y is called the response at the point z € X. In general the
relationship between x and Y would have f ()76 replaced by some arbitrary unknown function
g(x). For convenience this function g(z) is assumed to be a polynomial of degree d.

The set X of all possible points where observations are assumed to be located is the interval
[—1,1] (if not stated otherwise) and is called the design space. The variance of the random
term ¢ in (1.1) (which subsumes quite different sources of error) is assumed to be independent
of the specific point x, where the response Y is observed. This assumption is referred to in
the literature as the homoscedastic assumption. The goal of the experiment is to estimate the

unknown parameters 6, ..., 0 in the polynomial regression model, where n observations
Yj = fla;)"0 +¢; (G=1,...,n) (1.2)
at experimental conditions z,...,x, € X are available. The x; values are not necessarily

distinct, i.e. repeated observations at some x; are allowed, however all observations are assumed
to be uncorrelated, i.e.

o ifi=3j
E(gie;) = 1.3
(5:25) { 0 else. (13)
If the different responses and errors are collected in vectors ¥ = (Yi,...,Y,)T and ¢ =
(¢1,...,6n)T, then (1.2) and (1.3) can be conveniently written in matrix form
Y =X0+¢,
where
1 2 --- :U‘f
d
X = A L2 c Rnx(d+1)
1z, -2l



denotes the n x (d + 1) design matriz. The expectation and the dispersion (matrix) of the
random vector Y are given by (note (1.3))

E(Y) = X0 D(Y) = %I, (1.4)

where I,, denotes the n X n identity matrix.
For the estimation of the unknown parameters § from the observed data Y = (Yi,...,Y,)T we
restrict our considerations to linear unbiased estimates for #, which are estimators of the form

0, =LY (1.5)
where L € REUT*" ig a given (d + 1) x n matrix such that
E[f)=LX0 =10 (1.6)

is satisfied for all # € R¥*!. Obviously the condtion (1.6) is equivalent to the condition that the
matrix L is a left inverse of the matrix X, that is LX = I;,,. Note that the dispersion matrix
of a linear estimator (1.5) is nonnegative definite, i.e.

D(y) = D(LY) = o*LLT > 0,

and different linear unbiased estimators (specified by different matrices) can be compared by a
partial ordering. To be precise we define for symmetric matrices A, B € R4+Dx(d+1)

A > B if and only if A — B is nonngegative definite

1.7
A > B ifand only if A — B is positive definite (1.7)

The partial ordering defined on the set of symmetric matrices is called the Loewner ordering. It
is a well known fact in statistics that this dispersion matrix can be minimized (in the Loewner
ordering) with respect to all linear unbiased estimators 6y, for 6.

Theorem 1.1. For the linear model with moment assumptions (1.4) wtih rank (X) =d + 1,

the estimator X
eM = (XTX)7'XTY (1.8)

is the best linear unbiased estimator (BLUE) with respect to the Loewner ordering; that is,
oA XTX)™' = D(M) < D(b,) (1.9)

for all linear unbiased estimators 0 for the parameter 6.

Proof. From (1.6) we obtain LX = I for any L with E[LY] = 6. Then, since,
(XTX) !XT - D)((XTX)'XT - )T > 0
it follows that

(XTX) ' - LX(XTX) ' = (XTX)"'XTLT + LLT > 0.
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Since LX = I we have X
D) = o’LL" > o*(XTX)™".

Theorem 1.1. is usually called the Gauss Markov Theorem and the estimator g°M s called
the Gauss Markov estimator for the full parameter vector . We point out here that optimal
linear estimators for linear combinations of the components of § are simply obtained by taking
the corresponding linear combinations of the components of the estimator 6%M  Note also that
6CM is the well known least squares estimator, which is obtained by minimzing the function

> [~ >l
i=1 §=0

with respect to the choice of the parameters 6, ..., 0.

1.2 Optimal designs for regression models

Note that Theorem 1.1 gives a lower bound for the smallest possible variance of an estimator
of the form LY, which is given by
o* (X1 X)7,

where the matrix on the right hand side is defined by

1 ¢ e -+ ¢4
€1 C €3 " Cgyl
XTX = n " (1.10)
Cd Cd+1 Cd+2 "+ Cod
and
N
c;=— 7 7=0,...,2d.
] n sz ) .] 07 )
=1
Moreover the matrix X7 X depends on the design points 1, ..., z, chosen by the experimenter
and a reasonable question is, if the matrix (X7 X)~! can be further minimized (with respect
to the Loewner ordering) by an appropriate choice of the experimental conditions zj ..., x,.
Equivalently one could try to maximize X7 X as a function of the design points ..., z,.

However it can be proved [see Pukelsheim (1993), Chapter 4] that such a minimization or
maximization is not possible except in the case d = 0 of a constant polynomial, which is of
course not interesting from a practical point of view. The reason for these difficulties is that
the Loewner ordering on the set of symmetric matrices is not complete. Therefore it is common
practice to maximize real valued functionals of the matrix X7 X, where the functionals have
a particular statistical meaning. These functions are usually called optimality criteria in the
literature and we recall the most commonly used criteria here for the sake of completeness.



For a statistical interpretation of these criteria we refer to the books of Fedorov (1972), Silvey
(1980) and Pukelsheim (1993). The D-optimality criterion determines the points zy,...,z,
such that the determinant

IXTX| — max (1.11)
becomes maximal. Similary, the A- and E- optimality look for arrangements of the design
points such that

[tr(XTX)*l] - — max

Amin(XTX) — max

are maximal, respectively, where Ap;,(A) denotes the minimal eigenvalue of a symmetric matrix
A. For later purposes we finally mention the D;-optimality criterion, which determines the
designs points zy, ..., x, such that

-1
ea(X"X) ey  — max (1.12)

is maximal, where e¢; = (0,...,0,1) € R¥! denote the (d+ 1)th unit vector in R**. We begin
with a careful discussion of the D-optimality criterion and the particular example of the linear
and quadratic regression model.

Example 1.2. Consider the case d = 1 in (1.1), for which the polynomial regression model
reduces to the well known model of linear regression. The matrix X is given by

1 oy
x=|1 7] erme,
I
which gives
XTx — n Do T
i Z?:l i Z?:l xf

The Gauss Markov estimator for the parameters 6y and 6; is obtained from Theorem 1.1.

90 - Yn - 91fn

 _ Taln £~ Vo)
Z?:l(xi — Ty)?

where Y, = %Z?:l Y; and 7, = %Z?:l x; denote the mean of the observations and design
points, respectively. The covariance matrix is given by 02(X7X) ! and the D-criterion advises
the experimenter to choose observations at the points x, ..., z, such that the determinant

IXTX| = HZ(% — Zn)?
i=1
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is maximal. The D-optimal designs for the linear regression model have been determined by
Hofmann and Jung (1975). If the number of observations is an even number, say n = 2m, then
it is easy to see that the best choice for maximizing this determinant is to take half of the total

observations at each of the extreme points of the designs space X = [—1,1], i.e.
ry =...=x,=—1
Tm+1 ::.'L'Qm:]_

If an odd number of observations, say n = 2m + 1 is available, the situation is slightly more
complicated, but it can be shown that the best allocation is to take m observations at one and
the other m + 1 observations at the other extreme point of the design space, i.e.

L == Ty = —1
Tm+2 :...:.'L'Qm+1:1.

Thus for the D-optimality criterion and the linear regression model the determination of an
optimal design (in other words an allocation of the points x4, ..., x, such that the determinant
of the matrix X7 X becomes maximal) is fairly simple. Note that the optimal designs are
unique subject to a reflection at the origin.

We now consider the quadratic polynomaial regression model, for which the situation is more
complicated. The matrix X is given by

=N

|
X=1|:: 1| eR,

1z, x

N

n

which yields

n D Ti D T
XX = | YL o Yo Y, )
Do D wd Y, )
An application of the Cauchy Binet formula shows that the determinant of this matrix is given
by

XX = > (e — ) (o — ) (w5 — ),
1<i<j<k<n
which has to be maximized with respect to the choice of the design points z1,...,z, € [-1,1].

We will not give the explicit details of this maximization, but refer to the work of Gaffke and
Krafft (1982). For the solution of the optimization problem three cases have to be considered.
In all cases the optimum allocation is to take only observations at the points —1, 0 and 0 and
to allocate the observations at these points as equal as possible. More precisely, if n = 3m, we
use

T == a, = —1
Tm+1 ::xgm:()
Tom+1 ::l'gm:]_



for n = 3m + 1 and n = 3m + 2 the optimal allocations are given by

T, =...= 2, =—1
Tm+1 :...:£U2m+1:0
Tomiz = ... = T3y =1
and
T =...=Tpy = —1
Tm42 :...:£U2m+1:0
Tomiz = ... = T3mi2 =1

respectively. We finally mention that the optimal designs are unique subject to a reflection at
the origin.

We are now ready to formalize the illustrated optimization problems. To this end assume

that the distinct points among xy,...,z, are the points z1,...,2; (I < n) and let n; denote
the number of times the particular point z; occurs among zq,...,2, (i = 1,...,1). By this
procedure one obtains a probability measure ) on the design space X = [—1, 1] with finite

support {z1,...,7;} and mass n;/n at the point z; (i = 1,...,1). We call any probability
measure with finite support and masses which are multiples of 1/n an ezact design for sample
size n and summarize the information of such a measure in the matrix

The first row of this matrix gives the points in the design space X where observations have to
be taken and the second row tells the experimenter how many observations have to be taken
at these points.

Example 1.3. Consider the quadratic regression model in Example 1.2 and assume that we
can take n = 17 observations. The design

-10 1
’5(17>:<§ 5 g)
17 17 17

is the (exact) D-optimal design. On the other hand the design

-10 1
507):(3 7 i)
17 17 17

is also exact for sample size n = 17, but it is not D-optimal.



Example 1.4. Consider the D;-optimality criterion defined in (1.12) for the quadratic regres-
sion model. Using Cramers rule it is easy to see that the function in (1.12), which has to be
maximized with respect to the choice of the points z,...,x, € [—1,1] is given by

-1 _ Zl§i<j<k§n(xk - xj)Q(xk - xz‘)z(l"j - l"i)z

n Z?:l(xi — Tn)?

