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Abstract

We propose a new test for the comparison of two regression curves, which is based on a

di�erence of two marked empirical processes based on residuals. The large sample behaviour

of the corresponding statistic is studied to provide a full nonparametric comparison of regres-

sion curves. In contrast to most procedures suggested in the literature the new procedure

is applicable in the case of di�erent design points and heteroscedasticity. Moreover, it is

demonstrated that the proposed test detects continuous alternatives converging to the null
at a rate N�1=2

: In the case of equal design points the fundamental statistic reduces to a test

statistic proposed by Delgado (1993) and therefore resembles in spirit classical goodness-of-

�t tests. As a by-product we explain the problems of a related test proposed by Kulasekera

(1995) and Kulasekera and Wang (1997) with respect to accuracy in the approximation of

the level. These di�culties mainly originate from the comparison with the quantiles of an

inappropriate limit distribution.

A simulation study is conducted to investigate the �nite sample properties of a wild

bootstrap version of the new tests.

AMS Classi�cation: Primary 62G05, Secondary 60F15, 60F17
Keywords and Phrases: comparison of regression curves, goodness-of-�t, marked empirical process,
VC-classes, U-processes

1 Introduction

The comparison of two regression curves is a fundamental problem in applied regression analysis.
In many cases of practical interest (after rescaling the covariable into the unit interval) we end up
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with a sample of N = n1 + n2 observations

Yij = fi(Xij) + �i(Xij)"ij ; j = 1 ; : : : ; ni; i = 1 ;2;(1.1)

where Xij (j = 1 ; : : : ; ni) are independent observations with positive density ri on the interval
[0; 1] (i = 1 ;2) and "ij are independent identically distributed random variables with mean 0 and
variance 1: In equation (1.1) fi and �i denote the regression and variance function in the i-th
sample (i = 1 ;2): In this paper we are interested in the problem of testing the equality of the
mean functions, i.e.

H0 : f1 = f2 versus H1 : f1 6= f2:(1.2)

Much e�ort has been devoted to this problem in the recent literature [see e.g. H�ardle and Marron
(1990), King, Hart and Wehrly (1991), Hall and Hart (1990), Delgado (1993), Young and Bowman
(1995), Hall, Huber and Speckman (1997), Dette and Munk (1998) or Dette and Neumeyer (1999)].
Most authors concentrate on equal design points and a homoscedastic error [see e.g. H�ardle and
Marron (1990), Hall and Hart (1990), King, Hart and Wehrly (1991), Delgado (1993)]. Kulasekera
(1995) and Kulasekera andWang (1997) proposed a test for the hypothesis (1.2) which is applicable
under the assumption of di�erent designs in both groups, but requires homoscedasticity in the
individual groups. In principle this test can detect alternatives which converge to the null at a
rate N�1=2 (here N = n1+n2 denotes the total sample size), but in the same papers these authors
mention some practical problems with the performance of their procedure, especially with respect
to the accuracy of the approximation of the nominal level.
To our knowledge the problem of testing the equality of two regression curves in the general
heteroscedastic model (1.1) with unequal design points was �rstly considered by Dette and Munk
(1998) who considered the �xed design and proposed a consistent test which can detect alternatives
converging to the null at a rate N�1=4 under very mild conditions for the regression and variance
function (i.e. di�erentiability is not required). Recently Dette and Neumeyer (1999) proposed
several tests for the hypothesis (1.2) which are based on kernel smoothing methods and applicable
in the general model (1.1). These methods can detect alternatives converging to the null at a rate
(N
p
h)�1=2; where h is a bandwidth (converging to 0) required for the estimation of nonparametric

residuals.
It is the purpose of the present paper to suggest a new test for the equality of the two regression
curves f1 and f2 which can detect alternatives converging to the null at a rate N�1=2 and is
applicable in the general model (1.2) with unequal design points and heteroscedastic errors. The
test statistic is based on a di�erence of two marked empirical processes based on residuals obtained
under the assumption of equal regression curves. We prove weak convergence of the underlying
empirical process to a Gaussian process generalizing recent results on U -processes of Nolan and
Pollard (1987, 1988) to two-sample U -statistics. The asymptotic null distribution of the test
statistic depends on certain features of the data and the �nite sample performance of a wild
bootstrap version is investigated by means of a simulation study.
We �nally note that marked empirical processes have already been applied by Delgado (1993)
and Kulasekera (1995) and Kulasekera and Wang (1997) for testing the equality of two regression
functions. However, Delgado's (1993) approach sensitively relies on the assumption of equal
design points and homoscedastic errors because the marked empirical process is based on the
di�erences of the observations at the joint design points. The method proposed in this paper
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uses two marked empirical processes of the residuals for both samples, where the residuals are
obtained from a nonparametric estimate of the (under H0) joint regression function from the total
sample. Moreover, in the case of equal design points the basic statistic considered here essentially
reduces to the test statistic considered by Delgado (1993). On the other hand the methods
proposed by Kulasekera (1995) and Kulasekera and Wang (1997) require a homoscedastic error
distribution. Moreover, these authors mention some practical problems because the performance
of their procedure depends sensitively on the chosen smoothing parameters for the estimation
of the regression curves and larger noises yield levels substantially di�erent from the nominal
level. As a by-product of this paper we will prove that the problem with the accuracy of the
approximation of the nominal level is partially caused by a substantial mistake in the proof of
Theorem 2.1 and 2.2 in Kulasekera (1995), because this author ignores the variablitiy caused by
the nonparametric estimation of the regression function in the application of Donsker's invariance
principle.
The present paper is organized as follows. Section 2 introduces the marked empirical processes,
the corresponding test statistics and gives their asymptotic behaviour. Some comments regarding
the test of Kulasekera (1995) and a clari�cation of its asymptotic properties are given in Section
3. The �nite sample behaviour of a wild bootstrap version of the discussed procedures is studied
in Section 4 which also gives a result regarding the consistency of a wild bootstrap. Finally, all
proofs are deferred to the appendix.

2 A marked empirical process and its weak convergence

Recall the formulation of the general two sample problem (1.1). We assume that the explanatory
variables Xij (j = 1 ; : : : ; ni) are i.i.d. with positive density ri on the interval [0; 1] (i = 1 ;2): The
regression functions f1; f2 and the densities r1; r2 are supposed to be r (� 2) times continuously
di�erentiable, i.e.

ri; fi 2 Cr([0; 1]); i = 1 ;2:(2.1)

Throughout this paper let

r̂(x) =
1

Nh

2X
i=1

niX
j=1

K
�x�Xij

h

�
(2.2)

denote the density estimator from the combined sample X11; : : : ; X1n1 ; X21; : : : ; X2n2 where h
denotes a bandwidth satisfying

h! 0; Nh2r ! 0; hr logN ! 0; Nh2 !1(2.3)

and K is a symmetric kernel with compact support of order r � 2; i.e.

(�1)j
j!

Z
K(u)uj du =

8><>:
1 : j = 0

0 : 1 � j � r � 1

kr 6= 0 : j = r

(2.4)
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[see Gasser, M�uller and Mamitzsch (1985)]. We assume that there exists a decomposition of the
nonnegative axis of the form

[0;1) =
m[
j=1

[aj�1; aj)

(0 = a0 < a1 < : : : < am�1 < am = 1) such that for some " 2 f� 1;1g the function "K
is increasing on the interval [a2j; a2j+1) and decreasing on the interval [a2j+1; a2j+2): A straight-
forward argument shows that

r̂(x)
P�! r(x) := �1r1(x) + �2r2(x)(2.5)

as N !1 ;provided that sizes of the individual samples satisfy

ni
N

= �i +O(
1

N
) ; i = 1 ;2;(2.6)

where �i 2 (0; 1); i = 1 ;2:The Nadaraya-Watson estimator of the regression function [see Nadaraya
(1964) or Watson (1964)] from the combined sample is de�ned by

f̂(x) =
1

Nh

2X
i=1

niX
j=1

K
�x�Xij

h

�
Yij

1

r̂(x)
(2.7)

and consistently estimates

f(x) :=
�1r1(x)f1(x) + �2r2(x)f2(x)

r(x)
:

Note that under the null hypothesis of equal regression curves we have f1 = f2 = f: For i = 1 ;2
we de�ne residuals

eij = ( Yij � f̂(Xij))r̂(Xij)(2.8)

fij = Yij � f̂(Xij)(2.9)

and consider the marked empirical processes

R̂
(1)
N (t) =

1

N

n1X
j=1

e1jIfX1j � tg � 1

N

n2X
j=1

e2jIfX2j � tg(2.10)

R̂
(2)
N (t) =

1

N

n1X
j=1

f1jIfX1j � tg � 1

N

n2X
j=1

f2jIfX2j � tg(2.11)

where t 2 [0; 1] and If�g denotes the indicator function. The multiplication of the residuals
(2.9) with the density estimator r̂(x) yields the residuals (2.8) and as a consequence a simpler

asymptotic analysis of the process R̂
(1)
N [see the following Proposition 2.1 and Theorem 2.2]. On the
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other hand the form of R̂
(2)
N is attractive because it reduces for equal design points (i.e. n1 = n2,

X1j = X2j, j = 1 ; : : : ; n1) to the process considered by Delgado (1993). The following proposition
indicates that the marked empirical processes de�ned in (2.10) and (2.11) are useful for testing
the hypothesis (1.2) of equal regression curves. The proof is given in the appendix.

