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Abstract

The paper explores the relationship between various orderings

among probability forecasts that have been suggested in the

literature. It is shown that well calibrated forecasters are in

general not comparable according to the domination ordering

suggested by Vardeman and Meeden (1983), that the orderings

based on ROC-curves and Gini-curves are identical, and that the

domination ordering in conjunction with semicalibration implies

the rest.
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1 The problem and notation

Let 0 = a1 < a2 < ... < ak = 1 be various probabilities of some event. In

weather forecasting, the event could be: ”It will rain tomorrow”. In medicine,

the event could be ”Patient x will die”. In the banking industry, the event

could be ”Borrower y will default”. For concreteness, and to acknowledge the

increasing importance of default predictions in the banking industry, the dis-

cussion will be couched in terms of defaults and non-defaults below. Otherwise,

the notation follows Vardeman and Meeden (1983).

The paper takes the mechanism employed for the predictions as given. It is

not concerned with the problem of how probability forecasts are produced (see

e.g. Crouhy et al. 2001 for a survey of how risk rating systems operate in

the banking industry). Rather, its point of departure is the discrete bivari-

ate probability function r(θi, aj), i = 1, 2, j = 1, ..., k, resulting from some

such method, whichever it may be, with θ = 1 indicating default and θ = 0

indicating non-default. The following additional notation will be used:

p(1) :=
∑

j r(1, aj) = overall relative frequency of default.

p(0) :=
∑

j r(0, aj) = overall relative frequency of no default.

q(aj) := relative frequency with which default probability forecast

aj is made.

p(1|aj) := r(1,aj)

q(aj)
= conditional relative frequency of default given

probability forecast aj.

p(0|aj) := r(0,aj)

q(aj)
= conditional relative frequency of no default

given probability forecast aj.

q(aj|1) := r(1,aj)

p(1)
= conditional relative frequency of predicted de-

fault probability aj given default.

q(aj|0) := r(0,aj)

p(0)
= conditional relative frequency of predicted de-

fault probability aj given no default.
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The problem is: given two forecasters A and B, characterized by their re-

spective bivariate probability functions rA(θi, aj) and rB(θi, aj), which one is

”better”?

One sensible requirement is that among borrowers with predicted default prob-

ability aj, the relative percentage of defaults will be roughly equal to aj. For-

mally:

aj
!
= p(1|aj) =

r(1, aj)

q(aj)

whenever q(aj) > 0. Such forecasters are called ”well calibrated” (Dawid 1982).

However, calibration, though desirable, is not sufficient for a useful forecast.

For instance, a probability forecaster attaching default probability p(1) to all

borrowers is well calibrated but otherwise quite useless. Other criteria which

have been suggested in the literature consider the concentration of default

in the ”bad” grades or the concentration of the non-defaults in the ”good”

grades, or whether A’s forecasts can in some sense be derived from B’s. Below

we examine the relationships between theses orderings and show that most of

them are equivalent for well calibrated forecasters, but can easily contradict

each other otherwise.

2 Partial orderings among probability

forecasters

Let rA(θi, aj) and rB(θi, aj) be the joint probability functions of forecasters

A and B, respectively, with a common nondegenerate marginal distribution

p(θ). First, we confirm ourselves to forecasters which are both well calibrated.

Following DeGroot and Fienberg (1983), we say that A is more refined than

B, in symbols: A ≥R B, if there exists a k× k Markov matrix M (i.e. a matrix

with nonnegative entries whose columns sum to unity) such that

qB(ai) =
k∑

j=1

Mijq
A(aj), and (1)
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aiq
B(ai) =

k∑
j=1

Mijajq
A(aj), i = 1, . . . , k. (2)

Equation (1) means that, given A’s forecast aj, an additional independent

randomisation is applied according to the conditional distribution Mij (j =

1, ..., k) which produces forecasts with the same probability function as that of

B. Condition (2) ensures that the resulting forecast is again well calibrated.

We say that A is strictly more refined than B (in symbols: A >R B) if A ≥R B

and rA(θi, aj) �= rB(θi, aj) for some i and j. The same convention will also be

used for the other partial orderings below.