The maximization of this expression is somewhat complicated and we only state the result
which is due to Krafft and Schaefer (1995) in order to illustrate the difficulty of this concept of

F (XX

optimization. If n = 4p+¢, ¢ € {0,

1,3} and p > 1 (or p =0 and ¢ = 3) the D;-optimal design

SE‘n) is unique and given by
. —-101
) = 111 (n = 4p)
14 2 1
-1 0 1
5(4”1) B p_ 2+l _p (n=dp+1)
dp+1 4dp+1 4dp+1
-1 0 1
(1p+3) = —4p+3).
§(ap+3) pil 2pil ptl (n P+ 3)
4p+3 dp+3 4p+3

In the case n = 4p+ 2 the situation is substantially more complicated and there are two (exact)
optimal designs, namely

N =1 x(p) 1
§(4p+2) - ( p_ 2p+l  p+l (n=4p+2) (1.13)
4p+2  4p+2  4p+2
and its reflection at the point 0. Here xq(p) is the real root of the cubic polynomial
(2p + 1)%2° — 3(2p + 1)2* + (20p* + 20p + 3)z — 2p — 1. (1.14)

With the notation of an exact design, the matrix X7 X can be written as a Stieltjes integral

foj anf o) 7)) = 0y L f () ()
= /f )T (@)dE (@) = nM (&),

where fT(z) = (1,z,...,2%) denotes the vector of monomials up to the order d and the last
equality defines the (d + 1) x (d 4+ 1) matrix M(&y,). Note that if ¢; = [, 2°d&4,(z) denotes
the sth moment of the exact design &(,), then the matrix

M(Emy) =

X'x =

(1.15)

(CiJrj);'i,j:O



is the Hankel matriz of the design £(,). In general the maximization of a function of M ({s))
over the set of all exact designs is a highly nonlinear discrete optimization problem, which
can only be solved in rare circumstances similar to the examples presented above. For these
reasons the concept of optimization introduced so far has to be modified appropriately. One
main difficulty is that for a fixed sample size n the set of all exact designs for this sample size is
not convex. In the following we will slightly modify the definition of a design in order to make
the set of all designs convex.

Definition 1.5. An approximate design is a probability measure on the design space X with
finite support and an approximate design will usually be represented in the matriz form

wy e Wy

The set of all approximate designs is denoted by = and the matrix

M(E) = [ F@f @dse) = Y uif) ) (1.17)

CO C1 “ee Cd
C1 C2 --: Cdy1
Cd Cd+1 * - C2d

is called a moment matriz, information matriz or Hankel matriz, where ¢; = [, 2'd€(x) denotes
the 7th moment of the design &.

Note that the support points of the design &, say x4, ..., x;, give the locations where observations
have to be taken and the masses wy,...,w; give the proportions of the total observations
taken at the corresponding points. Obviously, an exact design for the sample size n is also
an approximate one but the converse is in general not true, because the weights in (1.16) are
not necessarily multiples of 1/n. Very often an approximate design is called a design for an
infinite sample size, because it arises from the exact design of sample size n when n tends to
infinity. However, for a finite sample size n the numbers w;n are not necessarily integers and
an optimal approximate design has to be approximated by an exact design for sample size n
using appropriate rounding procedures.

Example 1.6. Consider the quadratic regression (d = 2) for the sample size n = 17. By the
above discussion the approximate design arises from the exact design if the sample size tends to

10



infinity. Therefore observing the discussion in Example 1.2 the D-optimal approximate design
for the quadratic regression model on the interval [—1, 1] is given by

. (-1 0 1
&= 1/3 1/3 1/3

(note that this is not the common way of determining optimal approximate designs, because
in general the exact designs are not known and the concept of optimal approximate designs is
introduced in order to deal with the discrete optimization problem). From the approximate
optimal design we get by an appropriate rounding procedure an exact design for the required

sample size, e.g.
~ -1 0 1
San = ( 5T g)
17 17 17

By the same Example 1.2 the D-optimal exact design for sample size 17 is

-10 1
’5(17):(£ 5 i)
17 17 17

The performance of the design obtained from an approximate design and a rounding procedure
with respect to the D-optimal exact design (for the given sample size) is usally measured in

terms of the D-efficiency
. 1/3
| M (&am)
—_— ~99,07% ,
(|M(§(17))|

where 1/3 in the exponent corresponds to the number of unknown parameters in the quadratic
regression model. We note that the design obtained from the approximate design using a
rounding procedure is very efficient in the sense that the determinant of its information matrix
is close to the determinant of the information matrix of the D-optimal exact design.

Example 1.7. Consider the quadratic regression Example 1.3 where we are interested in
finding the D-optimal design, which maximizes

M
(62TM71(€)62)71 — | (5)2| (1.18)
where e, = (0,0,1)7,
Co C1 Co
M) = €1 C2 C3
Cy C3 C4

and ¢; = f_ll 2dé(z) denotes the jth moment of the design . We will show in Example 3.2
(in a more general context) that the optimum approximate D;-optimal design is given by the

measure
. ~101
é— - ( 1 ) .
I

11
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This means that the experimenter should take 1/4 of the observations at the points —1 and 1
and 1/2 of the observations at the point 0. If the sample size n is not a multiple of 4, a rounding
procedure is applied to produce an exact design for the sample size n. In order to compare
(exact) designs obtained by this procedure with the optimal exact designs §z‘n) of Example 1.4
we apply the following (simple) apportionment method. If ng is the closest integer to n/4 we

use the exact design
~ -1 0 1
Sm = (m 1 — 2mo m)
n n n

as approximation of the optimal design £* (if there are two integers with the same distance to
n/4 we define ng as the smaller one). Whenever n # 4p + 2 the design &,y coincides with the
optimal exact design 5* of Example 1.4.

It is reasonable to compare the performance of the two designs §4 +2) and £(4p+2) by the ratio

: (GZTM_1(5(4p+2))62)_1
7"(54 2, & ) = 1 e# 1
(4p+2)> S(4p+2) (eTM 1(5(4p+2))62) 1

The following table contains these ratios and the solution zy(p) of the equation (1.14) for
different values of p

P IR 2O N T I -
n 6 10 14 [ 18 | 22
wo(p) 0.0707 | 0.0408 | 0.0289 | 0.0224 | 0.0183

r(£(4p+2),fz‘4p+2)) 0.9327 | 0.9759 | 0.9877 | 0.9925 | 0.9950

We note that there appear only minor differences between the exact design é(n) (constructed
by an approximation to the optimal approximate design) and the optimum exact design fz‘n)
(constructed by integer optimization). Thus the approximate design approach provides an
efficient solution of the exact design problem.

A general result in statistical design theory [see Pukelsheim and Rieder (1993)] shows that under
assumptions of differentiability the loss of efficiency by using an exact design obtained from an
optimal approximate design by an appropriate rounding procedure is of order O(%), where n
denotes the sample size. Thus for reasonable sample sizes the concept of approximate designs
seems to be justified in the sense that the application of an appropriate rounding procedure to
the optimal approximate design yields efficient designs for the given sample size. We will use
this concept thoughout the remaining part of this paper.

1.3 D-optimal approximate designs for polynomial regression

Comparing the formulas (1.15) and (1.17) it seems to be appropriate to call an approximate
design D-optimal if it maximizes the determinant

£)| = ‘(/ 2 de( )) L 0‘ - max (1.19)

12



in the class of all designs =. This problem was solved simultaneously by Guest (1958) and Hoel
(1958). Note that the optimization problem is now convex, which makes the optimization a
little easier. However, the maximization problem in (1.19) is still an infinite dimensional one,
because we do not have any information regarding the number of the support of a D-optimal
approximate design (we only know that it has finite support). The following result gives
a characterization of the D-optimal approximate design and is due to Kiefer and Wolfowitz
(1960). As a by-product it provides an upper bound for the number of support points of the
D-optimal approximate design in a polynomial regression model. As a consequence we are able
to reduce the infinite dimensional optimization problem to a finite dimensional one.

Theorem 1.8. equivalence Theorem for D-optimal designs) An approzimate design £* is D-
optimal for the polynomial regression model if and only if the inequality

d(z, &) = fTa)M (&) f(z) <d +1 (1.20)

holds for all x € [—1,1]. Moreover, there is equality in (1.20) at all support points of the
D-optimal design £*.

Proof. For a concave function ( in other words an optimality criterion) ® : £ — ®(§) € R
on the set = of all approximate designs define the Fréchet derivative of ® at the design &; in
direction of & by

Fa(6, &) = lim ~{2((1 - )6 +26) — 2(6)}.

Note that the limit exists, because the concavity of ® implies that the expression

1
H§1,§2(6) = g{q)((l - 5)&1 + 5&2) - @(61)}
is decreasing with £ > 0 . Now, if £* maximizes the function ®, then we obviously have
O((1—e)f" +e§) — @) <0 VEEE,

which implies
Fp(€%,6) <0 VEeE=. (1.21)

On the other hand, if (1.21) is satsified, it follows observing that Hg, ¢,(¢) is decreasing with ¢
that

(§) — (&) < Fo(8,6) <0 VEEE,

which means that £* maximizes ®. In other words £* maximizes the function ® if and only
if (1.21) holds. If we choose £ = §, as a Dirac measure at the point z € [—1,1], then the
optimality of £* implies that

Fo(€*,6,) <0 Vzel[-1,1] (1.22)

13



On the other hand observe that the Fréchet derivative is linear with respect to convex combi-
nations of the second argument [see e.g. Silvey (1980)], i.e

k k k
F<I> (6*,2_1:)\l5$1) — z_;)\qu)(f*,émz)a 4 )\1, .. .,)\k > O,Zl:)\z = 1;

then we obtain from (1.22) the relation (1.21). This shows that (1.21) and (1.22) are equivalent,
and consequently a designs £* maximizes the function ® if and only if the inequality (1.22)
holds. All what remains is the calculation of Fréchet derivative for the D-optimality criterion.
It actually turns out that the function & — |M ()| is not concave. However the function
O(&) = log |M(&)| is concave on the set of all approximate designs [see Fedorov (1972)] and
taking the logarithm does obviously not change the optimization problem. For this function
we obtain by a straightforward calculation for all x € [—1,1]

Fy(61,00) = tr(M(,)M (&) — (d +1)
= tr(f(2)fT(@)M (&) — (d+1)
= fH(x)M~ (&) f(2) — (d+1),

which completes the proof of the first part of Theorem 1.8. For the proof of the second assertion
regarding the support points of the D-optimal design, let £* = Zle Aidz, denote the D-optimal
design. Then it is easy to see that

0= Fy(E",€) Zu«u 6r) <0,

where the last inequality follows from the inequality (1.22). But this implies
Fo(§5,0z,) = 0 Vay,
which is equivalent to the equation
fra)M™HE) fla) = d+1

for all support points z; of the D-optimal design £*. O

It is worthwhile to mention that the characterization of the optimal design given in the previous
theorem does neither depend on the particular regression model (here the polynomials) nor on
the specific optimality criterion (here the- D-optimality criterion). All what is required is
Fréchet differentiablity of the (concave) function ® and a few regularity assumptions on the
regression model. For more general characterizations avoiding differentiability assumptions for
the optimality criterion we refer to the monograph of Pukelsheim (1993). We will now illustrate
the application of Theorem 1.8 in the quadratic regression model.