Proposition 2.1. Assume that (2.1), (2.3), (2.4) and (2.6) are satis�ed, then

E
h
R̂

(1)
N (t)

i
= 2 �1�2

Z t

0

(f1(x)� f2(x))r1(x)r2(x) dx+O(hr)

E
h
R̂

(2)
N (t)

i
= 2 �1�2

Z t

0

(f1(x)� f2(x))
r1(x)r2(x)

r(x)
dx +O(hr):

Note that Z t

0

(f1(x)� f2(x))r1(x)r2(x) dx = 0 8 t 2 [0; 1]

if and only if the hypothesis (1.2) is valid. Consequently, a test for the hypothesis of equal
regression curves could be based on real valued functionals of the processes (2.10) and (2.11) such
as (i = 1 ;2) Z 1

0

R̂
(i)2

N (t)dt; sup
t2[0;1]

jR̂(i)
N (t)j:

The asymptotic distribution of these statistics can be obtained by the continuous mapping theo-
rem [see e.g. Pollard (1984)] and the following result which establishes weak convergence of the

processes R̂
(1)
N and R̂

(2)
N in the Skorokhod space D[0; 1]:

Theorem 2.2. Assume that (2.1), (2.3), (2.4) and (2.6) are satis�ed, then under the null hypoth-

esis of equal regression curves the marked empirical process
p
NR̂

(1)
N de�ned by (2.10) converges

weakly to a centered Gaussian process Z(1) in the space D[0; 1] with covariance function

H(1)(s; t) = 4

Z s^t

0

(�2
1(x)�2r2(x) + �2

2(x)�1r1(x))�1r1(x)�2r2(x) dx:(2.12)

Similarly, the process
p
NR̂(2)

N de�ned by (2.11) converges weakly to a centered Gaussian process
Z(2) in the space D[0; 1] with covariance function

H(2)(s; t) = 4

Z s^t

0

(�2
1(x)�2r2(x) + �2

2(x)�1r1(x))
�1r1(x)�2r2(x)

r2(x)
dx:(2.13)

Remark 2.3. It is worthwhile to mention that the statement of Theorem 2.2 does not depend
on the speci�c smoothing procedure used in the construction of the processes. For example, a
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local polynomial estimator [see Fan (1992) or Fan and Gijbels (1996)] can be treated similarly but
with a substantial increase of the mathematical complexity. Note that local polynomial estimators
have various practical and theoretical advantages such as a better boundary behaviour and they
require weaker di�erentiability assumptions on the design densities. We used the Nadaraya-Watson
estimator because for this type of estimator the proof of the VC-property for certain classes of
functions is much simpler compared to local polynomial estimators [see, for example, the proof
of Lemma 5.2a]. Nevertheless Theorem 2.2 remains valid for local linear (or even higher order)
polynomial estimators and we used local linear smoothers in the simulation study presented in
Section 4.

Remark 2.4. The tests obtained from the continuous mapping theorem and Theorem 2.2 are
consistent against local alternatives converging to the null hypothesis at a rate 1=

p
N: This follows

by a careful inspection of the proof of Theorem 2.2, which shows that for local alternatives of the
form f1(�)�f2(�) = �( �)=pN the marked empirical processes

p
NR̂

(i)
N (�) ( i= 1 ;2) converge weakly

to Gaussian processes with respective covariance kernels H(i)(�; �) given in Theorem 2.2 and mean

�(1)(t) = 2 �1�2

Z t

0

�(x)r1(x)r2(x)dx

�(2)(t) = 2 �1�2

Z t

0

�(x)
r1(x)r2(x)

r(x)
dx;

respectively. These results can be used for an asymptotic comparison of tests based on R̂
(1)
N and

R̂
(2)
N ; which in general depends on the particular alternative under consideration. For example, if

�(�) � 1 and �2
1(�) = �2

2(�) � �2 we have

[�(1)(t)]2

H(1)(t; t)
=

�1�2[
R t
0
r1(x)r2(x)dx]

2

�2
R t
0
r1(x)r2(x)r(x)dx

� �1�2
�2

Z t

0

r1(x)r2(x)

r(x)
dx =

[�(2)(t)]2

H(2)(t; t)
;

where the inequality follows by the Cauchy-Schwarz inequality. This indicates a better perfor-
mance of statistics based on the process R̂

(2)
N for smooth one-sided local alternatives.

Remark 2.5. The results can easily be extended to the comparison of k regression curves in the
model

Yij = fi(Xij) + �i(Xij)"ij; j = 1 ; : : : ; ni; i = 1 ; : : : ; k:

For a generalization of the statistic R̂
(1)
N consider the residuals

e
(i)
j` = ( Yj` � f̂ (i)(Xj`))r̂

(i)(Xj`) ; i = 1 ; : : : ; k� 1

(j 2 f i; i+ 1 g; `2 f 1; : : : ; njg) where f̂ (i) and r̂(i) denote the Nadaraya-Watson and the density

estimator from the combined ith and (i + 1)th sample. If N =
Pk

i=1 ni denotes the total sample
size,

ni
N

= �i +O(
1

N
)
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(�i 2 (0; 1); i = 1 ; : : : ; k) and

R̂
(1)
Ni =

1

N

niX
`=1

e
(i)
i` IfXi` � tg � 1

N

ni+1X
`=1

e
(i)
i+1;`IfXi+1;` � tg (i = 1 ; : : : ; k� 1);

then it follows that R̂
(1)
N (t) := (R̂

(1)
N1(t); : : : ; R̂

(1)
Nk�1(t))

T converges weakly to a (k � 1)-dimensional

Gaussian process (Z
(1)
1 ; : : : ; Z

(1)
k�1)

T with covariance structure

Cov(Z
(1)
i (t); Z

(1)
j (s)) = kij(s ^ t)

where kij = kji, ( j� i) and

kij(u) =

8>>>>><>>>>>:

4
R u
0
(�2

i (x)�i+1ri+1(x) + �2
i+1(x)�iri(x))�i�i+1ri(x)ri+1(x)dx if j = i

�4 R u
0
�2
j (x)�j�1�j�j+1rj�1(x)rj(x)rj+1(x)dx if j = i+ 1

0 if j > i+ 1 :

3 Some remarks on related tests

As pointed out in the introduction the application of empirical processes has already been pro-
posed by several authors. Among many others we refer to An and Bing (1991), Stute (1997),
who considered the problem of testing for a parametric form of the regression and to the recent
work of Delgado and Gonz�alez-Manteiga (1998), who used this approach in the construction of
a test for selecting variables in a nonparametric regression. In the context of comparing regres-
sion curves empirical processes were already applied by Delgado (1993) and Kulasekera (1995),
Kulasekera and Wang (1997) and recently in an unpublished report by Cabus (2000). Delgado
considered equal design points (i.e. n1 = n2;X1i = X2i and a homoscedastic error distribution)

and the process R
(2)
N reduces in this case to the process introduced by Delgado (1993). Kulasekera

(1995) and Kulasekera and Wang (1997) discussed the case of not necessarily equal design points
and homoscedastic (but potentially di�erent) errors in both samples. In this case these authors
proposed a test also based on a marked empirical process and investigated its �nite sample per-
formance by means of a simulation study. In the same papers Kulasekera (1995) and Kulasekera
and Wang (1997) mention some di�culties with respect to the practical performance of their pro-
cedure. They observed levels substantially di�erent from the nominal levels in their study and
explained these observations by the sensitive dependency on the bandwidth. We will demonstrate
in this section that these de�ciencies are partially caused by the use of incorrect (asymptotic)
critial values.
To be precise consider the model (1.1) in the case of a �xed design Xij = tij (j = 1 ; : : : ; ni; i = 1 ;2)
satisfying a Sacks and Ylvisacker (1970) conditionZ tij

0

ri(t)dt =
j

ni
; j = 1 ; : : : ; ni; i = 1 ;2 ;(3.1)
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let f̂i denote the Nadaraya-Watson estimator from the ith sample (i = 1 ;2) using bandwidth hi
(i = 1 ;2) and de�ne residuals by

~e1i = Y1i � f̂2(t1i) ; i = 1 ; : : : ; n1

~e2j = Y2j � f̂1(t2j) ; j = 1 ; : : : ; n2:

The corresponding partial sums are given by

�i(t) =

bnitcX
j=1

~eijp
ni
; 0 < t < 1; i = 1 ;2;(3.2)

and the following result speci�es the asymptotic distribution of these marked empirical processes.

Theorem 3.1. If the assumptions (2.1), (2.3), (2.4), (2.6) and (3.1) are satis�ed, then under
the null hypothesis of equal regression curves the marked empirical process �1 de�ned in (3.2)
converges weakly to a centered Gaussian process with covariance function

m12(s; t) =

Z R�1
1

(s^t)

0

(�2
1(x)�2r2(x) + �2

2(x)�1r1(x))
r1(x)

�2r2(x)
dx(3.3)

where R1(t) =
R t
0
r1(x) dx denotes the cumulative distribution function corresponding to the design

density r1:
Similarly, the process �2 converges weakly to a centered Gaussian process with covariance function
m21(s; t):

Note that Kulasekera (1995) considered a homoscedastic error and claimed in his proof of Theorem
2.1 [Kulasekera (1995)] weak convergence of �i to a centered Gaussian process with covariance
function ~mi(s; t) = �2

i � (s^ t); which is usually di�erent from mi;3�i(s; t) [an exception is the case
of the uniform design and equal homoscedastic variances in both groups]. For these reasons some
care is necessary if the test of Kualsekera is applied. We �nally remark that Kulasekera (1995)
and Kulasekera and Wang (1997) discussed several related tests and similar comments apply to
these procedures.
In the case of a random design the processes (3.2) have to be modi�ed because in this case the
observations are not necessarily ordered. A minor modi�cation given by

�
(i)
N (t) =

1p
ni

niX
j=1

(Yij � f̂3�i(Xij))IfXij � tg; i = 1 ;2;(3.4)

could be considered, which yields a slightly simpler covariance structure of the Gaussian process.