DeGroot and Fienberg (1983, Theorem 1) show that, for well calibrated fore-

casters A and B,

A ≥R B ⇐⇒
j−1∑
i=1

(aj − ai)[q
A(ai) − qB(ai)] ≥ 0, j=1,...,k-1. (3)

The concept of refinement easily extends to forecasters which are not neces-

sarily well calibrated. Again following DeGroot and Fienberg (1983), we say

that A is sufficient for B – in symbols: A ≥s B – if, for some Markov matrix

M ,

qB(ai|θ) =
k∑

j=1

Mijq
A(aij|θ), i = 1, . . . , k; θ = 0, 1. (4)

Vardeman and Meeden (1983) suggest to alternatively order probability fore-

casters according to the concentration of defaults in the ”bad” grades. This

will here be called the VM-default order. Formally:

A ≥V M(d) B : ⇐⇒
j∑

i=1

qA(ai|1) ≤
j∑

i=1

qB(ai|1), j=1,...,k. (5)

Or to put this differently: A dominates B in the Vardeman-Meeden default

ordering if its conditional distribution, given default, first-order stochastically

dominates that of B.
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The same can be done for the non-defaults. A is better than B in the VM-non-

default sense if non-defaults are more frequent in the ”good” grades. Formally:

A≥V M(nd)B ⇐⇒
j∑

i=1

qA(ai|0) ≥
j∑

i=1

qB(ai|0), j=1,...,k. (6)

Finally, A dominates B in the Vardeman-Meeden sense (in symbols A≥V MB)

if both A≥V M(d)B and A≥V M(nd)B.

A related criterion which seems to be favoured in the banking community (see

e.g. Falkenstein et al. 2000) is based on joining the points

(0, 0),


j−1∑

i=0

q(ak−i),
j−1∑
i=0

q(ak−i|1)


 , j = 1, ..., k (7)

by straight lines. The resulting plot is variously called the power curve, the

Lorenz curve, the Gini curve, or the cumulative accuracy profile, and a fore-

caster A is considered better than a forecaster B in this - the Gini-default-sense

(formally: A ≥G(d) B) - if A’s Gini curve is nowhere below that of B.

Similar to the VM-criterion, this can likewise be done for non-defaults, by

joining the points

(0, 0),


 j∑

i=1

q(ai),
j∑

i=1

q(ai|0)


 , j = 1, ..., k. (8)

A is then considered better than B in the Gini-non-default sense (in symbols:

A≥G(nd)B), if A’s non-default Gini-curve is nowhere below that of B. And we

say that A dominates B in the Gini sense (in symbols A≥GB) if A≥G(d)B and

A≥G(nd)B.

A final criterion is based on the receiver-operating-characteristic curve (ROC-

curve) defined by the points

(0, 0),


j−1∑

i=0

q(ak−i|0),
j−1∑
i=0

q(ak−i|1)


 , j = 1, ..., k. (9)
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This is often used in clinical medicine (see e.g. Zweig and Campbell 1993) to

discriminate between competing diagnostic tests. A probability forecaster A

is then better than probability forecaster B in the ROC-sense (in symbols:

A≥ROCB) if its ROC-curve lies nowhere below that of B.

The area under the ROC-curve is an obvious indicator of the usefulness of a

probability forecast: the larger the area, the better the forecast. It also has a

nice interpretation: If all defaults and all non-defaults are paired, it is equal

to the probability that in one such randomly chosen pair, the non-default is

ranked higher than the default (with the provision that if default and non-

default are ranked the same, a coin is tossed to resolve the tie).

3 Relationships among the partial orderings

We first confine ourselves to forecasters which are well calibrated. It is well

known and easily seen that then A ≥R B ⇔ A ≥s B (DeGroot and Fienberg

1983, Theorem 2). Also, both A ≥V M(d) B and A ≥V M(nd) B imply A ≥R B

(Vardeman and Meeden 1983, Theorem 2.1), which in turn implies both

A ≥G B and A ≥ROC B, as will be seen from Theorem 5 below.