14



Example 1.9. Consider the quadratic regression model (d = 2) and the two designs

, (-1 0 1 w [-1 0 1
£_<1/3 1/3 1/3)’ : _<1/4 1/2 1/4)' (1.23)

The corresponding moment matrices are given by

1 0 2/3 1 0 1/2
ME)=| 0230 |, ME)=] o0 1/2 0 |;
2/3 0 2/3 1/2 0 1/2

and the functions d(-, -) are easily calculated as
d(z,§) =3(2— 32 +32*)

These functions are depicted in Figure 1. By Theorem 1.8 the design £* is in fact D-optimal and
the design £** is not D-optimal (we will show later that the design £** is in fact the D;-optimal

d(z, &%) =2 — 227 + 42*

design, see Example 3.2 below).

\ 3.5} j

- ~
- ~

s R L)

Figure 1: The function d(x, &) defined in (1.20) in the quadratic regression model for the designs
£ and & given in (1.23). The design is D-optimal if and only if the curve stays below the line

y = 3. Solid line: design £*; dashed line: design £**.

We now have all tools for determining the approximate D-optimal design for the general polyno-
mial regression model of degree d. Recall that for the general model the function d in Theorem

1.8 is given by
d(z,€) = (1,...,a )M H(€)(L,...,a")",

15



which is obviously a polynomial of degree 2d. By Theorem 1.8 a design £* is D-optimal for the
polynomial regression model of degree d on the interval [—1,1] if and only if

o d(z,&) <d+1 Vuae[-11]
o d(z,6*)=d+1 VY€ supp(£)

Moreover, the matrix M (£*) is positive definite and this implies that the leading coefficient of
the polynomial d(x,£*) is also positive. Now a careful counting of the zeros with corresponding
multiplicities shows that the D-optimal design has at most d + 1 support points and if its
support has d + 1 points it must contain the extreme points of the design space, i.e. —1 and 1.
On the other hand we need at least d + 1 support points in order to have a nonsingular matrix
M (£*), which implies

#supp(§) = d+1
{=1,1} C supp(&").

Now let

g ... Xy
&= ;o= —Lizg=1
Wy ... Wq

denote the D-optimal design and observe the representation

1
M(g) = / @) )de” (o)
" 2 wirf !
Bt Bt By,

> w;xd ) wixfﬂ DY w;z??

where the matrices X € RUTDX(+D) and W € READXA+D are defined by

1 ...1 Wy
Ty ... X¢q w1
T _ —
X = ) , W =
d d
:L.O “ e Id wd

(all other entries in the matrix W are 0). A straightforward calculation shows that
d
M) = [XPW] = JJw J] (@i—a)* (1.24)
i=0  0<i<j<d

and this expression has to be maximized with respect to the choice of the weights wy, ..., w, €
(0, 1) (subject to the constraint Z?:o w; = 1) and the support points —1 = 2y < 21 < ...241 <
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xq = 1. A straightforward optimization with respect to the weights w; shows that these have

to be all equal, i.e.
1

T d+1
The determination of the optimal support points xq,...,x4_1 is more complicated but can be
performed following the arguments given in Szeg6 (1959). Taking partial derivatives of the
logarithm we obtain from (1.24) the system of equations

0 T 212 2
0 = a—mlogH(l—xi) H (z; — )

i=1 1<i<j<d—1

=0,1,...,d.

w;

(1.25)

-y 2 o a1

- 2
Tp — T; 1—z
i%k k i k

Let f(z) = Hj:(x — x;) denote the polynomial of degree d — 1, which vanishes precisely at
the points zy,...,x4 1 then it is easy to see that (1.25) gives

0= f'(xk)  Awy
fllag)  1—aj

Because f is a polynomial of degree d — 1 these equations provide a differential equation for
the polynomial f, that is

(1—2%)f"(z) —dzf'(x) + (d = 1)(d +2) f(z) = 0,

where the factor of f(x) is obtained by comparing leading coefficients. It is well known that
the only polynomial solution of this equation is given by the Jacobi polynomial

f(@) = Pt ()

which is proportional to the derivative of the Legendre polynomial Pj(x) [see Szeg6 (1959)].
We summarize these results in the following Theorem.

k=1,...,d—1.

Theorem 1.10. The D-optimal design for the polynomial regression model of degree d on the
interval [—1, 1] has equal masses at the roots of the polynomial

(1 - 2%)Py(a),

where Py denotes the dth Legendre polynomial orthogonal with respect to the Lebesgue measure
on the interval [—1,1].

2 Canonical moments: simple properties and first appli-
cations

In the previous section we used the equivalence theorem to reduce an infinite dimensional
optimization problem to a finite one. The solution of the resulting optimization problem could
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be characterized by a differential equation for a polynomial, which had the support points of
the D-optimal design as its roots. In this section we will use a more direct approach, which does
not require the reduction of the optimization to a finite dimensional maximization problem.
Note that the information matrix in the polynomial regression model of degree d is given by
the Hankel matriz

CO Cl oo Cd
1 C - Cdp

M(f) = )
Cq Ca+1 ' Coq

where ¢; = [, #'d{(x) is the ith moment of the design £&. Moreover, because the interval under
consideration is compact, any design is determined by its moments. Thus formally any function
of the matrix M (&) defined on the set of all approximate designs = can be written as a function
on the moment space

My = {(cl,...,CQd)|ci:/xid§(x),i:1,...,2d; §€E};
x

that is

Q(M(E)) = @(ery.-- ) , (2.1)

for an appropriate function ® : My — R. In other words, the determination of the D-optimal
design corresponds to a constrained non-linear 2d-dimensional maximization problem.

2.1 Canonical moments

The problem of characterizing the moment points in the moment space My, is known as the
Hausdorff moment problem and can be solved by using the Hankel determinants

Co *** Cm Co—C ' Cm— Cmyl
H,,= Homi1=
Cm *° Com Cm — Cm41 *°° Com — Com41
(2.2)
Co+cC1 r Cp Tt Cpy Co—C2 ' Cm—1 — Cmtl
ﬂ2m+1: : : H?m =
Cm + Cmy1 = Com + Comt Cm—1 = Cm+1 " Com—2 — Com
(m=0,...,d). We will use the following characterization to define a one to one mapping from

the moment space Moy onto the unit cube [0, 1]??. For a proof of the following theorem we refer
to Shohat and Tamarkin (1943) or Dette and Studden (1997).

Theorem 2.1.

(i) (e1,-..cn) € My, if and only if H, and H; are nonnegative for i =1,...,n.
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(ii) (c1y...cn) € IntM,, if and only if H, and H; are positive fori=1,...,n.

For each sequence of moments ¢ = (¢, ¢a, .. .) let
N=N(c)=min{n e N| (¢1...¢,) € OM,} (2.3)

denote the minimum integer such that (¢y,...,cy) is on the boundary of the Nth moment space
My. If (c1, ..., ¢y) € IntM,, for all n > 1, define N(c) = oo while N(¢) = 1if ¢; € dM;. Thus
(c1y...,c) € IntMy, for k < N(c) and (cq,...,cn) € OMy and, of course, (ci,...c;) € OM;
for k > N + 1 (see the previous theorem). For a given sequence of moments ¢ = (¢, ¢1, ¢a, . . .)
of a probability measure p on the interval [—1, 1] we now define for each n € N,

1

Cro = max{ / " dn(z) ‘77 prob. measure with c¢; :/
-1

1

lxjdn(x) Vi=1,...,n }
(2.4)

2 dn(z) ijl,...,n}

1

= min{ / 2" dn(z) ‘77 prob. measure with ¢; :/
—1

-1

1

as the maximum and minimum of the (n+ 1)th moment over the set of all probability measures
n whose moments up to the order n coincide with the given moments (cy, ..., ¢,). The canonical
moment sequence is then defined for k£ < N(c¢) by

Cr — C;.
Pr = pk(c) — + k_a
Cp — C

(2.5)

where ¢, and ¢ are defined in (2.4). Note that the canonical moments vary in the interval
[0,1]. Moreover, if N = N(c¢) < oo, then p; € (0,1), 1 < j < N and py is either 0 or 1. It is
easy to see that this mapping is one to one [see Dette and Studden (1997)] and consequently
any probability measure on the interval [0, 1] is uniquely determined by its canonical moments.
We finally mention that canonical moments were introduced in a series of papers by Skibinsky
(1967, 1968, 1969, 1976, 1986) and are also implicitly mentioned in the work of Karlin and
Shapeley (1953).

Example 2.2. We briefly discuss the calculation of the first two canonical moments. For the

first canonical moment we observe that ¢ = 1, ¢;, = —1 and obtain by definition (2.5) that
C1 + 1
p1 = 5

The calculation of the second canonical moment is slightly more complicated. Note that ¢; €
Int M, if and only if ¢; € (—1,1). Because the variance of a random variable is nonnegative
and the second moment is bounded by 1 we have ¢; = 1 and ¢, = ¢?, which gives for ¢; € (0,1)

2
= 5 -

b2
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Conversely, we can express the second moment ¢, in terms of the first two canonical moments
p1, p2 and obtain ¢; = 2p; — 1
2 = dprqipz + (2p1 — 1)%, (2.6)

where ¢ =1 — p;.

2.2 Simple properties

The above definition provides a one-to-one map, say 7', from the moment space

onto a set S defined by
s = (Us) U s (2.7)
k=0

where
Soo = {(P1,p2,.-.)[0 < p; <1, forall i > 1}

and for £k >0

Sk:{(pla"'apkapk-l-l)|0<pi<]-, ].Slék, pk+1:00r1}.