Theorem 3.2. If the assumptions (2.1), (2.3), (2.4) and (2.6) are satis�ed, then under the null

hypothesis of equal regression curves the marked empirical process �
(1)
N de�ned by (3.4) converges

weakly to a centered Gaussian process with covariance function m12(R1(s); R1(t)) where m12 is
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de�ned in (3.3) and R1 denotes the distribution function of X1j: Similarly, the process �
(2)
N con-

verges weakly to a centered Gaussian process with covariance function m21(R2(s); R2(t)); where
m21(s; t) = m12(t; s) and R2 is the distribution function of X2j:

A rather di�erent method to the problem of comparing regression curves was recently proposed
by Cabus (2000), who considered the U -process

UN(t) =
1

n1n2h

n1X
i=1

n2X
j=1

(Y1i � Y2j)K
�X1i �X2j

2

�
IfX1i � t; X2j � tg:(3.5)

Note that this approach is similar to a method introduced by Zheng (1996) in the context of
testing for the functional form of a regression. Cabus (2000) proved weak convergence of the
process

p
NUN to a centered Gaussian process with covariance function 1

4(�1�2)2
H(1)(s; t) de�ned

in (2.12). It also follows from Cabus (2000) that the asymptotic behaviour with respect to local

alternatives is exactly the same as for the process R̂
(1)
N [see Remark 2.4].

4 Wild bootstrap and �nite sample properties

Throughout this section we will study the �nite sample properties of a test based on the Kol-
mogorov Smirnov distance

K
(i)
N := sup

t2[0;1]
jR̂(i)

N (t)j; i = 1 ;2;(4.1)

which rejects the hypothesis of equal regression curves for large values of K
(i)
N : In principle critical

values can be obtained from Theorem 2.2 and the continuous mapping theorem. However, it is well
known [see e.g. Hjellvik and Tj�stheim (1995), Hall and Hart (1990)] that in similar problems of
speci�cation testing the rate of convergence of the distribution of the test statistic is usually rather
slow. Additionally the asymptotic distributions of the Gaussian processes obtained in Theorem
2.2, 3.1 and 3.2 usually depend on certain features of the data generating process and cannot be
directly implemented in practice. For this reason we propose in this section the application of a
resampling procedure based on the wild bootstrap [see e.g. Wu (1986)] and prove its consistency
[see Theorem 4.1 below]. The �nite sample properties of the resulting tests are then investigated
by means of a simulation study. To be precise let f̂g(x) denote the Nadaraya-Watson estimator of
the regression function from the total sample de�ned in (2.7) using the bandwidth g > 0; where
this dependency has now been made explicit in our notation. De�ne nonparametric residuals by

"̂ij := Yij � bfg(Xij) ( j= 1 ; : : : ; ni; i = 1 ;2)(4.2)

and bootstrap residuals by

"�ij := "̂ij Vij(4.3)

where V11; V12; : : : ; V1n1 ; V21; : : : ; V2n2 are bounded i.i.d. zero mean random variables which are
independent from the total sample

YN :=
n
Xij; Yij j i = 1 ;2; j = 1 ; : : : ; ni

o
:(4.4)
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We obtain the bootstrap sample

Y �
ij := bfg(Xij) + "�ij(4.5)

and the corresponding marked empirical processes

R̂
(1)�
N (t) =

1

N

2X
`=1

nX̀
j=1

(Y �
`j � f̂ �h(X`j))r̂h(X`j)IfX`j � tg

R̂
(2)�
N (t) =

1

N

2X
`=1

nX̀
j=1

(Y �
`j � f̂ �h(X`j))IfX`j � tg

where throughout this section the index � means that the process has been calculated from the
bootstrap sample (4.5). Note that we use the bandwidth h for the calculation of the test statistic
(which is indicated by the extra index in f̂ �h and r̂h) and a bandwidth g for the calculation of the

residuals. Let K
(i)�
N (i = 1 ;2) denote the statistic in (4.1) obtained from the bootstrap sample,

then the hypothesis of equal regression curves is rejected if K
(i)
N � k

�(i)
N;1��; where k

�(i)
N;1�� denotes

the critical value obtained from the bootstrap distribution i.e.

IP (K
(i)�
N � k�N;1�� j YN) = � ; i = 1 ;2:

The consistency of this procedure follows from the continuous mapping theorem and the following
result, which establishes asymptotic equivalence (in the sense of weak convergence) of the processesp
NR̂

(i)
N and

p
NR̂

(i)�
N in probability conditionally on the sample YN .

Theorem 4.1. If the assumptions of Theorem 2.2 and the bandwidth conditions

g ! 0 ;
p
Ngh!1 ; Ng2r ! 0 ; gr logN ! 0 ; hr = O(

p
g)(4.6)

are satis�ed, then the bootstrapped marked empirical process R
(i)�
N converges under the null hypoth-

esis of equal regression curves weakly to the centered Gaussian process Z(i)(i = 1 ;2) of Theorem
2.2 in probability conditionally on the sample YN .

For the sake of comparison we will also discuss tests based on the approach proposed by Kulasekera
(1995) and Cabus (2000). More precisely, we use the generalization of Kulasekera's approach to
the random design case and reject the hypothesis of equal regression curves for large values of the
statistic

LN = maxf sup
t2[0;1]

j�(1)N (t)j; sup
t2[0;1]

j�(2)N (t)jg(4.7)

where the processes �
(1)
N (�) and �

(2)
N (�) have been de�ned in (3.4). Similarly, we consider the

statistic

CN = sup
t2[0;1]

jUN(t)j(4.8)
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where UN is the process introduced by Cabus (2000) and de�ned by (3.5). The wild bootstrap
version of these tests is essentially the same as explained in the previous paragraph and an analogue
of Theorem 4.1 can be established following the steps of its proof in the appendix.
In our investigation of the �nite sample performance of these procedures we considered a uni-
form density for the explanatory variables X1i and X2j (i.e. r1 � r2 � 1); homoscedastic
errors in both samples given by �2

1(t) = 0 :5; �22(t) = 0 :25 and the sample sizes (n1; n2) =
(25; 25); (25; 50); (25; 100); (50; 25); (50; 50); (50; 100): For the regression functions we used the fol-
lowing scenario

(i) f1(x) = f2(x) = 0

(ii) f1(x) = 0; f2(x) = x

(iii) f1(x) = 0; f2(x) = 1(4.9)

(iv) f1(x) = 0; f2(x) = sin(2�x)

(v) f1(x) = 0; f2(x) =
p
x

(vi) f1(x) = 0; f2(x) = 2 x2

where the �rst case corresponds to the null hypothesis of equal regression curves. For the esti-
mation of the regression functions from the total and individual samples we used a local linear
estimator [see Fan and Gijbels (1996)] with the Epanechnikov kernel

K(x) =
3

4
(1� x2)I[�1;1](x);

which yields an equivalent kernel of order r = 4 [see Wand and Jones (1995), p. 125]. For the
bandwidths we used

h =
nn1�

2
2 + n2�

2
1

(n1 + n2)2

o1=5

; g = h5=4

for the estimation from the combined samples and

hi =
��2

i

ni

�1=5
; i = 1 ;2

in the Nadaraya-Watson estimators of f̂1 and f̂2 from the individual samples. The random variables
Vij used in the generation of the bootstrap sample are i.i.d. random variables with masses (

p
5 +

1)=2
p
5 and (

p
5�1)=2p5 at the points (1 � p5)=2 and (1 +

p
5)=2 (note that this distribution

satis�es E[Vij] = 0 ; E[V 2
ij] = E[V 3

ij] = 1). The corresponding results are listed in Table 4.1, 4.2, 4.3

and 4.4 for the statistics K
(1)
N ; K

(2)
N ; LN and CN ; respectively, which show the relative proportion of

rejections based on 1000 simulation runs, where the number of bootstrap replications was chosen
as B = 200. We observe a su�ciently accurate approximation of the nominal level in nearly all
cases. A comparison of the tests based on K

(1)
N and K

(2)
N shows that the application of the marked

empirical process R̂
(2)
N usually yields an improvement with respect to the power of approximately

5� 10% [see Table 4.1 and 4.2]. A further comparison with the statistic LN [essentially proposed
by Kulasekera (1995)] shows that this procedure is comparable with the test based on the marked

empirical process R̂(1)
N ; except in the case of the oscillating alternative f2(x) � f1(x) = sin(2�x);
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which is nearly not detected by LN [see Table 4.1 and 4.3]. However, the natural competitor for

LN is the statistic K
(2)
N ; because in the construction of the marked empirical processes �

(i)
N in (3.4)

we did not multiply the residuals with the density estimator of the denominator of the Nadaraya
and Watson estimate. A comparison of the tests based on LN and K

(2)
N shows a substantial better

performance (with respect to power) of the test based on the statistic K
(2)
N [see Table 4.2 and 4.3].