THEOREM 1: Let A and B be well calibrated forecasters. Then we have

a) If qA(0) = qB(0) = 0, then A and B cannot be strictly ordered according to

≥V M(d).

b) If qA(1) = qB(1) = 0, then A and B cannot be strictly ordered according

to ≥V M(nd).

This theorem has implications for the usefulness of Theorem 2.1 in Vardeman

and Meeden (1983, p. 809). Theorem 2.1 in Vardeman and Meeden states that

with well calibrated forecasters either A≥V M(d)B or A≥V M(nd)B implies that

A≥RB. While this is true, it is evident from Theorem 3 above that it is also

trivial. If we disregard the cases where either of the frequencies qA(0), qB(0),

qA(1) or qB(1) is positive (which, in conjunction with calibration, implies
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perfect foresight and is thus not very relevant in practice), then the only

pairs of well calibrated forecasters where A≥V M(d)B or A≥V M(nd)B are those

where A and B have the same probability functions. Then they are of course

(weakly) ordered according to any of the criteria above.

PROOF OF THEOREM 1: Assume without loss of generality that

A≥V M(d)B, qA(a2) < qB(a2), and therefore a2q
A(a2) < a2q

B(a2). Then

A≥V M(d)B implies that

a2q
A(a2) + a3q

A(a3) ≤ a2q
B(a2) + a3q

B(a3), so (10)

a3q
A(a3) ≤ a2[q

B(a2) − qA(a2)] + a3q
B(a3)

< a3[q
B(a2) − qA(a2)] + a3q

B(a3) (11)

which yields

qA(a2) + qA(a3) < qB(a2) + qB(a3) (12)

Again from A≥V M(d)B, we have

a2q
A(a2) + a3q

A(a3) + a4q
A(a4) ≤ a2q

B(a2) + a3q
B(a3) + a4q

B(a4)(13)

which can be rewritten as

a4q
A(a4) ≤ a2[q

B(a2) − qA(a2)] + a3[q
B(a3) − qA(a3)] + a4q

B(a4)

< a3[q
B(a2) + qB(a3) − qA(a2) − qA(a3)] + a4q

B(a4)

< a4[q
B(a2) + qB(a3) + qb(a4) − qA(a2) − qA(a3)], (14)

where the last inequality follows from (13) and a4 > a3. The upshot is that

qA(a2) + qA(a3) + qA(a4) < qB(a2) + qB(a3) + qB(a4).

Continuing along these lines, it is easily seen that

k∑
i=1

qA(ai) <
k∑

i=1

qB(ai), (15)
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which is in contradiction to
∑

i q
A(ai) =

∑
i q

B(ai) = 1. This means that

a2q
A(a2) < a2q

B(a2) and A≥V M(d)B cannot go together and thus proves part

(a) of the theorem. The proof of part (b) is analogous. •

The requirement that qA(0) = qB(0) = 0 comes into play to rule out the

possibility that qA(0) > qB(0), and still A >V M(d) B. It can be shown by

simple examples that well calibrated forecasters with these properties exist.

Similarly, qA(1) = qB(1) = 0 rules out the possibility that qA(1) < qB(1)

and still A ≥V M(nd) B. Again, it can be shown by simple examples that well

calibrated forecasters with these properties exist. But apart form these quite

extraordinary cases, there is no hope of establishing a VM-ordering when both

forecasters are well calibrated.

Next we consider the above partial orderings for forecasters which are not

necessarily well calibrated. It is trivial that A ≥V M(d) B does not imply

A ≥V M(nd) and vice versa. However, for the Gini-ordering, the default ordering

and the non-default ordering are identical.

THEOREM 2: A ≥G(a) B ⇔ A ≥G(nd) B.

PROOF: Let A ≥G(d) B and (x, yA) be on the Gini-curve of A’s defaults.

Let (x, yB) be the correspondent point on the Gini-curve of B. Then, for the

non-default-ordering, (x, yA) and (x, yB) translate into

(
1 − x,

1 − x(1 − yA)p

1 − p

)
= (x∗, y∗A) and

(
1 − x,

1 − x(1 − yB)p

1 − p

)
= (x∗, y∗B),

respectively, where p is the overall percentage of defaults, and where

yB ≤ yA ⇔ y∗B ≤ y∗A. •
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The ROC-ordering likewise does not produce anything new, as is shown in

our next result:

THEOREM 3: A ≥G B ⇔ A ≥ROC B.