Any ¢ € Int M corresponds to some point in S, while for any sequence of canonical moments
p = (p1,p2,...) € Se the corresponding sequence ¢ = (¢p, ¢g,...) can be defined successively
from (2.5). Therefore it is evident that 7" maps IntM onto Sy, in a one-to-one manner. Simi-
larly, each (pi,...,pn) is uniquely determined by (¢q,¢s, ..., ¢,). In the following we list a few
interesting properties of canonical moments. For a proof see Dette and Studden (1997).

Simple properties 2.3.

e the canonical are invariant under a linear transformation of the corresponding measure
and interval.

e the design & is symmetric if and only if pa 1 = 1/2 for k> 1 and 2k — 1 < N(c).

o pr. = 0 if and only if ¢, = ¢ ; pr = 1 if and only if cx = ¢ ; in both cases (cy,...,c;) €
OM; for all 7 > k and the corresponding design & has finite support.

e pog = 1 if and only if #supp(&) =d+1 and {—1,1} C supp(§)

® pogio = 0 if and only if #supp(§) = d+ 1 and supp(§) C (—1,1)

® paay1 = 1 if and only if #supp(§) =d+1 and 1 € supp(§), —1 ¢ supp(§)
(

e pogr1 =0 if and only if #supp(§) =d+ 1 and —1 € supp(§), 1 ¢ supp(§)
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In general the problem of calculating the canonical moments of a given measure £ is very com-
plicated if definition (2.5) is used directly. As more efficient method we present a representation
of the canonical moments in terms of Hankel determinants.

Theorem 2.4. For all 1 <n < N(c)

where o, = 1 if n 1s even and o = % if no1s odd.

Proof. We consider only the case n = 2d even and the representation of pyy. We show
Coa = Coq = Hoy/Hoy s, 33— 2a = Hza/Hoas (2.8)
which implies by the definiton of ps,

H, Hyy
pra = =222 : (2.9)
HyyHog o+ HogHoy o

where H | = H ,=H 0= Hy = 1. The assertion now follows from the identity
ﬂgd_1H2d—1 = ﬂQd_QHZd + de—2ﬂ2d )

where the proof of this identity is complicated and can be found in Dette and Studden (1997).
To obtain the expression for cyq — ¢y, in (2.8) we note again that H,; would be zero if we
replace cyq by ¢y, (note that (ci,...,caq-1,Cyy) € OMsq which implies H,; = 0, by Theorem
2.1). Then writing caq = ¢y, + (coa — ¢5,) for the last element in the determinant H,, gives
H,, = (c2a — ¢5y)Hoy 5. The value of ¢, — caq in (2.8) is verified in a similar manner. 0

Example 2.5. Let £,3 denote the Beta distribution on the interval (0,1) with density

2P (1 —2)® 0<z<l1 (2.10)
where «, 5 > —1 and

B(p,q) = /0 2?11 —2)7 e = (p,q > 0) (2.11)

denotes the Beta-integral and I'(-) the Gamma function (see Johnson and Kotz, 1970). The
ordinary moment of £, are

S B(f+1+j,a+1) T(B+j+1) I(a+p5+2) S
T TBB+La+l) DB+l Dla+f+2+j) ‘<
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The canonical moments of the Beta distribution on the interval [0, 1] were first determined by
Skibinsky (1969). This author showed that the canonical moments of the measure .4 are given
by
J B+ :
. = >1. 2.12
2j+14+a+p Pt = oivayp 77 (2.12)

An alternative approach using the hypergeometric series of Gauss (1813) can be found in
Dette and Studden (1997). Because canonical moments are invariant with respect to linear
transformations of the underlying interval, the Beta distribution on the interval [—1, 1] has the
same canonical moments.

Note that py;_; = 1/2 if and only if @ =  which means that {,s is symmetric with respect
to the midpoint 2 = 1/2. Two special cases should be mentioned. For a = § = 0, £,p is the
uniform distribution on the interval [0, 1] and the canonical moments are given by

P2; =

k 1
P2k %+ 1’ D2k—1 5 =
For a = = —1/2, £,5 gives the arc-sine distribution with canonical moments p, = 1/2 for all

k. This indicates that the arc-sine distribution with density

1
W(-1/2,-1/2)(T) = m 0<z <1

has moments in the center of the moment space. ~We mention once again that the uniform
and arc-sine distribution on the interval [—1, 1] have the same canonical moments as the corre-
sponding measures on the interval [0, 1].

Example 2.6. The Binomial distribution £p is given by the mass distribution

N
b(xz; N,p) = <m>pﬁ”(1—p)NQD xr=0,1,...,N

where p € (0,1) and N € N. The ordinary moments of {g are somewhat complicated and are

given by
¢ = Z(j;[)pw(l—p)]vwxr = N'Z%p’ (r>1)

=0 j=0

where S(r, j) denote the Stirling numbers of the second kind defined by

S(r,j) = %Z(—l)j’“ (i) K<)

(see Johnson, Kotz and Kemp, 1992). The canonical moments of the Binomial distribution
have a much simpler form and were obtained by Skibinsky (1969) as

p2j71:p7 pZ]: j:1,2,,N

J
N
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They are calculated with reference to the interval [0, N] or alternatively on [0, 1] by moving
the mass b(x; N, p) to /N for x = 0,1,..., N. Note that the sequence of canonical moments
terminates at poy = 1, which reflects the fact that the Binomial distribution is supported on a
finite number of points.

We finally note that the canonical moments also appear in the sequence of orthogonal poly-
nomials with respect to the measures d€(z), (1 + z)d&(z), (1 — x)dé(x) and (1 — 2?)d€(x) [see
Dette and Studden (1997)].

Theorem 2.7.
(i) The monic orthogonal polynomials on the interval [—1, 1] with respect to the measure d&(x)
satisfy the following recursion formula R_,(y) =0, Ry(y) = 1)

El(y) = y+1_2p1 )
R, . (y) = (y+1—=2¢n-1P2m — 2¢omPom+1) R, (y)
_4Q2m72p2m71q2m71p2mﬂm—1(y) m Z 1

(ii) The monic orthogonal polynomials on the interval [—1,1] with respect to the measure
(1 — 2?)d&(x) satisfy the following recursion formula S_1(y) =0, So(y) =1,

§m+1(y) = (y+ 1 —2poamt1@em+2 — 2P2m+2@2m+3)Sm (V)
—4ApomQom+1P2m+192m+2m—1(Y) m > 0

Note that if the measure £ is symmetric about zero then we have po;yy = 1/2, 4 > 0. The
polynomials R, and S,, orthogonal with respect to the measures d¢ and (1 — y?)d¢ are even
or odd functions according as m is even or odd. The corresponding recursion equations are
particularly simple and given by

Eo(y) =1, El(y) =Y,
R, (y) = yR,(y) — em—202m B () m > 1

Sm+1(y) = ysm(y) _p2mq2m+25mfl(y) m Z 1

2.3 Canonical moments and D-optimal approximate designs

The following result shows that the function ® in (2.1) has a surprisingly simple representation
in terms of canonical moments. This transfers the constrained optimization problem on the
space Msy to an elementary maximization problem on the unit cube [0, 1]
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Theorem 2.8. If £ is a design on the interval [—1, 1] with canonical moments py,ps, ..., then

CO Cl ... Cd
d
€1 C2 - Cd41 dld dei
|Maa(§)] = Hyy = | . . S| = 20 [[(2-epoj-12i-1pe)
Do : e
Cd Cdy1 -+ C2d

(gj =1—pj;q0=1).

Proof. The assertion follows from Theorem 2.4, which shows that

EQd = p dﬂzd_1ﬁ2d71 H2d73
_— pu— 2 i —_—
Hyy s Hyy s Hag 2Hoq 3
= 2G2q 1p2dﬂ2d_1 = 4¢24-2D2d- 1G24 1p2dﬂ =
Hyy s Hyyy
d
=.. =24 H q2j—2P25-142j-1P2;-
7=1
Observing H, = 1 and
d
H,;
Hyy = H H ’
o1 22
we obtain the assertion of Theorem 2.8 by a straightforward calculation. a

The maximization of the determinant of M () in terms of canonical moments is now straight-
forward. Observing that the canoncial moments vary independently in the interval [0, 1], we
obtain from Theorem 2.8 the following corollary by a direct calculation.

Corollary 2.9.The D-optimal design for the polynomial regression model of degree d has canon-
tcal moments ) i i1
P2ir = 5 P2 = —;j)’ j=1,2,...,d. (2.13)

Note that in principal Corollary 2.9 solves the D-optimal design problem by characterizing the
optimal design in terms of its canonical moments. However, for applications it is necessary to
know the support points and weights corresponding to the measure determined by the sequence
(2.13), because these give the locations where the observations are taken and the proportions of
the total observations to be taken at these locations. For the determination of these quantities
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we consider the Stieltjes transform of the measure ¢ and its corresponding power series and
continued fraction expansion, i.e.

/1 du(z) = ¢ L] 2p 2qip2]  2qeps|

P z+1 |1 [z+1 |1

IZ—QL‘

(2.14)
j=0
The first equality follows from the theorem of dominated convergence and a series expansion of
the integrand on the left hand side. The second expression can be derived by the correspondence
between power series and continued fractions [see Wall (1948) or Perron (1954a,b)] and some
generalizations of Theorem 2.8 for the determinants H,; ,, Hoy_ 1 and Hyy. An alternative
proof can be found in Dette and Studden (1997). The continued fraction in (2.14) converges
uniformly on compact sets K C C with positive distance from the interval [—1, 1]. However, in
the case pyg = 1 which is of interest here, the Stieltjes transform is in fact a rational function

H(z) = /_1 dp(z)

12—.1'

- L) 2p)  2qip2|  2¢ep3| _ 2qpa-1p24
|z +1 |1 |z +1 |1 241
:,L‘_’ﬂ_ P2 _,q_2[_ _ 2qaa—2|  Pad |
z4+1 1 241 1 A 241

Aq(2)

Bd+1(z) ,

where the second equality is derived under the assumption of symmetry (i.e. pg;_1 = % for all
i=1,...,d)and A, and By, are polynomials of degree d and d+ 1, respectively. Consequently
we obtain for the support and the weights of the D-optimal design

supp(§) = { z € C| Bayi(2) =0},

(2.15)

(2.16)

£(r) = lim H()(z — 1) = —2t&)