Similarly, a comparison with Cabus's approach shows that the test based on K
(2)
N is more powerful

than the test based on CN in all considered cases, especially under the oscillating alternative (iv)
[see Table 4.2 and 4.4]. Based on these observations and additional simulation results (which are
not displayed for the sake of brevity) we recommend to use functionals of the marked empirical

process R̂
(2)
N in the problem of testing the equality of regression curves.

n1 n2 25 50 100

� 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

(i) 0.030 0.056 0.112 0.024 0.048 0.099 0.018 0.047 0.093

(ii) 0.479 0.593 0.720 0.593 0.718 0.809 0.630 0.746 0.824

25 (iii) 0.991 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000

(iv) 0.171 0.283 0.455 0.381 0.544 0.719 0.630 0.772 0.916

(v) 0.793 0.878 0.933 0.895 0.937 0.968 0.907 0.959 0.984

(vi) 0.603 0.713 0.792 0.683 0.776 0.837 0.629 0.717 0.820

(i) 0.022 0.049 0.114 0.021 0.048 0.098 0.025 0.051 0.108

(ii) 0.657 0.766 0.840 0.828 0.886 0.931 0.921 0.949 0.973

(iii) 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 (iv) 0.180 0.295 0.458 0.441 0.598 0.785 0.755 0.868 0.959

(v) 0.920 0.960 0.983 0.987 0.991 0.997 0.999 1.000 1.000

(iv) 0.765 0.843 0.899 0.919 0.956 0.971 0.958 0.999 1.000

Table 4.1 Rejection probabilities of a wild bootstrap version of the test based on K
(1)
N [see (4.1)] for

various sample sizes and the regression functions speci�ed in (4.9). The errors are homoscedastic
and have variances �2

1 = 0 :5; �22 = 0 :25:
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n1 n2 25 50 100

� 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

(i) 0.024 0.055 0.120 0.029 0.053 0.111 0.021 0.056 0.110

(ii) 0.404 0.730 0.827 0.705 0.808 0.888 0.732 0.826 0.899

25 (iii) 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(iv) 0.163 0.290 0.579 0.381 0.537 0.741 0.617 0.779 0.908

(v) 0.883 0.942 0.972 0.952 0.977 0.989 0.960 0.983 0.990

(vi) 0.783 0.866 0.927 0.861 0.923 0.955 0.807 0.887 0.935

(i) 0.031 0.056 0.112 0.028 0.045 0.093 0.027 0.055 0.105

(ii) 0.803 0.872 0.922 0.912 0.952 0.979 0.967 0.987 0.995

(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 (iv) 0.182 0.317 0.510 0.501 0.653 0.836 0.786 0.893 0.964

(v) 0.968 0.986 0.995 0.997 0.999 1.000 0.999 1.000 1.000

(iv) 0.905 0.949 0.973 0.987 0.997 0.998 0.997 0.999 1.000

Table 4.2 Rejection probabilities of a wild bootstrap version of the test based on K
(2)
N [see (4.1)] for

various sample sizes and the regression functions speci�ed in (4.9). The errors are homoscedastic
and have variances �2

1 = 0 :5; �22 = 0 :25:

n1 n2 25 50 100

� 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

(i) 0.029 0.053 0.101 0.033 0.066 0.122 0.025 0.049 0.113

(ii) 0.594 0.704 0.810 0.649 0.759 0.857 0.667 0.777 0.834

25 (iii) 0.995 0.998 1.000 0.995 0.998 0.998 1.000 1.000 1.000

(iv) 0.037 0.057 0.120 0.022 0.034 0.065 0.009 0.017 0.042

(v) 0.865 0.934 0.966 0.913 0.948 0.976 0.891 0.939 0.976

(vi) 0.799 0.858 0.913 0.826 0.888 0.930 0.790 0.869 0.912

(i) 0.027 0.054 0.110 0.028 0.045 0.080 0.031 0.052 0.106

(ii) 0.805 0.883 0.935 0.909 0.953 0.983 0.948 0.969 0.988

(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 (iv) 0.025 0.046 0.102 0.023 0.046 0.079 0.012 0.038 0.032

(v) 0.950 0.980 0.993 0.998 0.999 0.999 0.999 1.000 1.000

(iv) 0.935 0.968 0.986 0.987 0.995 0.999 0.986 0.995 0.988

Table 4.3 Rejection probabilities of a wild bootstrap version of the test based on LN [see (4.7)] for
various sample sizes and the regression functions speci�ed in (4.9). The errors are homoscedastic
and have variances �2

1 = 0 :5; �22 = 0 :25:
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n1 n2 25 50 100

� 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

(i) 0.026 0.048 0.102 0.037 0.060 0.121 0.017 0.053 0.118

(ii) 0.582 0.702 0.808 0.636 0.757 0.844 0.653 0.763 0.834

25 (iii) 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(iv) 0.062 0.090 0.137 0.048 0.057 0.103 0.030 0.045 0.062

(v) 0.867 0.829 0.868 0.921 0.960 0.979 0.910 0.956 0.982

(vi) 0.359 0.736 0.826 0.689 0.775 0.748 0.655 0.754 0.830

(i) 0.022 0.055 0.106 0.020 0.041 0.080 0.029 0.051 0.104

(ii) 0.792 0.876 0.915 0.889 0.935 0.965 0.928 0.951 0.974

(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 (iv) 0.046 0.079 0.149 0.048 0.076 0.134 0.022 0.038 0.068

(v) 0.968 0.988 0.995 0.992 0.998 0.999 1.000 1.000 1.000

(iv) 0.854 0.906 0.955 0.929 0.957 0.980 0.941 0.961 0.983

Table 4.4 Rejection probabilities of a wild bootstrap version of the test based on CN [see (4.8)] for
various sample sizes and the regression functions speci�ed in (4.9). The errors are homoscedastic
and have variances �2

1 = 0 :5; �22 = 0 :25:

5 Proofs

For the sake of brevity we restrict ourselves to a consideration of the process R̂
(1)
N de�ned in (2.10).

The proofs for the process R̂
(2)
N are similar and therefore omitted.

5.1 Proof of Lemma 2.1

The expectation of the residuals in (2.8) is obtained as

E[eij] = E
h
E[Yij r̂(Xij)� f̂(Xij)r̂(Xij)jX11; : : : ; X2n2 ]

i
=

1

Nh

2X
`=1

nX̀
k=1

E

�
K
�X`k �Xij

h

�
(fi(Xij)� f`(X`k)) IfXij � tg

�
=

ni � 1

Nh

Z 1

0

Z t

0

K
�x� y

h

�
(fi(x)� fi(y))ri(x)ri(y) dx dy

+
n3�i
Nh

Z 1

0

Z t

0

K
�x� y

h

�
(fi(x)� f3�i(y))ri(x)r3�i(y) dx dy

and a Taylor expansion and a standard argument yield

E[eij] = �3�i

Z t

0

(fi(x)� f3�i(x))ri(x)r3�i(x)dx:
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Observing the de�nition of R̂
(1)
N we obtain

E
h
R̂

(1)
N (t)

i
= �1�2

Z t

0

(f1(x)� f2(x))r1(x)r2(x) dx

� �2�1

Z t

0

(f2(x)� f1(x))r2(x)r1(x) dx+O(hr);

which establishes the assertion of the Lemma for the process R̂
(1)
N :

2

5.2 Proof of Theorem 2.2

Recalling the de�nition of the residuals in (2.8)

eij = �i(Xij)"ij r̂(Xij) + f(Xij)r̂(Xij)� f̂(Xij)r̂(Xij)(5.1)

= �i(Xij)"ij r̂(Xij) +
1

Nh

2X
`=1

nX̀
k=1

K
�Xij �X`k

h

�
(f(Xij)� f(X`k))

� 1

Nh

2X
`=1

nX̀
k=1

K
�Xij �X`k

h

�
�`(X`k)"`k;

and observing f1 = f2 under H0 we obtain by a straightforward calculation the decomposition

R̂
(1)
N (t) = RN (t) + SN(t) +WN(t) + VN(t)(5.2)

where the processes RN ; SN ;WN and VN are de�ned by

RN (t) :=
1

N

n1X
j=1

�1(X1j)"1jr(X1j)IfX1j � tg � 1

N

n2X
j=1

�2(X2j)"2jr(X2j)IfX2j � tg(5.3)

SN(t) :=
2X

i=1

1

N2h

niX
j=1

�i(Xij)"ij

n 2X
`=1

(�1)`
nX̀
k=1

K
�Xij �X`k

h

�
IfX`k � tg

o
(5.4)

WN (t) :=
2X

`=1

(�1)`�1
2X

i=1

1

N2h

nX̀
j=1

niX
k=1

K
�X`j �Xik

h

�
(f(X`j)� f(Xik))IfX`j � tg(5.5)

VN(t) :=
2X

i=1

(�1)i�1 1

N

niX
j=1

�i(Xij)"ij(r̂(Xij)� r(Xij))IfXij � tg:(5.6)

The assertion of Theorem 2.2 now follows from the next Lemma and the following two auxiliary
results, which will be proved below.