PROOF: Let (xA, y) be on the Gini-curve of A, and let (xB, y) be a point on

the Gini-curve of B with identical y coordinate. These points translate into

(
xA − yp

1 − p
, y

)
= (x∗A, y) and (16)

(
xB − yp

1 − p
, y

)
= (x∗B, y) (17)

on the ROC-curves of A and B, respectively. However,

xA < xB ⇔ x∗A ≤ x∗B,

so the Gini-curves intersect if and only if the ROC-curves intersect. •

By far the most stringent ordering among those considered here is V M .

Also V M(d) and V M(nd), taken by themselves, do not imply anything as

concerns the Gini-ordering (this can be shown by simple counterexamples), the

unrestricted V M -ordering implies the Gini-ordering (and, by its equivalence

will the Gini-ordering, the ROC-ordering as well).

THEOREM 4: A ≥V M B ⇒ A ≥G B. The converse does not hold.

PROOF: Let

(xA, yA) =


 j∑

1

qA(ai),
i∑
1

qA(ai|0)


 and

(xB, yB) =


 j∑

1

qB(ai),
i∑
1

qB(ai|0)



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be on the nd-Gini-curves of A and B, respectively. From A ≥V M B, we have

j∑
1

qA(ai|0) ≥
j∑
1

qB(ai|0) (18)

so yA ≥ yB. •

The V M -ordering does not imply sufficiency, as can again be shown by

simple counterexamples, except when both forecasters are well calibrated.

In fact, it can be shown (Vardeman and Meeden 1983, Theorem 2) that

semi-calibration suffices (A is called semi-calibrated if p(1|ai) is nondecreasing

in ai). Semi-calibration, in conjunction with sufficiency, also implies the

Gini-ordering:

THEOREM 5: If A is semi-calibrated, we have

A ≥S B ⇒ A ≥G B.

The converse does not hold.

PROOF: The implication of the theorem is best seen if one considers the

variant of A’s Gini-curve (7) where cumulation starts with the ”good” grades

i.e. by plotting and joining the points

(0, 0),


 j∑

i=1

q(ai),
j∑

i=1

q(ai(1))


 j = 1, . . . , k. (19)

Obviously, A ≥G B if its Gini-curve, as defined in (19), is nowhere above that

of B. In addition, it is easily checked that, if A is semicalibrated, its Gini-curve

is equal to the standard Lorenz curve of a discrete random variable X with

values

xi = qA(ai|1)/qA(ai) (i = 1, . . . , k) (20)
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where

P (X = xi) = qA(ai). (21)

By assumption, we have

qB(ai|0) =
k∑

j=1

mijq
A(ai|0) and qB(ai|1) =

k∑
j=1

mijq
A(ai|1)

which implies

qB(ai) =
k∑

j=1

mijq
A(ai). (22)

Let k∗ ≤ k be the number of nonzero qB(ai)’s, and let Z be a discrete ran-

dom variable with values 1, 2, . . . , k∗ with P (Z = r) = qB(ar) such that the

conditional distribution of X, given Z = r, is given by

P (X = ai|Z = r) =
mriq

A(ai)

qB(ar)
. (23)

Then it is easily checked that the Gini-curve of B is equal to the Lorenz curve

of Y := E(X|Z) and the theorem follows from standard results on Lorenz-

inferiority of conditional expectations (see e.g. Arnold, 1987, Theorem 3.4).

Again, one can show by simple couterexamples that A ≥G B does not imply

A ≥S B. •

4 Conclusion

Due to the stringency of the V M -ordering, it will rarely happen in practice

that probability forecasters can be so compared. Therefore this ordering is of

mainly academic interest, and one will refer to either the sufficiency or Gini-

orderings when evaluating the relative performance of probability forecasters.
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Alternatively, of course, one could use some scoring rule such as the Brier score.

An interesting issue not touched upon here (see however Scherwish 1989) is

whether domination in any of the above senses is equivalent to superiority

according to some family of scoring rules.
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