- Vz € supp(§),
2T Bd+1 (x)

and all what remains is the calculation of the polynomials A; and Byy;. For that purpose we
use the represenation of the partial numerators and denominators of a continued fraction

a; as an | Ay
b —|—/b—1‘ + /b—gl + ...+ b B, (2.17)

in terms of continuants defined by

bp -1 0 --- 0 O

ap by =1 --- 0 O

An:K< a; ... Qy, ) — 0 ag by --- 0 0
bo by ... by, R I :

0 0 0 b,—1 —1

0 - a, b,
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bp =1 0 --- 0 0

ag by =1 .-+ 0 O

Bn—K< s an) _ |0 s b 000
by by br, Do K

0 0 0 c by —1

o 0 0 --- a, b,

For the polynomial By, in the denominator of (2.15) we therefore obtain

Bt

2 —q2
(2* = 1)K (1

(22 - l)Qd—l(z)a

-1 _ _
- K P2 q2
z+1 1 z+1

—DP2
1

—d4

z+1

—(q24—2 —P2d
. 1 z+1

—q24-2 —P2d—2
. 1 z+1

where the last line defines the polynomial ();_; and the second identity follows by a tedious
calcluation of the corresponding determinants and an induction argument [see Dette and Stud-
den (1997), Section 2.5]. An expansion of the last determinant now give a recursive relation
for the polynomals Q;(2), i.e. Qo(2) =1, Q:i(2) = 2z and

Qj+1(z) = ZQ](Z) - ‘J2d—2jp2d—2j—2Qj—1(Z)

7(j+2)
(27 +1)(27 +3)

= 2Q;(2) — Qj-1(2) ,

where we used the representation in Corollary 2.9 for the canonical moments of the D-optimal

dAesig>n. Comparing this recursion with the recursive relation for the monic Jacobi polynomials
Pj(l’1 (2) [see Chihara (1978)]we obtain that

A (1,1
571)(3) .

A similar calculation shows for the polynomial A; in the numerator

Qd—1(Z) =

Aa(z) = PPO(2),

where ]5050’0)(2’) is the monic version of the Jacobi polynomial PUEU’O)(Z) on the interval [0, 1]

(in other words the monic version of the Legendre polynomial P;). Observing that Pﬁ})(z) is
proportional to the derivative of P; we obtain for the support points of the D-optimal design

supp(§) = { 2| (2* —1)P4(2) =0 }
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and for the weights at the support points xy, ..., x4

_ M) _ P ()
) =g T 21\ pid
7 Bii1(2)]=a; (22 = )Py (2)|2=a;
_ P () _ 1
(d+ 1)]550,0)(2”2:% d+1

where the third identity follows from a standard identity for the Jacobi polynomials [see e.g.
Szegd (1959)]. Note that this provides an alternative proof of Theorem 1.10 based on the theory
of canonical moments.

2.4 Asymptotic distribution of zeros of orthogonal polynomials

A further application of the theory of canonical moments consists in the maximization of
generalized Hankel determinants, which are determinants of matrices of the form

MeA(E) = | / (1= 2)™ (1 + 2) o de ()] (2.18)

-1 1,j=0

where o, 5 > —1 are given constants. In the statistical context this corresponds to the covari-
ance matrix in a polynomial regression model with an heteroscedastic error structure, where
the variance at the point z is proportional to (1 — ) ® 1(1+x) ! [see Fedorov (1972)]. The
following theorem was proved by Studden (1982) using an extension of the theory described in
the previous section.

Theorem 2.10. The canonical moments of the design mazimizing the determinant of the
matriz M@ (€) defined in (2.18) are given by

so= d=J =1,...,d
Py = 5@ +itarp T
(2.19)
. B+d—j+1 .
Paj—1 = j=1,...,d

2d—j)+2+a+p
and the corresponding design & satisfies
supp(€)) = {x | Py (x) = 0}

i) = & Vo€ supp(€)

where Pd(a’ﬁ) (z) denotes the dth Jacobi polynomial on the interval [—1,1].

Note that the solution of the maximization problem for the determinant of the matrix in (2.18)
yields to a uniform distribution on the zeros of the dth Jacobi polynomial Péa’ﬁ) (). The
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asymptotic behviour of this distribution with increasing degree has been of some interest in
approximation theory [see e.g. Van Assche (1987), Gawronski (1993), Bosbach and Gawronski
(1998), Faldey and Gawronski (1995), Dette and Studden (1992, 1995), Dette (1995¢), Kuijlaars
and Van Assche (1999)]. In the next theorem we state a typical result in this area and present
an elmentary proof based on the theory of canonical moments. For a motivation note that for
d — oo the canonical moments defined in (2.19) satisfy

1
limp; = - , VjeN.
s =g Ve
By Example 2.5 the measure on the interval [—1,1] corresponding to the limit sequence of
canonical moments is the arc-sine distribution with densitiy

1 1

Avisa )

Because this distribution is determined by its moments and the mapping between canonical
and ordinary moments is one to one and continuous, it follows that the uniform distribution
on the roots of the Jaobi polynomials converges weakly to the arc-sine distribution, that is

m N = Jim Me<a o) = L[4
Jm Ng(w) = fm gz s e[ B = 2 e

for all z € [—1,1]. The following result generalizes this statement to Jacobi polynomials with
parameters «g, 34 depnding on the degree d of the polynomial.

Theorem 2.11. Assume that
0y . Ba

d—oo, lim——a, lim — —0b,

d—00 d—00

where a,b > 0, then

1
thadﬂ@d)(x) ‘— lim E{Z S xT | Pd(ad7/3d)(z) = 0}

lim
d—o0 d— o0

1—1¢2

2+a—|—b/‘” \/(rg—t)(t—rl)dt
2m - ’

where

b —a?+4y/(a+1)b+1)(a+b+1)
(24 a+0b)?

o =

Proof. By the preceding discussion the canonical moments of the uniform distribution on the
set

{2 | P\ (2) = 0}
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satisfy

. . . d—1 1
P = S N T aut Patl  2a+b
(2.20)
lim pt . = lim fa+d—i+1 _ b+l _,
doo” 271 4500 2(d — 1) + 2+ 24 + By 24+a+b

The identification of the corresponding measure is a little complicated. To be precise consider
at first the measure £9" on the interval [—1, 1] corresponding to the sequence

pj—2 = g€ (0,1) j €N
P4 = h € (0, 1) j €N (221)
pgjfl = 1/2 ] € W

The continued fraction expansion of the Stieltjes transform

S(z,€") = /_ 11 Poul)

z— T

is obtained by an even contraction [see Perron (1954a)] from (2.14) and is given by

. H H )h| |( Zh)g|_|(1—zg)h|_
:,;——gl_g(z%—g;h‘_|22/in|_|22/in|_

where second identity follows from a further even contraction [see Perron (1954a)] and the
constants 7 and p are defined by

= g(1=h)+h(l —g)

=

(2.22)
p=g(l—g)h(1—h)
We find that
1| m p
H(z) = — - —
Sl e P R
2k /4] /4]
(2=n)/2ym 2 —n)/2yn (2 —n)/2yB
N ot BN Gk
ViE\ 2y 4p ’
where the branch of the square root is defined by
2 _ 2 _ )2
con_ JE=w Gy (2.23)
21 4p
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Thus it follows that

7> —g—g(1—g)hH(2)

S(z,6%") =

(2.24)

1 (1—=2h)2" + (h—g) — /(22 —n)* — 4

2h 2(1 — 22) ’

where the branch of the square root is defined by (2.23). For the identification of the corre-
sponding probability measure we use the inversion formula for the Stieltjes transfom [see e.g.
Dette and Studden (1997), Chapter 3].

Because S(z,£9") can be extended from the lower half plane to a continuous function in a
neighborhood of any ug € (—1,1) \ {0} it follows that the absolute continuous part of £9" is

given by
1 \/4N_(x2_77)2 2
I — 2 2.25

where n = g(1—h)+h(1—g), p = g(1—g)h(1 —h). Jumps of £%" are only possible at the poles
of S(z,&9"). We investigate the situation at z = 0, the other cases are treated similarly. If
g = h it is straightforward to show that S(z,£%") has in fact no pole at z = 0 and consequently
£9h({0}) = 0 in this case. Observing the definition of 7 and u in (2.22) we see that h # g if
and only if n? > 4p. For 2 = —iv and sufficiently small v this determines the sign of the square
root in (2.23) to satisfy R(,/~) < 0. Now Theorem 3.6.5 in Dette and Studden (1997) yields

&({0}) = limIm S{o S(=iv, €7}

—1\n2 _ 5 7 _
— bmm {(2h 1)v +(h' 9) ++/(v2+n) 4u}
v—0 —i2h(1 4 v?)
_h—g+lh—gl _ [(h=g)/h if h>gyg
B 2h N 0 if h<yg

Similary, it can be shown that in the case ¢ + h > 1 the measure £9" has additional masses
(9 +h —1)/2 at the points —1 and 1. Now note that for the specific choice in (2.20) we have
h < gand g +h < 1. Consequently, there is in fact only an absolute continuous part of &,
given by (2.25). In other words, the measure £%" corresponding to the sequence

1 1 1 1

-0, =h =,9,=,...
27g727 7279727

on the interval [—1,1] is absolute continuous with density given in (2.25). By Theorem 1.3.5
in Dette and Studden (1997) the measure £ corresponding to the sequence in (2.20) on the
interval [0, 1] is related to £9" by £9"([0, z]) = £9"([—+/z, /7]). Therefore the density of £ is

given by
1 Vip—(x — 1)
h(z) = a D el —

(x
2hr z(1 —x)

N < 2/n} . (2.26)
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Because all zeros of P{"""")(z) are located in the interval (—1,1) the limit distribution ¢ satisfies

supp(§)C (—1,1). Now ¢ is induced through £9" by the linear transformation y = 2z — 1 and
the assertion follows by transforming the density in (2.26) onto the interval [—1, 1]

dé 1 oy+1 1 /16p— (y +1—2np)?
= = Zp = 1 1—-2n| <4
and observing that 2n — 1+ 4,/j1 = r1. O