Lemma 5.1. If the assumptions of Theorem 2.2 are satis�ed, the process

TN(t) =
p
N(RN + S 0N)
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converges weakly to a centered Gaussian process in the space D[0; 1] with covariance function given
by (2.12), where RN is given by (5.3) and the process S 0N is de�ned by

S 0N(t) :=
2X

i=1

1

N

niX
j=1

�i(Xij)"ij

�
1

h

Z t

0

K
�Xij � x

h

�
(��1r1(x) + �2r2(x)) dx

�
:(5.7)

Proof. With the notation

�ij(t) := �i(Xij)
h
(�1)i�1r(Xij)IfXij � tg+ 1

h

Z t

0

K
�Xij � x

h

�
(��1r1(x) + �2r2(x)) dx

i
(5.8)

(i = 1 ;2) we decompose the process
p
N(RN + S 0N) as follows

TN (t) =
p
N(RN(t) + S 0N (t)) =

2X
i=1

1p
N

niX
j=1

"ij�ij(t):

For the covariance we obtain by a straightforward but cumbersome calculation

Cov(TN(t); TN (s)) = E
h 1
N

n1X
j=1

�2
1(X1j)"

2
1j�1j(t)�1j(s) +

1

N

n2X
j=1

�2
2(X2j)"

2
2j�2j(t)�2j(s)

i
= �1

Z 1

0

�2
1(y)

h
r(y)Ify � tg+ 1

h

Z t

0

K
�y � x

h

�
(��1r1(x) + �2r2(x)) dx

i
h
r(y)Ify � sg+ 1

h

Z s

0

K
�y � x

h

�
(��1r1(x) + �2r2(x)) dx

i
r1(y) dy

+ �2

Z 1

0

�2
2(y)

h
�r(y)Ify � tg+ 1

h

Z t

0

K
�y � x

h

�
(��1r1(x) + �2r2(x)) dx

i
h
�r(y)Ify � sg+ 1

h

Z s

0

K
�y � x

h

�
(��1r1(x) + �2r2(x)) dx

i
r2(y) dy

= A1 + A2

where the last equation de�nes the terms A1 and A2: The �rst term gives for s � t

A1 =

Z s

0

�2
1(y)r

2(y)�1r1(y) dy

+

Z t

0

�2
1(y)r(y)

1

h

Z s

0

K
�y � x

h

�
(��1r1(x) + �2r2(x)) dx �1r1(y) dy

+

Z s

0

�2
1(y)r(y)

1

h

Z t

0

K
�y � x

h

�
(��1r1(x) + �2r2(x)) dx �1r1(y) dy

+

Z 1

0

�2
1(y)

1

h2

Z t

0

Z s

0

K
�y � x

h

�
K
�y � z

h

�
(��1r1(x) + �2r2(x))

(��1r1(z) + �2r2(z)) dx dz �1r1(y) dy
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=

Z s

0

�2
1(y)(�1r1(y) + �2r2(y))

2�1r1(y) dy

+ 2

Z s

0

�2
1(y)(�1r1(y) + �2r2(y))(��1r1(y) + �2r2(y))�1r1(y) dy

+

Z s

0

�2
1(y)(��1r1(y) + �2r2(y))

2�1r1(y) dy + o(1)

= 4

Z s

0

�2
1(y)�1r1(y)�

2
2r

2
2(y) dy + o(1):

Now a similar calculation for the second term yields the claimed covariance structure, i.e.

Cov(TN (t); TN(s)) = 4

Z s

0

�2
1(y)�1r1(y)�

2
2r

2
2(y) dy + 4

Z s

0

�2
2(y)�2r2(y)�

2
1r

2
1(y) dy + o(1)

= H(s; t) + o(1):

The central limit theorem for triangular arrays proves convergence of the �nite dimensional dis-
tributions of TN : Weak convergence now follows if

E
h
(TN (w)� TN(v))

2(TN (v)� TN(u))
2
i
� C(w � u)2 for all 0 � u � v � w � 1(5.9)

can be established [see Billingsley (1968); p. 128; or Shorack and Wellner (1986); p. 45-51]. To
this end we note that for two independent samples of i.i.d. bivariate centered random vectors
(�i; �i)i=1;:::;n1 and (
i; �i)i=1;:::;n2 the inequality

E
h� n1X

i=1

�i +
n2X
j=1


j

�2� n1X
i=1

�i +
n2X
j=1

�j

�2i
� n1E[�

2
1�

2
1 ] + 3 n21E[�

2
1]E[�

2
1 ](5.10)

+n2E[

2
1�

2
1] + 3 n22E[


2
1 ]E[�

2
1 ] + n1n2E[�

2
1]E[�

2
1 ]

+n1n2E[

2
1 ]E[�

2
1 ] + 4 n1n2E[�1�1]E[
1�1]

holds which follows by similar arguments as stated in the proof of Theorem 13.1 in Billingsley
(1968). We now apply (5.10) for the random variables

�i = "1i(�1i(w)��1i(v)) ; �i = "1i(�1i(v)��1i(u)) ;(5.11)


j = "2j(�2j(w)��2j(v)) ; �j = "2j(�2j(v)��2j(u)) :

A straightforward but cumbersome calculation yields

E[�2
1] =

Z 1

0

�2
1(x)

�
r(x)Ifv � x � wg+ 1

h

Z w

v

K(
x� z

h
)(��1r1(z) + �2r2(z)) dz

�2
r1(x) dx

=

Z w

v

�2
1(x)r

2(x)r1(x) dx

+ 2

Z w

v

�2
1(x)r(x)

1

h

Z w

v

K(
x� z

h
)(��1r1(z) + �2r2(z)) dzr1(x) dx
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+

Z 1

0

�2
1(x)

�1
h

Z w

v

K(
x� z

h
)(��1r1(z) + �2r2(z)) dz

�2
r1(x) dx

� O(1) (w � v) +O(1)

Z w

v

�1
h

Z 1

0

�2
1(x)K(

x� z

h
)(��1r1(z) + �2r2(z))r1(x) dx

�
dz

= O(1) (w � u)

and similar arguments show that the terms E[�2
1 ]; E[


2
1 ]; E[�

2
1 ]; E[�1�1] and E[
1�1] are of the same

order. Similarly we have

E[�2
1�

2
1 ] = E["411]

Z 1

0

�4
1(x)

�
r(x)Ifv � x � wg+ 1

h

Z w

v

K
�z � x

h

�
(��1r1(z) + �2r2(z)) dz

�2
�
r(x)Ifu � x � vg+ 1

h

Z v

u

K
�z � x

h

�
(��1r1(z) + �2r2(z)) dz

�2
r1(x) dx

= O(1)
(w � u)2

h2
;

E[
21�
2
1 ] = O(

1

h2
)(w � u)2:

Now, a combination of these results with (5.11) and (5.10) yields

E
h
(TN(w)� TN (v))

2(TN(v)� TN(u))
2
i
=

1

N2
E
h� n1X

i=1

�i +
n2X
j=1


j
�2� n1X

i=1

�i +
n2X
j=1

�j
�2i

=
�
O(

1

Nh2
) +O(1)

�
(w � u)2 = O(1)(w� u)2;

which establishes (5.9) and completes the proof of Lemma 5.1.
2

Lemma 5.2. If the assumptions of Theorem 2.2 are satis�ed we have for the processes SN and
S 0N de�ned by (5.4) and (5.7)

sup
t2[0;1]

jSN(t)� S 0N (t)j = op(
1p
N
):(5.12)

Lemma 5.3. If the assumptions of Theorem 2.2 are satis�ed we have for the processes VN and
WN de�ned by (5.6) and (5.5)

sup
t2[0;1]

jVN(t)j = op(
1p
N
)(5.13)

sup
t2[0;1]

jWN(t)j = op(
1p
N
):(5.14)
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In order to prove Lemma 5.2 and 5.3 we need some basic terminology from recent U -processes
theory. For more details we refer to Nolan and Pollard (1987, 1988) or Pollard (1984). Let F
denote a class of real valued (measurable) functions de�ned on a set S with envelope F: The
covering number Np(";Q;F ; F ) of F (with respect to the probability measure Q) is de�ned as the
smallest cardinality for a subclass F� of F such that

min
f�2F�

Qjf � f �jp � "pQ(F p) for all f 2 F

and

J (t; Q;F ; F ) =
Z t

0

logN2(x;Q;F ; F ) dx

is called the covering integral. The class F is called euclidean, if there exist constants A and V
such that

N1(";Q;F ; F ) � A"�V :

The class F is called VC-class if its class of graphs

D = fGf j f 2 Fg

with
Gf := f(s; t) j 0 � t � f(s) or f(s) � t � 0g

forms a polynomial class (or VC class); i.e. there exists a polynomial p(�) such that

#fD \ F jD 2 Dg � p(#F )

for every �xed �nite subset F of S: We �nally note that VC classes are euclidean [see Pollard
(1984), Lemma II 25] and that sums of euclidean classes are euclidean [see Nolan and Pollard
(1987), Corollary 17].

5.3 Proof of Lemma 5.3

We will restrict ourselves to the process VN considered in (5.13), the remaining case (5.14) is very
similar and left to the reader. Recalling the de�nition of VN in (5.6) we obtain the decomposition

VN(t) = V (1)
N (t) + V (2)

N (t) + V (3)
N (t) + V (4)

N (t) + op(
1p
N
);(5.15)

where

V
(1)
N (t) =

1

N2h

n1X
j=1

n1X
k=1

�1(X1j)"1j

�
K
�X1j �X1k

h

�
� hr1(X1j)

�
IfX1j � tg(5.16)

V
(2)
N (t) =

1

N2h

n1X
j=1

n2X
k=1

�1(X1j)"1j

�
K
�X1j �X2k

h

�
� hr2(X1j)

�
IfX1j � tg(5.17)
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V
(3)
N (t) =

1

N2h

n2X
j=1

n1X
k=1

�2(X2j)"2j

�
K
�X2j �X1k

h

�
� hr1(X2j)

�
IfX2j � tg(5.18)

V
(4)
N (t) =

1

N2h

n2X
j=1

n2X
k=1

�2(X2j)"2j

�
K
�X2j �X2k

h

�
� hr2(X2j)

�
IfX2j � tg;(5.19)

the remainder in (5.15) is obtained replacing �i by ni=N and vanishes uniformly with respect to
t 2 [0; 1]: The assertion of Lemma 5.3 now follows by showing that all terms in (5.15) are of order
op(

1p
N
) uniformly with respect to t 2 [0; 1]:

Lemma 5.3a. If the assumptions of Theorem 2.2 are satis�ed we have for the statistics V (1)
N and

V (4)
N de�ned by (5.16) and (5.19)

sup
t2[0;1]

jV (1)
N (t)j = op(

1p
N
)

sup
t2[0;1]

jV (4)
N (t)j = op(

1p
N
):

Proof (of Lemma 5.3a). Both terms are treated exactly in the same way and we only consider

V
(1)
N which can be written as

V
(1)
N (t) =

1

N2h

n1X
j=1

n1X
k=1
k 6=j

�1(X1j)"1j

�
K
�X1j �X1k

h

�
� hr1(X1j)

�
IfX1j � tg

+
1

N2h

n1X
j=1

�1(X1j)"1j (K(0)� hr1(X1j)) IfX1j � tg

=: IN(t) + I
(1)
N (t)(5.20)

where the last line de�nes the processes IN and I
(1)
N ; respectively. For the lastnamed term we

obtain by a straightforward calculation

sup
t2[0;1]

jI(1)N (t)j = Op(
1

Nh
) = op(

1p
N
)(5.21)

where we have used the assumptions for the bandwidth stated in (2.3). The treatment of the
remaining term IN in (5.20) is more complicated and requires some basic results from the treatment
of U -processes [see e.g. Nolan and Pollard (1987)]. To be precise observe that

p
NIN � �

3=2
1

2h
Un1(') = op(1)(5.22)
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uniformly with respect to t 2 [0; 1]; where Un1 is a U -process de�ned by

Un1(') :=

p
n1

n1(n1 � 1)

n1X
i=1

n1X
j=1
i6=j

'(�i; �j)(5.23)

with �i = ( X1i; "1i) and symmetric kernel

'(�i; �j) = "1j

�
K
�X1i �X1j

h

�
� hr1(X1j)

�
�1(X1j)IfX1j � tg(5.24)

+ "1i

�
K
�X1i �X1j

h

�
� hr1(X1i)

�
�1(X1i)IfX1i � tg:

Following Nolan and Pollard (1988) we introduce the notation '1(x) = E['(�1; �2)j�2 = x] and
obtain a Hoe�ding decomposition for the process Un1 ; i.e.

Un1(') = Un1( ~') +
2p
n1

n1X
i=1

'1(�i)(5.25)

where
~'(x; y) = '(x; y)� '1(x)� '1(y)(5.26)

(note that E['(�1; �2)] = 0): Finally, consider a class of functions

F =
n
'h;t j t 2 [0; 1]; h > 0

o
;(5.27)

where 'h;t : [0 ;1]� R � [0; 1]� R ! R is de�ned by

'h;t(x; y) = x2

�
K
�x1 � y1

h

�
� hr1(x1)

�
�1(x1)Ifx1 � tg(5.28)

+ y2

�
K
�x1 � y1

h

�
� hr1(y1)

�
�1(y1)Ify1 � tg:

It can be shown by a tedious calculation and similar arguments as in Noland and Pollard (1987),
Lemma 16, and Pollard (1984), Examples II 26, II 38 that the class F and the induced class

PF = f'1 j '1(x) = E['(�1; �2)j�2 = x]; ' 2 Fg(5.29)

are euclidean. Note that the proof of this property requires the special assumption on the kernel
K stated in the paragraph following equation (2.4) [see Pollard (1984), Example II 38 and problem
II 28, who considered the case of a decreasing kernel function on [0;1); which is a special case of
the situation considered here]. It therefore follows that for 
 > 0 the covering integral satis�es

J (
;Q
Q;F ; F ) � a1
 � b1(
 log 
 � 
)

J (
;Q; PF ; PF ) � a2
 � b2(
 log 
 � 
)
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(for given constants a1; b1; a2; b2) and consequently the assumptions of Theorem 5 in Nolan and
Pollard (1988) are full�lled. Now the second part in the proof of this theorem shows

sup
'2F

jUn1( ~')j = Op(
1p
N
):(5.30)

The assertion of the �rst part in Lemma 5.3a now follows from (5.30), (5.25), (5.22), (5.20) and
(5.21) if the estimate

sup
t2[0;1]

j 1p
n1

n1X
i=1

1

h
'1;t;hn1

(�i)j = op(1)(5.31)

can be established, where

'1;t;h(�) = '1(�i) = "1i

�Z
K(

x�X1i

h
)r1(x) dx� hr1(X1i)

�
�1(X1i)IfX1i � tg :(5.32)

To this end we make the dependence of the bandwidth from the sample size explicit by writing
h = hn1 and introduce the notation

Fn1 :=
n
'1;t;hn1

���t 2 [0; 1]
o
:(5.33)

We use similar arguments as given in the proof of Theorem 37 in Pollard (1984, p. 34). To be
precise de�ne

�n1 =
1p
n1h2rn1

; �n1 =
q
ch2r+1

n1

where c is a constant chosen such that

P ('2
1;t;hn1

) =

Z t

0

�2
1(z)

� Z
K
�x� z

hn1

�
r1(x) dx� hn1r1(z)

�2
r1(z) dz

= h2n1

Z t

0

�2
1(z)

� Z
K(u)(r1(z + hn1u)� r1(z)) du

�2
r1(z) dz � h2n1h

2r
n1
� c:

Let F1 denote the envelope of the class PF de�ned by (5.29) (note that Fn1 � PF for all n1 2 N)
and assume without loss of generality 0 < k1 < PF1 < k2: By the strong law of large numbers we
have

IP (jPn1F1 � PF1j > k1
2
)

N!1�! 0

where Pn1 is the distribution with equal masses at the points �1; : : : ; �n1: Therefore it is su�cient
to prove the assertion (5.31) on the set fjPn1F1�PF1j � k1

2
g for which k1

2
< Pn1F1 <

k1
2
+k2: The

following calculations are restricted to this set without mentioning this explicitly. Let P �
n denote

the symmetrization of Pn [see Pollard (1984), p. 15], then we obtain for "n1 = "�2n1�n1 (" > 0)

IP
�

sup
'2Fn1

jPn1(')j > 8"n1(
k1
2
+ k2)

�
� 4IP

�
sup
'2Fn1

jP �
n1(')j > 2"n1(

k1
2
+ k2)

�
(5.34)

� 4IP
�

sup
'2Fn1

jP �
n1
(')j > 2"n1Pn1F1

�
:
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Conditioning on � = ( �1; : : : ; �n1) it therefore follows

IP
�

sup
'2Fn1

jP �
n1(')j > 2"n1Pn1F1

����� � min
n
2N1("n1; Pn1;Fn1; F1) exp

�
� 1

2

n1"
2
n1
(Pn1F1)

2

maxj Pn1g
2
j

�
; 1
o
;

where the maximum runs over all m = N1("n1; Pn1;Fn1; F1) functions of the approximating class
fg1; : : : ; gmg. Integrating, observing that Pn1F1 >

k1
2
and that PF is euclidean yields

IP
�

sup
'2Fn1

jP �
n1(')j > 2"n1Pn1F1

�
� 2A"�Vn1 exp

�
� 1

8

k21 "
2
n1

64 �2n1

�
(5.35)

+ IP
�

sup
'2Fn1

Pn1('
2) > 64�2n1

�
with positive constants A and V: The �rst term can be treated similarly as in Pollard (1984, p.
34) and converges to 0: The treatment of the second term is di�erent because ' 2 Fn1 does not
necessarily implies j'j � 1: We obtain for the expectation

E
��� sup
'2Fn1

Pn1('
2)
��� � 1

n1
E
��� n1X
i=1

"21i

�Z
K(

x�X1i

hn1
)r1(x) dx� hn1r1(X1i)

�2
�2
1(X1i)

���
= O(h2r+2

n1
)

and Markov's inequality yields (using the de�nition of �n1)

IP
�

sup
'2Fn1

Pn1('
2) > 64�n1

�
= O(hn1)(5.36)

A combination of (5.34), (5.35) and (5.36) �nally gives

IP
� 1

�2n1�n1
sup
'2Fn1

jPn1(')j > "
�
! 0 if n1 !1

which establishes the remaining estimate (5.31) [note that �2n1�n1 = O(hn1=
p
n1)]:

Lemma 5.3b If the assumptions of Theorem 2.2 are satis�ed we have for the statistics V
(2)
N and

V
(3)
N de�ned by (5.17) and (5.18)

sup
t2[0;1]

jV (2)
N (t)j = op(

1p
N
)

sup
t2[0;1]

jV (3)
N (t)j = op(

1p
N
):

Proof. The proof essentially follows the arguments given in the proof of Lemma 5.3a and we
will restrict ourselves indicating the main di�erence, which is a derivation of an analogue of the
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estimate (5.30). Because V
(2)
N and V

(3)
N are U -processes formed from two samples the results

derived in the proof of Theorem 5 of Nolan and Pollard (1988) are not directly applicable. For
this reason we indicate the derivation of an analoguous result for two sample U -processes. The
application of this result to the two sample U -processes obtained from V

(2)
N and V

(3)
N completes the

proof of Lemma 5.3b and follows by exactly the same arguments as given in the proof of Lemma
5.3a.
To be precise let P;Q denote distributions on the spaces X and Y and consider a class of real
valued measurable functions F de�ned on X �Y such that (P 
Q)(') = 0 for all ' 2 F . Assume
that there exists an envelope F of F such that (P 
 Q)(F ) < 1: Let X1; : : : ; X2n � P and
Y1; : : : ; Y2m � Q denote independent samples and �1; : : : ; �n and �1; : : : ; �m denote independent
samples (also independent from the Xi and Yj) such that

IP (�i = 1) = IP (�i = �1) = 1 =2;

IP (�i = 1) = IP (�i = �1) = 1=2:

Introducing the notation

�i = If�i = 1 gX2i + If�i = �1gX2i�1

�0i = If�i = 1 gX2i�1 + If�i = �1gX2i

�j = If�j = 1 gY2j + If�j = �1gY2j�1

� 0j = If�j = 1 gY2j�1 + If�j = �1gY2j
we obtain again independent samples �1; : : : ; �n; �

0
1; : : : ; �

0
n � P and �1; : : : ; �m; �

0
1; : : : ; �

0
m � Q.