3 Discrimination designs and extremal problems for poly-
nomials

3.1 Discrimination designs

So far it has been assumed that the linear model (1.1) is known by the experimenter. As
pointed out by Anderson (1962), Atkinson and Cox (1974) or Spruill (1990) there are many
applications, where precise knowledge about the form of the regression function is not available
and the analysis of the data is performed in two steps. In the first step the data is used
to identify an appropriate regression model and the second step might consist of performing
some statistical analysis in the determined model. For example, if a cubic regression model
is assumed by the experimenter, the results of the experiments will typically be used to test
whether a quadratic model would be more appropriate. In this case “good” designs have to
address at least three different tasks: 1) the problem of testing the hypothesis Hy : 83 = 0 for
the “highest” coefficient in the cubic model, 2) the problem of estimating the parameters in
the full cubic polynomial if the test rejects the hypothesis Hy, 3) the problem of estimating the
parameters in the reduced quadratic regression model if the test does not reject the hypothesis
Hy. In this section we illustrate the application of canonical moments in this field and discuss
further applications of our approach in approximation theory. We assume that the main interest
of the experimenter is the identification of the degree of the underlying polynomial regression
and an optimal design for this task has to be constructed. Optimal designs for this problem
are called optimal discrimination designs. Because the degree of the polynomial regression is
only known to be less or equal than d we have to use a further index in our notation, namely
the degree [ € {1,...,d} for the polynomial model under consideration. To be precise let

[
h(z) = Y O’ = 6/ filz) 1=1,...d
=1

denote a polynomial regression model of degree [, where fi(z) = (1,z,...,2")T denotes the
vector of monomials up to the order [ and 6, = (0, ...,0;)" € R+ is the vector of unknown
parameters in the polynomial model of degree [ = 1,...,d. It can be shown [see Pukelsheim

(1993) or Dette and Studden (1997)] that a “good” choice of a design for model discrimination
should make the quantities

5(E) = (el MY (Oe) ' = % (l=1,...,d)
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as large as possible, where ¢, = (0,...,0,1)T € R*! is the (I + 1)th unit vector and

/ Ji@) )T ) = (eis) g (3.1)

denotes the moment matrix of the design ¢ in the polynomial regression of degree [. As expected,
a simultaneous maximization of these quantities is impossible and we have to restrict ourselves
again to the maximization of real valued functions of these quantities [see Dette (1994, 1995¢].
As a first function we consider the geometric mean of 6%, ..., 42 defined by

d

vo- flewr - ALY e

=1

where f31,..., [ are given nonnegative weights with Z?Zl Bj = 1. A design {3 is called a
optimal discriminating design with respect to the the prior f = (f1,...,B4) if and only if &g
maximizes the weighted geometric mean defined in (3.2). Note that the weight f; reflects the
experimenter’s belief about the adequacy of the polynomial of degree [. The optimal design
maximizing the function in (3.2) can be easily characterized in terms of its canonical moments.

Theorem 3.1. The optimal discriminating design with respect to the prior B = (f1,..., Bq)
(Ba > 0) is uniquely determined by its canonical moments

0;

pi = ———— i=1,...,d-1, paa =1
0i+0i+1
1 )
pzi—1:§ 1=1,...,d

where o; = Z;i:iﬁh i=1,...,d.

Proof. By definition of the criterion ¥# we have to maximize the function in (3.2) which
reduces by Theorem 2.8 to

d
wi(e) = CHH (q2j—2P2j—1G2j—1P2;)""

=1 j5=1
d d
=C H H Q2j—2p2j—1(J2j—1p2j)’8’
7j=11=j5
d
= CH G2j-1D2j-1) H(JUJHP;; Phi »
=1
where p1, pa, . .. denote the canonical moments of the design £ (go = 1) and the constant C' does
not depend on the design &. The assertion now follows by a straightforward maximization of
this function in terms of the canonical moments. O
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Example 3.2. Consider the uniform prior 5, = 1/d (I = 1,...,d), then it is easy to see that
the criterion (3.2) reduces to the D-optimality criterion

=

V(€)= [My(€)|

and Theorem 3.1 gives the canoncial moments of the D-optimal design derived in Section 2 [see
formula (2.13)]. As a further application consider the prior f; = ... = 341 =0, 84 = 1, which
corresponds to a discrimination between a polynomial of degree d — 1 and d. In this case the
criterion (3.2) reduces to the Dj-optimality criterion

M)
YO = i

and we obtain from Theorem 3.1 by a straightforward calculation that the optimal canonical
moments are given by
Di—= =, 221,,2d—1 3 pgdzl .

It can be shown by similar techniques as illustrated in Chapter 2 [see e.g. Studden (1980a)]
that the design £* corresponding to this sequence is supported at

{z |@- D) =0} = { cos(‘%r) =0}

with masses given by

It is interesting to note that there exists a converse of Theorem 3.1, which shows that any
symmetric design maximizes a function of the form (3.2). Although on the first glance this
result is not too helpful from a statistical point of view, it will be a very useful tool for deriving
new identities for orthogonal polynomials in the next section. The proof is a straightforward
application of Theorem 3.1, solving for the corresponding weights.

Theorem 3.3. Let & denote a symmetric design on the interval [—1, 1] with canonical moments
pj € (0,1) for all 1 < j < 2d — 1 and pyg = 1, then & mazimizes the function WP defined in
(5.2), where the weights 1, ..., B4 are given by

-1

B = H@u—%) I=1,....d. (3.3)

=1 P2 21

Note that the weights in (3.3) can become negative and in this case there is no statistical
interpretation of the criterion W#. Consider for example the class of polynomial models up
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to degree 5 on the interval [—1,1] and the distribution £ with masses proportional to 1 :
5:10 : 10 : 5 : 1 at the points —1, —3/5, —1/5, 1/5, 3/5 and 1, respectively. This is the
Binomial distribution with parameters p = 1/2 and n = 5 transformed to the interval [—1, 1].
By Example 2.6 it follows that the canonical moments of even order of {5 are given by po; = /5
(1t =1,...,5) while the canonical moments of odd order are 1/2. By Theorem 3.3 the design
£p maximizes the function W7 in (3.2) where the vector of weights is given by

5 = (_37_272737]—)7

which does not define a prior on the class of polynomials up to degree 5.

3.2 Identities for orthogonal polynomials

Throughout this section we assume that the weights in the criterion (3.2) are arbitrary (not
necessarily nonnegative) numbers with sum 1 and 34 # 0. In this case the function ¥# is not
necessarily concave. But nevertheless we can give a necessary condition for a design maximizing
the function Wg, which is of similar structure as the equivalence theorem for the D-optimality
criterion stated in Theorem 1.8.

Lemma 3.4. If the design £ mazimizes the function WP () in (8.2) over the class of all
probability measures on the interval [—1,1], then the inequality

i 4 (eF M1 (€%) fu())?

- (3.4)
=1 elTMl 1(6*)@
holds for all x € [—1, 1] with equality for the support points of £*.
Proof. For a probability measure £ on the interval [—1, 1] with |My(§)| # 0 define
®(¢) = log®’(§) = = Bloge/ M, (E)er.
=1
Let J
Fo(&n) = —®((1—a)+an)|eot (3.5)

da

denote the Frechét derivative of the function ® at £ in the direction of . For a matrix A = (a;;)
we define its derivative by differentiating the elements, that is

0 0
a2,
ot <ata”)ij’

then it follows for a nonsingular square matrix

0 0
—A = —AT A AT
ot ot
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This implies that for [ =1,...,d

d _
— log el {(1 = a)Mi(€) + aMi(n)} " |
(6 a=0+
elTMz_l(f)Ml(n)Mz_l(g)el
ezTMfl(f)el
and consequently the directional derivative of ® at £ in the direction of 7 is given by

Falen) = —1+Zﬁel o e

-1 —

(3.6)

If £* maximizes ¥? or equivalently ®, then Fy (£*,71) < 0 for all 5. If = 7, concentrates mass
one at = € [—1, 1], then

(eF MY (E) ful))”
ef My (§)eq

d
0> Fo(m) = -1+ ) B (3.7)
=1

which is equivalent to (3.4). Moreover, integrating this inequality with respect to the measure
d&*(x) gives

[ Faenyiew = o

1

and shows that Fg (£*,7,) vanishes on the support of the design £*. This proves the second
assertion of the Lemma. a

It is worthwhile to demonstrate at this point how concavity is used in the proof of the converse
of Lemma 3.4. Integrating (3.4) and observing (3.6) and (3.7) it follows that

F¢(§*777) S 0

for all probability measures 1 on the interval [—1,1]. Now the concavity of the function ®
implies that
d(n) —@(§) < Fe(€n) <0

[see the proof of Theorem 1.8] proving that £* maximizes ® (or equivalently U#). A sufficient
condition for the concavity of ® is that all weights 3; in the function ¥ are nonnegative.

Lemma 3.5. Let £ denote a measure on the interval [—1,1] such that |My(§)| # 0. The
polynomials

-1/2 7

P(z,&) = (ef M7 (E)er) () fi(z) 1=0,...,d (3.8)

are orthonormal with respect to the measure d&(x).
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Proof. Obviously, the function Py(z) = e} M;'(€) fa(x) defines a polynomial of degree d and
the identity

/ i) @iele) = eEE) / ) w)de@) = e

shows that Pd(x) is the dth orthogonal polynomial with respect to the measure d¢(z) with
L*norm ek M~1(&)ey. O

Theorem 3.6. Let £ denote a symmetric probability measure on the interval [—1,1], with
canonical moments of even order p,...,peq > 0. The orthonormal polynomials {P;j(x, f*)}?zo

and {Q; (x,f*)}j;é with respect to the measures d€*(z) and (1 — x?)d&*(x) satisfy the identity

d
Zﬁl*f)lz(xa 5*) = 1- (1 - $2)62_1Q§_1(1‘, g*)a (39)
=1

where the constants 5] and 6 are defined by

-1
B = H%<1_@> [=1,...,d-1

o1 P2 D2

(3.10)

d—1 d—1
42; 42;
Ba = H Do 0g1 = H — .

Proof. Let ¢ denote the symmetric probability measure with the same canonical moments
pj = p;j as £ up to the order 2d — 1 and pyg = 1. It follows from Theorem 2.8 and the proof
of Lemma 3.5 that the L?-norm of the monic orthogonal polynomials R,(z, £*) with respect to
the measure d¢*(z) is given by

H 1
@M et = 2 = [ B

(3.11)

d d
= 22dHQ2jf2p2ijQijlp2j = HQ2j72p2j :

A similar identity yields for the L?-norm of the monic orthogonal polynomial Sy(z,&*) with
respect to the measure (1 — z?)d&*(z)

H2d o ' 2 * 2 *
— = §d71(aja§ )(1 -7 )df (:U)
Hoq_o -1
(3.12)
. d
= 2 [ [ pojootoj1poj1as; = [ [Pt
i1 J=t
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[see Dette and Studden, Remark 2.3.7]. Observing (3.11) and Theorem 2.7 we obtain for the
orthonormal polynomials with respect to the measures £ and £* satisfy

P(z,€) = P(z,&) 1=1,...,d—1
(3.13)
Py(z,&) = VD2aPa(z,£").