For a function ' 2 F consider the two sample U -statistic

Snm(') :=
nX
i=1

mX
j=1

'(�i; �j);(5.37)

and its standardized version

Unm(') :=

p
n +m

nm
Snm('):(5.38)

Let

'1(x) = E['(�1; �1)j�1 = x]

'2(y) = E['(�1; �1)j�1 = y]

and de�ne the kernel
~'(x; y) = '(x; y)� '1(x)� '2(y)(5.39)

then it follows that the statistic Unm( ~') is degenerate [note that E['(�i; �j)] = 0 by the de�niton
of F ]: De�ning

Tnm(') :=
nX
i=1

mX
j=1

h
'(�i; �j) + '(�i; �

0
j) + '(�0i; �j) + '(�0i; �

0
j)
i

(5.40)

=
nX
i=1

mX
j=1

'(X2i; Y2j) + '(X2i; Y2j�1) + '(X2i�1; Y2j) + '(X2i�1; Y2j�1)
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and Pn and Qm as the empirical distributions based on �1; : : : ; �n and �1; : : : ; �m; respectively, it
can be shown by similar arguments as in Nolan and Pollard (1988) that the conditions

sup
n;m

E[J (1; Tnm;F ; F )2] < 1(5.41)

J (1; P 
Q;F ; F ) < 1(5.42)

sup
n
E[J (1; Pn; PF ; PF )2] < 1(5.43)

sup
m

E[J (1; Qm; QF; QF )2] < 1(5.44)

imply the estimate

E
h
sup
'2F

jUnm( ~')j
i
= O(

1p
N
)

which gives

sup
'2F

jUnm( ~')j = Op(
1p
N
):(5.45)

In the speci�c situation of V
(2)
N or V

(3)
N the assumptions (5.41) - (5.44) now follows, because the

classes F ; PF and QF are euclidean [see the �rst part in the proof of Lemma 5.3a].
2

5.4 Proof of Lemma 5.2

Recalling the de�nition of SN and S 0N in (5.4) and (5.7), respectively, it follows that the di�erence
SN � S 0N is a linear combination of four terms of the form

2

hn`nk

nX̀
i=1

"`i

� nkX
j=1
i6=j

K
�X`i �Xkj

h

�
IfXkj � tg �

Z t

0

K
�X`i � x

h

�
rk(x) dx

�
�`(X`i)

which can either be represented as a degenerate one-sample U -process [` = k = 1 ;and ` = k = 2]
or a degenerate two-sample U -process [` = 1 ; k= 2 and ` = 2 ; k= 1] :It now follows either by
the arguments in the proof of Theorem 5 in Nolan and Pollard (1988) or by its generalization in
(5.41) - (5.44) and (5.45) that the corresponding terms vanish at a rate Op(

1
Nh

) if the underlying
class of indexing functions is euclidean. For example, in the case ` = k = 1 the symmetric kernel
is given by

'(�i; �j) = "1i

�
K
�X1i �X1j

h

�
IfX1j � tg �

Z t

0

K
�X1i � x

h

�
r1(x) dx

�
�1(X1i)

+ "1j

�
K
�X1i �X1j

h

�
IfX1i � tg �

Z t

0

K
�X1j � x

h

�
r1(x) dx

�
�1(X1j);

where �i = ( X1i; "1i) and the degenerate one sample U -process is given by

U (1;1)
n1;n1

(') =
1

n2
1

X
i6=j

'(�i; �j):
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Note that '1(x) = E['(�1; �2)j�2 = x] = 0 which implies ~' = ' and PF = f0g; which is obviously
euclidean. A cumbersome calculation shows that F is also euclidean and the arguments in the
proof of Theorem 5 in Nolan and Pollard (1988) yield

1

h
sup
'2F

jU (1;1)
n1;n1(')j =

1

h
Op(

1

N
) = op(

1p
N
):

The other three cases are treated exactly in the same way establishing the assertion of Lemma
5.2.

2

5.5 Proof of Theorem 3.2 and 3.3

The proof follows essentially the steps given for the proof of Theorem 2.2 and therefore we restrict
ourselves to the calculation of the asymptotic covariance structure of the process de�ned by (3.2).
A straightforward calculation yields

Cov(�1(t); �1(s)) =
1

n1n2
2h

2

bn1sc^bn1tcX
i=1

n2X
j;`=1

K

�
t1i � t2j

h

�
K

�
t1i � t2`

h

�
�2
1(t1i)

r22(t1i)

+
1

n1n2
2h

2

bn1scX
i=1

bn1tcX
k=1

n2X
j=1

K

�
t1i � t2j

h

�
K

�
t1k � t2j

h

�
�2
2(t2j)

r2(t1i)r2(t1k)
+ o(1)

=
1

h2

Z R�1
1

(s^t)

0

Z 1

0

Z 1

0

K

�
x� y

h

�
K

�
x� z

h

�
�2
1(x)

r22(x)
r1(x)r2(y)r2(z)dxdydz

+
n1

n2

1

h2

Z R�1
1

(t)

0

Z R�1
1

(s)

0

Z 1

0

K

�
x� y

h

�
K

�
z � y

h

�
�2
2(y)r1(x)r2(y)r1(z)

r2(x)r1(z)
dydxdz

+ o(1)

= m12(s; t) + o(1)

where m12 is de�ned by (3.3).
2

5.6 Proof of Theorem 4.1

The proof essentially follows the proof of Theorem 2.2 and we will only sketch the main arguments.
For the sake of simplicity we restrict ourselves to the process R̂

(1)�
N (the remaining case is treated

exactly in the same way) and start with the decomposition

R̂
(1)�
N (t) = R�

N(t) + S�N(t) +W �
N (t) + V �

N(t)(5.46)
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where the processes on the right are de�ned by

R�
N (t) :=

1

N

n1X
j=1

"�1jr(X1j)IfX1j � tg � 1

N

n2X
j=1

"�2jr(X2j)IfX2j � tg(5.47)

S�N(t) :=
2X

i=1

1

N

niX
j=1

"�ij

 
1

Nh

2X
`=1

(�1)`
nX̀
k=1

K
�Xij �X`k

h

�
IfX`k � tg

!
(5.48)

W �
N(t) :=

2X
`=1

(�1)`�1
2X

i=1

1

N2h

nX̀
j=1

niX
k=1

K
�X`j �Xik

h

�
( bfg(X`j)� bfg(Xik))IfX`j � tg(5.49)

V �
N(t) :=

2X
i=1

(�1)i�1 1

N

niX
j=1

"�ij(r̂h(Xij)� r(Xij))IfXij � tg:(5.50)

We will prove at the end of this section the following result.

Lemma 5.4. If the assumptions of Theorem 2.2 and (4.6) are satis�ed we have for all � > 0

IP
�p

N sup
t2[0;1]

jV �
N(t)j > �

���YN

�
= op(1)(5.51)

IP
�p

N sup
t2[0;1]

jS�N(t)� S 0�N(t)j > �
���YN

�
= op(1)(5.52)

IP
�p

N sup
t2[0;1]

jW �
N(t)j > �

���YN

�
= op(1):(5.53)

where the process S 0�N is de�ned by

S 0�N (t) :=
1

N

2X
i=1

n1X
j=1

"�ij

�
1

h

Z t

0

K
�Xij � x

h

�
(��1r1(x) + �2r2(x)) dx

�
:(5.54)

Observing Lemma 5.4 it follows that the processes

T
(1)�
N :=

p
N(R�

N + S 0�N )

and
p
NR̂

(1)�
N are (conditionally on YN) asymptotically equivalent in probability, i.e.

IP
�
sup
t2[0;1]

j
p
NR̂

(1)�
N (t)� T

(1)�
N (t)j > �

���YN

�
= op(1):(5.55)

The following lemma shows that T
(1)�
N in (5.55) can be replaced by

T 0N(�) :=
2X

i=1

1p
N

niX
j=1

�ij(�)Vij"ij(5.56)

where the quantities �ij are de�ned in (5.8).

27



Lemma 5.5. If the assumptions of Theorem 2.2 and (4.6) are satis�ed we have

IP
�
sup
t2[0;1]

jT (1)�
N (t)� T 0N(t)j > �

���YN

�
= op(1):(5.57)

The assertion of Theorem 4.1 now follows from (5.57) and (5.55) which demonstrate that it is
su�cient to consider the asymptotic behaviour of the process T 0N (�) de�ned in (5.56). But this
process can be treated with the conditional multiplier theorem in Section 2.9 of van der Vaart
and Wellner (1996), which establishes that conditionally on YN the process T 0N converges to the
same Gaussian process Z(1) in probability as the process TN discussed in the proof of Theorem
2.2. The proof of Theorem 4.1 is now concluded giving some more details for the proof of the
auxiliary results in Lemma 5.4 and 5.5.

Proof of Lemma 5.4. For a proof of (5.51) we show

ZN : =
p
N sup

t2[0;1]
jV �

N(t)j = op(1);(5.58)

the assertion is then obvious from Markov's inequality, i.e.

IP
�
IP
�
ZN > �

���YN

�
> "

�
� 1

"
E
h
IP
�
ZN > �

���YN

�i
=

1

"
IP
�
ZN > �

�
= o(1):

To this end we note that "�ij = Vij "̂ij = Vij"ij�i(Xij) + Vij(f(Xij) � bfg(Xij)) and obtain the
decomposition

V �
N = V

�(1)
N + V

�(2)
N(5.59)

where

V
�(1)
N (t) =

1

N

2X
i=1

(�1)i�1

niX
j=1

Vij"ij�i(Xij)(r̂h(Xij)� r(Xij))IfXij � tg(5.60)

V �(2)
N (t) =

1

N

2X
i=1

(�1)i�1

niX
j=1

Vij(f(Xij)� bfg(Xij))(r̂h(Xij)� r(Xij))IfXij � tg:(5.61)

The term in (5.60) can be treated by the same arguments given in the proof of Lemma 5.3 for the
term VN(�) (note that the only di�erence is the additional factor Vij) which gives

p
N sup

t2[0;1]
jV �(1)

N (t)j = op(1):(5.62)

For the second term we use Cauchy's inequality and obtain

E
h
sup
t2[0;1]

jV �(2)
N (t)j

i
�

2X
i=1

1

N

niX
j=1

EjVijj �
�
E
h
(f(Xij)� bfg(Xij))

2
i
� E
h
(r̂h(X1j)� r(X1j))

2
i�1=2

= O
� 1

N
p
gh

�
= o(

1p
N
);
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which yields in combination with (5.62) the assertion (5.58) and completes the proof of the �rst
part of Lemma 5.4.

For a proof of the estimate (5.52) recall the de�nition of S 0�N in (5.54) and observe

S�N � S 0�N = S
�(1)
N + S

�(2)
N

where

S
�(1)
N (t) :=

2X
i=1

1

N

niX
j=1

Vij"ij�i(Xij)
h�1
Nh

n1X
k=1

K
�Xij �X1k

h

�
IfX1k � tg

+
1

Nh

n2X
k=1

K
�Xij �X2k

h

�
IfX2k � tg � 1

h

Z t

0

K
�Xij � x

h

�
(��1r1(x) + �2r2(x)) dx

i
S
�(2)
N (t) :=

2X
i=1

1

N

niX
j=1

Vij(f(Xij)� bfg(Xij))
h�1
Nh

n1X
k=1

K
�Xij �X1k

h

�
IfX1k � tg

+
1

Nh

n2X
k=1

K
�Xij �X2k

h

�
IfX2k � tg � 1

h

Z t

0

K
�Xij � x

h

�
(��1r1(x) + �2r2(x)) dx

i
:

The �rst term can be treated as in the proof of Lemma 5.2, which yields

p
N sup

t2[0;1]
jS�(1)N (t)j = op(1):(5.63)

The second term is estimated as follows

sup
t2[0;1]

jS�(2)N (t)j �
2X

i=1

1

N

niX
j=1

jVijj � j f(Xij)� bfg(Xij)j
n
U

(1)
Nij + U

(2)
Nij

o
(5.64)

where

U
(`)
Nij =

1

h
sup
t2[0;1]

��� 1
N

nX̀
k=1

K
�Xij �X`k

h

�
IfX`k � tg �

Z t

0

K
�Xij � z

h

�
�`r`(z) dz

��� ; ` = 1 ;2 :

The terms U
(`)
Nij (i; ` = 1 ;2) can be treated by Theorem 37 in Pollard (1984). More precisely, for

the �rst term we note

sup
t;x2[0;1]

��� 1
n1

n1X
k=1

K
�x�X1k

h

�
IfX1k � tg �

Z t

0

K
�x� z

h

�
r1(z) dz

��� = sup
'2Fn1

jPn1'� P' j

where Pn1 denotes the empirical distribution of the �rst sample X11; : : : ; X1n1 and

Fn1 =
n
'hn1 ;t;x

j 'hn1 ;t;x
(y) = K

�x� y

hn1

�
Ify � tg; x; t 2 [0; 1]

o
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(note that we made the dependency of the bandwidth on the sample size explicit, i.e. h = hn1):
Now Fn1 is a subset of a VC-class and the arguments used in the Theorem 37 of Pollard (1984)
yield for the sequences

�n1 =
p
g ; �2n1 = c � hn1;

the estimate

U
(1)
nij �

1

hn1
sup
'2Fn1

jPn1'� P' j = 1

hn1
op(�

2
n1
�n1) = op(

p
g):

By a similar argument for the terms U
(2)
Nij (5.64) simpli�es to

sup
t2[0;1]

jS�(2)N (t)j � op(
p
g) �

2X
i=1

1

N

niX
j=1

jVijj � j f(Xij)� bfg(Xij)j = op(
1p
N
)

where the last estimate follows from Markov's inequality. A combination of this estimate with
(5.63) gives

p
N sup

t2[0;1]
jS�N(t)� S 0�N(t)j = op(1)

and the assertion (5.52) follows again from Markov's inequality.
2

Proof of Lemma 5.5. De�ning (i = 1 ;2)

~�ij(t) := ( �1)i�1r(Xij)IfXij � tg+ 1

h

Z t

0

K
�Xij � x

h

�
(��1r1(x) + �2r2(x)) dx(5.65)

and recalling the de�nition of T 0N in (5.56) we obtain

T
(1)�
N (t)� T 0N (t) =

2X
i=1

1p
N

niX
j=1

~�ij(t)Vij(f(Xij)� bfg(Xij))

=
2X

i=1

1p
N

niX
j=1

~�ij(t)Vij(f(Xij)� bfg(Xij))
1

r(Xij)
(r(Xij)� r̂g(Xij))

+
2X

i=1

1p
N

niX
j=1

~�ij(t)Vij(f(Xij)� bfg(Xij))
r̂g(Xij)

r(Xij)

= AN(t) + BN(t)(5.66)

[note that �ij(t) = ~�ij(t)�i(Xij); by the de�nition of �ij in (5.8)]. The �rst term is estimated as
follows

sup
t2[0;1]

jAN(t)j �
2X

i=1

1p
N

niX
j=1

sup
t2[0;1]

j ~�ij(t)j 1

r(Xij)
jf(Xij)� bfg(Xij)j � j r(Xij)� r̂g(Xij)j

= Op

� 1p
Ng

�
= op(1)
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where we used Cauchy's inequality and the fact that ~�ij(�) is uniformly bounded. Now Markov's
inequality yields conditionally on the sample YN

sup
t2[0;1]

jAN(t)j = op(1):(5.67)

The second term BN(t) in (5.66) consists of expressions of the form

~BN (t) :=
1

n1

p
N

n1X
j=1

n1X
k=1

~�1j(t)
1

g
K
�X1j �X1k

g

�
(f(X1j)� f(X1k))V1j

1

r(X1j)
(5.68)

+
1

n1

p
N

n1X
j=1

n1X
k=1

~�1j(t)
1

g
K
�X1j �X1k

g

�
"1k�1(X1k)V1j

1

r(X1j)

which are all treated similary. We obtain

~BN(t) =
4X

`=1

I`(t)(5.69)

where

I1(t) :=
1

n1

p
N

n1X
j=1

n1X
k=1

IfX1j � tg1
g
K
�X1j �X1k

g

�
(f(X1j)� f(X1k))V1j

I2(t) :=
1

n1

p
N

n1X
j=1

n1X
k=1

IfX1j � tg1
g
K
�X1j �X1k

g

�
"1k�1(X1k)V1j

I3(t) :=
1

n1

p
N

n1X
j=1

n1X
k=1

1

h

Z t

0

K
�X1j � x

h

�
(��1r1(x) + �2r2(x)) dx

1

g
K
�X1j �X1k

g

�
(f(X1j)� f(X1k))V1j

1

r(X1j)

I4(t) :=
1

n1

p
N

n1X
j=1

n1X
k=1

1

h

Z t

0

K
�X1j � x

h

�
(��1r1(x) + �2r2(x)) dx

1

g
K
�X1j �X1k

g

�
"1k�1(X1k)V1j

1

r(X1j)
:

The processes I1(�) and I2(�) are treated as in the proof of Lemma 5.3a writing I`(t) as one sample
U -process 1

g
UN (') indexed by an euclidean class of functions which gives

sup
t2[0;1]

jI`(t)j = op(1); ` = 1 ;2:(5.70)

Similarly we have I4(t) =
1
gh
UN('); where ' is the symmetric kernel de�ned by

'(�j; �k) :=
1

2

Z t

0

K
�X1j � x

h

�(��1r1(x) + �2r2(x))

r(X1j)
dx �K

�X1j �X1k

g

�
"1k�1(X1k)V1j(5.71)

+
1

2

Z t

0

K
�X1k � x

h

�(��1r1(x) + �2r2(x))

r(X1k)
dx �K

�X1j �X1k

g

�
"1j�1(X1j)V1k
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and �j = ( X1j; "1j; V1j). A straightforward but tedious calculation shows that the class F of
functions de�ned by (5.71) is euclidean which gives

sup
t2[0;1]

jI4(t)j = op(1):

By a similar argument for the process I3(�) and (5.70) we obtain from (5.69) supt2[0;1] j ~BN(t)j =
op(1): The remaining terms in BN (t) are treated exactly in the same way, and it follows

sup
t2[0;1]

jBN(t)j = op(1)

and the assertion of Lemma 5.5 follows from (5.66), (5.67) and Markov's inequality.
2
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