Now Theorem 3.3 shows that the probability measure £ maximizes the function ¥ in (3.2) for
the weights 5 = (f1,..., 84) given by

Br i 1<i<d-—1

-1 _ _
g = [[& <1—@> = (3.14)
=1 P2 P2 Ly if l=d.

Here the last equality is a consequence of the definition (3.10) and the fact that the canonical
moments of the measure £* and £ up to the order 2d — 1 are identical. By Lemma 3.4 and 3.5
it therefore follows for the orthonormal polynomials P, (z, £) with respect to the measure d¢(z)

1> 35 M ©/E)

d d
2 -\ * D2 *
T@e O = A

=1

whenever z € [—1,1]. Here we have used (3.13) and (3.14) in the last equality. Moreover,
the second part of Lemma 3.4 shows that there is equality on the support of the measure
¢ which contains d + 1 points including —1 and 1 (note that Py = 1 and recall the simple
properties in 2.3). In can be shown [see Dette and Studden (1997), Theorem 2.2.3, transferred
to the interval [—1,1]] that these support points are given by the zeros of the polynomial
(22 —1)82% | (z,€) where Sg_;(,&) is the (d — 1)th monic orthogonal polynomial with respect
to the measure (1 — 22)dé(x). By Theorem 2.7 Sy_i(x,€) is proportional to the (d — 1)th
orthonormal polynomial Q4 (x,£*) with respect to the measure (1 — z2)d¢*(x). Therefore the
polynomials 3>% | 87 P?(z,£*) — 1 and (2% — 1)Q%_, (z, £*) are of degree 2d, nonpositive on the
interval [—1, 1] and equal to 0 at the d+1 support points of £. Counting zeros with multiplicities
shows that the polynomials must be proportional and a comparison of the leading coefficients
shows

d d—1
S G —1 = ([Traf)e™ +
=1 j=1

= 842 = 1)Q%(x,£)

where we used (3.11) and (3.12) in both equalities. This is equivalent to (3.9) and proves the
assertion. a

Note that Theorem 3.6 provides an identity for the sum of squares of orthogonal polynomials
with respect to an arbitrary (symmetric) measure on the interval [—1,1]. For further more
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general identities of this type for polynomials orthogonal with respect to a not necessarily
symmetric measure on a compact interval we refer to Dette (1993). In the remaining part of
this section we illustrate the identity of Theorem 3.6 in two examples.

Example 3.7. Let u” denote the arc-sine distribution on the interval [—1, 1] which has canon-
ical moments p; = 1/2 (j € R) [see Example 2.5]. The orthonormal polynomials Qg 1 (z, u”)
with respect to the measure (1 —z?)du” (z) = v/1 — 22dx /7 are proportional to the Chebyshev
polynomials of the second kind Ud_l(x). From (3.12) it follows that the leading coefficient is
/2291 which shows that

Qa1 (, MT) = \/§Ud71($)-
Similarly (3.11) shows that the orthonormal polynomials with respect to the arc-sine measure
are given by

Py(z, 1"y = V2Ty(x) .

Now gy =0(l=1,...,d—1), 55 =10;_, =1/2 and (3.9) reduces to the well known “trigono-
metric identity”

(1= 2*)Uq 4 (2) + Ty (z) =1
for the Chebyshev polynomial of the first and second kind.

Example 3.8. Let u(® denote the probability measure on the interval [—1, 1] with density
1
co(1 — 22)21/2 a> -z, a#0. (3.15)

The constant in (3.15) is given by
['2a+1) _ I(a+1)
220 +1/2))? Vrl(a+1/2) 7
which can be obtained from Example 2.5 (and a transformation to the interval [—1,1]) and

the duplication formula for the Gamma function. The orthonormal polynomials with respect
to the measure du'® () are proportional to the ultraspherical polynomials i (x) [see Szegd

Co =

(1959)]. The constant of proportionality can be obtained from the coefficient of ™ in i (x).
It follows from Example 2.5 that the canonical moments of the measure p(® are given by

(@ _ @ Loy 3.16
pQZ 2(2"‘0{) p27/_1 2 (Z € ) ( . )

If C\%)(x) denotes the monic version of C&”(x), this gives the representation [see (3.11)]

P2(e, ) ﬁ (42.) " [ )]

:z TRAOTI+1+a)T(+a) [ Aw@), 12
T(I+ 1T+ 2a)0 ()T (e + 1) [Cl( )(x)] (3.17)

TR+ 1)1+ )
B al'(I + 2a) [

2
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where the last equality follows from the duplication formula for the Gamma function and the
fact that the leading coefficient of the polynomial Cl(a) (x) is given by

20 (1 + )
()Tl +1)

Similarly, the polynomial Qq_;(x, u(*) orthonormal with respect to the measure
(1 —22)dpl(z) = co(l — 222 2dx

is proportional to C\*T"(z) and given by

2T (d)T'(20 + 1)(d + a) cet@)]”.

2 (@) _
Qd—l(xhu’ ) F(d+2a+1) d—1

Finally, the constants ;' and 6;,_; in (3.10) can be calculated as

'l +2a) B B
. _m l — ]_,...,d ]_
g dT'(d + 20) .
2(d+ )T (d)I'(2a + 1)
and
['(d+2a+1)

Ot = 2(d+ a)L(d)(2a + 1)

Consequently we obtain from (3.9) the following identity for the sum of squares of ultraspherical
polynomials

d—1

oz olew] = @-nfertw] . e

d ), ] ©
ec] -
1=0
which has a nice application in mathematical physics (see Dehesa, Van Assche and Yanez
(1997)).

3.3 Maximin discrimination designs

In this Section we go back to the statistical problem of determining optimal discrimination
designs for the degree of a polynomial regression. In Section 3.1 we used a geometric mean
to discriminate between competing designs and in Section 3.2 we related the design problem
to identities for orthogonal polynomials. In the present section we concentrate on a different
criterion, which relates the design problem to a nonlinear extremal problem for polynomials
[see the following section]. More precisely, we consider the function

= min QZ’QM =
V() = {2 AG] [ 1,...,d} (3.19)
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and call a design maximizing ¥ a mazimin-optimal discrimination design. The factors 22=2 in
(3.19) are introduced because the determinants

[ My ()]
S/ 3.20
RG] (320
are of quite different order for different values of the index [. Observing Example 3.2 we see that
the design maximizing the ratio in (3.20) has canonical moments p; = 1/2, (i =1,...,2[ — 1),
po = 1 and we obtain from Theorem 2.8 that
e [Mi-1(6)]

This means that we standardized each term in (3.19) by the maximum value obtainable by
maximzing |M;(€)|/|M;_1(§)| seperately.

Theorem 3.9. For a design £ with |My(£)| # 0 define
_ o2 IME) _
N(S)—{je{l,...,d}‘2] |Mj_1(§)|_\p(g)}. (3.21)

A design £* is a mazimin-optimal discriminating design if and only if |M4(£%)| # 0 and for any
[ € N (&) there exist a nonnegative number oy such that

Y oa=1 (3.22)

leN (&%)

and such that the inequality

TMfl * 2
S ol SN (3.23
holds for all x € [—1,1]. Moreover there is equality in (3.23) for all support points of the
mazimin-optimal discriminating design.

Note that this result provides a similar characterization of the the optimal design as given for
the D-optimality criterion in Theorem 1.8 or in Lemma 3.4 for the geometric mean. However,
there is an important difference which should be pointed out here. While Theorem 1.8 and
Lemma 3.4 are directly applicable to check the optimality of a given design, this is not possbile
for Theorem 3.9. The reason is that it is not clear how to choose the weight «; (except in the
case where #N (£*) = 1) for a given design £*. These quantities appear because of the non-
differentiablity of the criterion (3.19) and represent certain subgradients of a concave function.
For the same reason a proof of Theorem 3.9 is based on general arguments of convex analysis
[see Pukelsheim (1993)] and is not given here [see Dette (1995) or Dette and Studden (1997) for
more details]. Nevertheless this result provides one of the main tools in identifying the design
maximizing the function ¥ in (3.19).
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Theorem 3.10. The design £ mazimizing the function V(-) in (3.19) is uniquely determined
and has canonical moments

pgj_1:§ ]:1,,d
(3.24)
d—j+2
= =1,...,d.
p2_] 2(d—])+2 ] Y )

Moreover, the support points of £ are obtained as the roots of the polynomial
(a* = DUj()

and the weights are given by

1
i U(2) =
i3 Ul(x) =0
() =
3 1
° fop=1
sdt2 T

Proof. Assume that £* has the canonical moments as specified in Theorem 3.10. Observing
Theorem 2.8 it then straightforward to show that

| Mi(£7)] L92-2 | Ma(£)] 92d—2

| M- (£7)] [ Maa(9)
for all I = 1,...,d. By definition of the set A'(¢*) in (3.21) this implies
N(E)={1,....d} .

For the application of Theorem 3.9 we have to identify the weights «; and we will use Theorem
3.3 for this purpose. This result shows that £* also maximizes a geometric mean

d

o M)
v (5)‘H(|M_H(§>|>

if the weights 3] are choosen appropriately, that is

-1
. q2; a1 2
Br = _(1__) = (d-l+1 3.25
(I =1,...,d), where the last equality follows from the represenation for the canonical moments

(of even order) of the design £*, i.e.

d—1+2
=——— [|=1,...,d.
D2 2(d—l)—|—2, ) )
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Now Lemma 3.4 shows that the inequality

Ed:@* (efé?;\;gg{l)s)y <1 (3.26)

=1

holds for all z € [~1,1]. Moreover, from (3.25) it is easy to see that > ¢ 8% = 1 and that
Bf > 0foralll=1,...,d. Oberving N (£*) = {1,...,d} it therefore follows that we can use
the weights oy = f/ in Theorem 3.9 and obtain from (3.26)

N (ef M, '(&) fil))?
2 ef M (& )ey

LEN(£7)
for all x € [—1,1]. From Theorem 3.9 it therefore follows that £* defined by the canoncial

moments in (3.24) maximzes the function

U(E) = min{%ﬂ—? =1, .,d} ,

which proves the first assertion of Theorem 3.10. The representation of the support points and
weights is now obtained by similar arguments as given in Section 2.3 and therefore omitted. O

Example 3.11. In this example we discuss the problem of constructing a maximin optimal
discriminating design for the discrimination between a linear, quadratic and cubic polynomial
regression model. Thus we have d = 3

Us(z) = (82° — 4z) =242 — 4

and we obtain from Theorem 3.9 for the maximin optimal discriminating design

. [ -1-1/V61/V6 1
&= 03 02 02 03)°

3.4 Extremal problems for polynomials

In this section we discuss some extensions of an extremal property of the Chebyshev polynomials
of the first kind [see Chebyshev (1959)]. More precisely we consider the problem

d—1
min  sup ‘xd - E ajx]‘ (3.27)
ag,---,ad—1 z€[—1,1] =0

of best approximation of the power z? by a (real) polynomial of degree d — 1. It is well
known (see Natanson (1955) or Rivlin (1990)) that the minimum value in (3.27) is given by
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1/24=1 and the “best” polynomial z¢ — Z?;é a;z’ is given by 1/297'T,(z) where T(z) is the
Chebyshev polynomial of the first kind. We will present a new proof of this result, which
was proposed by Studden (1980b) and is based on a game theoretic argument. The main
idea is to relate the extremal problem to the D;-optimal design problem which can be solved
with canonical moments [see Example 3.2]. This duality allows the treatment of more general
extremal problems. With the notation of the previous sections (3.27) can be rewritten as

(a € R*1)

inf sup (a’ fy(x))* = inf sup/_ (a” fq(x))?dé ()

laTeq?=1 ge[—1,1] [aTeq?=1 ¢ 1

= inf  supa’ My(&)a

laTed?=1 ¢

=sup inf a’ My(&)a (3.28)
¢ l[aTeq)2=1
.. alMy(&)a
= B eyt (8.29)
= sgp(edTMgl(oed)—l (3.30)

| Ma(6)]

Y ML O

with the convention that (e M;'(€)eq)™! is zero if My(€) is singular. Here the equality in
(3.28) follows from a game theoretic argument and the fact that the kernel w(a, &) = a® My(&)a
is convex in a and concave (even linear) in . Note that the calculation of the supremum in
(3.29) can be restricted to the set of designs with nonsingular moment matrix of order 2d and
that the equality between (3.29) and (3.30) is a consequence of Cauchy’s inequality

(a'eq)? < a"M(&)a-el M~ (€)eq. (3.31)

Now (3.30) is the D;-optimal design problem in a polynomial regression of degree d which was
solved in Example 3.2. If {f ' denotes the D;-optimal design and

Pd(ib') = ded(l’) s (&Ted)2 =1 (332)
is a optimal solution of (3.27), then there must be equality in (3.31), i.e.
a=cM ' (EDeq, (3.33)

where the constant c is determined by (a’ey)? = 1. Combining (3.32), (3.33) with Lemma 3.5 it
follows that Py(r) is the dth monic orthogonal polynomial with respect to the measure d¢)* ()
(up to the sign). Now the canonical moments of 55)1 up to the order 2d —1 are 1/2 and coincide
with the canonical moment of the arc-sine distribution. Therefore Theorem 2.7 shows that
P,(z) is the dth monic orthogonal polynomial with respect to the arc-sine measure, i.e.

Pa) = s3Tala)
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which determines the solution of the extremal problem (3.27).

In the remaining part of this article we discuss a more general extremal problem which cannot
be solved by the “classical” methods of approximation theory. To be precise let I = {iy,...,i,}
denote a subset of {1,...,d} containing d and define

pPr = {(Pj)jel | Pje P, jel, sup ZPf(x) S 1}
z€[-1,1] jel
as the set of all polynomials of degree iy,...,%, such that the sup-norm of the sum of squares

is bounded by 1 on the interval [—1,1]. In the following m,(F;) denotes the leading coefficient
of the polynomial P, € IP,. We are interested in the (nonlinear) extremal problem

(P1) max{ 3" fm?(P) | (P)ier € Py }

lel

where = (f;,,- .-, 5, ) denotes a vector of positive weights with sum 1. Note that for I = {d}
the extremal problem (Pr) reduces to the problem of maximizing the highest coefficient among
all polynomials of (precise) degree d with sup-norm bounded by 1. This is an alternative for-
mulation of the “classical” Chebyshev approximation problem (3.27). Throughout this section
the orthogonal polynomials with leading coefficient 1 corresponding to a probability measure
will be denoted by R;(z,£) and their (squared) Lo-norm by

bO = [ Beowse - g = @iten e

The main step for solving the extremal problem (Pj) is the following duality which is the
analogue in the game theoretic argument in (3.28). A proof is based on Fenchel’s duality
theorem in convex analysis and can be found in Dette (1995b) or Dette and Studden (1997).

Theorem 3.12. If=:={{ € = | |[My(&)| > 0} denotes the set of all probability measures with
nonsingular Hankel matriz My (), then the following duality holds

(Pr) max{Zﬁlm?(Pl) | (P})jer € PI} = minmax{ﬁjkj*l(g)} (Dy)

€= jeI
ler ¢

and solutions of (Pr) and (Dy) exist.
Moreover, let £ be a solution of the problem (Dy),

MIE) = {5 € T| 5 k() = min 6, k()

and \/1/k;(§*)R;(x,£*) denote the jth orthonormal polynomial with respect to the measure
d¢*(x). Then there exist constants o; > 0 with sum 1 satisfying

a; =0 if jeI\M(E) (3.35)
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Za] THEVR (2,6Y) < 1 forall xe[-1,1]. (3.36)

jEI

With this choice {\/a;/k;(£*)Ri(x,&)}jer is a solution of the extremal problem (Py).

Note that the dual problem (Dy) contains as a special case the optimization problem considered

n (3.19) (n=d, g; =27%*%2 j =1,...,n). While from a statistical point of view the main
interest are the support points and weights of the solution £* of (D;) Theorem 3.12 shows
that the orthogonal polynomials with respect to the optimal design d&*(z) are needed for the
solution of the extremal problem (P;). These polynomials can be calculated by the recurrence
relations given in Theorem 2.7 and the Ly-norm is given

1 d
le) = [ B @) = 2T gty ah o, (3.37)
-1 =1
where p},p3, ... denote the canonical moments of the optimal design £*. The following result

specifies these canonical moments in explicit form.

Theorem 3.13. The solution £* of the dual problem (Dy) is uniquely determined by its canon-

ical moments (py, ..., p5q) where ps; | =1/2 (j=1,...,d), psy =1, p5q_;y=1/21fd—j ¢ I
and

-1

* Bd %k \— 1

Py = max{l- [T @' 5} (3.38)
Ba-j i=d—j+1 2

ifd—jel.

Proof. The result can be proved by similar arguments as given in the proof of Theorem 3.10.
We provide an alternative proof, which is directly based on the duality result of Theorem 3.12
and uses the identities for orthogonal polynomials derived in Section 3.2. For d — j € I let

d—1

Yag =1=Ba/Bay | (@3)" (a=1);

i=d—j+1

then it is easy to see (observing (3.37) and (3.38)) that ford —j € [

Yaj 2 % if and only if 87 ka(€) = By ka—i(€7)
Ya—j < % if and only if B3, 'ks(£*) < Bg_ljkd,j(f*)
Consequently, we have for the set M(£*) in Theorem 3.12
deME) = (el] 2> 5) (3.39)
vy =5 i EME). (3.40)
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In the following define weights o, ..., ay by

H % ( qﬁ) (3.41)

1 P Daj

These have sum 1 and are nonnegative, by the definition of pj; in (3.38). Additionally we
have by (3.40) a; = 0 whenever j ¢ M(£*). From (3.37) it follows that the polynomials

1_1/2 (*)Ry(z,£*) are orthonormal with respect to the measure d¢*(z) and Theorem 3.6 shows
(note that pj, =1)

Za] TR (@,6) = Y ik (R (2,¢) <1 (3.42)

JEM(E*)

for all z € [—1,1]. In other words

(Ri(@)}yer = { aj/kj(ij(x,s*)} c P (3.43)
jel
and by the definition of M(£") and ;) @ = 1 it follows
S gmiE) = Y GmiR) = = max{skNE) [T}
jer JEM(E") ka(€7)

Therefore we have equality in Theorem 3.12 for {R}}jc;r € Pr, §* € = and the assertion of the
theorem follows. O

Example 3.14. We will conclude with two examples illustrating the application of Theorem
3.12 and 3.13. Consider at first the weights ; = ... = 34 = é, then the problem is to maximize

> mi(R)

subject to the constaints
d

Y Px) <1V ael-11]. (3.44)

=1
In this case we have from Theorem 3.13 pf = 1/2 for all 7 = 1,...,2d — 1, p}, = 1, the
corresponding optimal design is the D;-optimal design (see Example 3.2) and

M(E") = {d}.
i From Theorem 3.12 and the proof of Theorem 3.13 we obtain for the extremal polynomials

P(z)=0, I=1,....,d—1, Pylz)="Tyx) .

46



On the other hand, if 3, = 27242, [ =1,...,d we are maximizing

d
Z 2721+2ml2(Pl)
=1

subject to the constrained (3.44) and the dual problem is the maximin discrimination design
problem discussed in Section 3.3. Thus the canonical moments of the solution £* of the corre-
sponding dual problem £* can either be obtained from Theorem 3.9 or 3.13 and are given by
(3.24). Consequently we have

M) = 1{1,...,d}

and all polynomials are needed for the solution of the extremal problem. From Theorem 2.7 we
obtain for the monic orthogonal polynomials with respect to the measure d€*(x) the recursive
relation Ry (z,£*) = =z,

d+1
k) 2
R2(.'L',€) =T 2d

1
Rii(x,&) = xRy(x,£%) — ZRZ,I(x,g*) , l=1,...,d-1

and R(x,&*) can be identified as a difference of a Chebyshev polynomial of the first and second
kind [see Chihara (1978), Chapter VI - 13], that is

1
Ry(x,&) = 271 Ti(x) — aUl_z(x) , l=1,...,d.

Finally, we obtain from (3.24) and (3.41) and a straightforward calculation

2(d — 1+ 1)
= ——* [=1,...,d
07) d(d—|—1) ) ) )

e - () !

and Theorem 3.12 yields for the corresponding extremal polynomials

2vd—-1+1

Pi(x) = d+1

1
[Tl(x) —Ua(@)| 1=1,..d.
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