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Abstract

This paper analyses a class of nonlinear time series models exhibiting long memory. These
processes exhibit short memory fluctuations around a local mean (regime) which switches
randomly such that the durations of the regimes follow a power law. We show that if a
large number of independent copies of such a process are aggregated, the resulting processes
are Gaussian, have a linear representation, and converge after normalisation to fractional
Brownian motion. Two cases arise, a stationary case in which the partial sums of the process
converge, and a nonstationary case in which the process itself converges, the Hurst coefficient
falling in the ranges ( 12 , 1) and (0,

1
2) respectively. However, a non-aggregated regime process is

shown to converge to a Levy motion with infinite variance, suitably normalised, emphasising
the fact that time aggregation alone fails to yield a FCLT. We comment on the relevance
of our results to the interpretation of the long memory phenomenon, and also report some
simulations aimed to throw light on the problem of discriminating between the models in
practice.

1 Introduction

Autoregressive unit roots are a popular feature of econometric models, not least thanks to the
attractive feature that stationarity can be induced by either differencing or forming cointegrating
linear combinations of economic time series. However, an often remarked drawback with this
approach is that many important series do not seem to fall, logically or empirically, into either
of the I(0) (stationary) or I(1) (difference stationary) categories. Their movements may appear
mean reverting, for example, yet too persistent to be explained by a stationary, short-memory
process. Arguably, such behaviour can always be accounted for, in a finite sample, by postulating
a root close to but below unity. However, the reliance on asymptotic theory that lies at the heart
of nonstationary analysis makes the ‘small-sample’ explanation of apparent persistence inherently
unsatisfactory.

The fractionally integrated class of long memory models provide a seemingly attractive alter-
native, in which the I(1)/I(0) dichotomy is replaced by a continuum of persistence properties. As
detailed in Davidson (2002b), cointegration theory can be adapted straightforwardly to this set-
up. However, this approach has its own drawback, that fractional integration cannot be modelled
by difference equations of finite order. Thinking of a time series model as describing a representa-
tive agent’s actions, incorporating hypothesised behavioural features such as adjustment lags and

∗Email: davidsonje@cf.ac.uk. Research supported by the ESRC under award L138251025..
†Research undertaken while visiting Cardiff University. The support of Volkswagenstiftung is gratefully ac-

knowledged.

1



rational expectations, it is natural to see this behaviour as conditioned on the ‘recent past’, and
so at most a finite number of autoregressive lags. Unless a unit root is involved, all these models
exhibit exponentially short memory. On the other hand, it is impossible to generate hyperbolic
memory decay from finite order difference equations. Long memory models necessarily involve
the infinite history of the observed process, and devising economic models with this structure, is
for obvious reasons, a lot harder than constructing finite order models. A series can, of course,
be modelled to have long memory characteristics through an error correction model driven by
exogenous long memory; but finding a plausible route to endogenous long memory is difficult.

The attempts to devise such mechanisms in the literature have abandoned the representative-
agent dynamic framework in favour of some form of cross-sectional aggregation. Since macroeco-
nomic time series are not in fact generated by the behaviour of a fictional representative agent,
but represent the net effect of many heterogeneous agents interacting, cross-sectional aggregation
is a plausible modelling framework, although it poses some severe conceptual difficulties. The
best known example is due to Granger (1980) who pointed out that summing a collection of
low-order ARMA processes yields an ARMA process of higher order and, eventually, of infinite
order. By arranging for the largest autoregressive roots of the micro-processes to be drawn from
a Beta distribution with a concentration of mass close to 1, Granger showed that the resulting
moving average coefficients decline hyperbolically, and hence can be closely approximated by a
fractional-integration process. This approach has been used by, among others, Ding and Granger
(1996) to model conditional heteroscedasticity in financial time series, and Byers, Davidson and
Peel (1997, 2000, 2002) to model the dynamics of opinion polling.

More recent contributions have focused on the aggregation of nonlinear processes. Taqqu,
Willinger and Sherman (1997) and Parke (1999) propose similar models, involving the aggregation
of persistent shocks whose durations follow a power law distribution. Taqqu et al., in the context
of modelling ethernet traffic, aggregate binary processes switching between 0 and 1 where the
switch-times are distributed according to a power law. They invoke the central limit theorem
‘sideways’ to establish Gaussianity of the finite dimensional distributions, and then show that the
power law entails the inter-temporal covariance structure of fractional Brownian motion (fBM),
so that (in a continuous-time framework) this distribution must describe the aggregate process.

Parke’s (1999) error duration (ED) model considers the cumulation of a sequence of random
variables that switch to 0 after a random delay that again follows a power law. Thus, were the
delays of infinite extent the process would be a random walk, and if of zero extent, an i.i.d.
process. Controlling the probability of decay allows the model to capture persistence anywhere
between these extremes. Parke shows that the ED process has the same covariance structure as
the fractionally integrated linear process, and does not consider the question of convergence to
fractional Brownian motion. This is an issue we consider in the sequel.

Diebold and Inoue (2000) are concerned with the issue of confusing fractionally integrated
processes with processes that are stationary and short memory, but exhibit periodic ‘regime
shifts’, i.e., random changes in the series mean. They show that if such switches occur with a
low probability related to sample size (T ), then the variance of the partial sums will be related
to sample size in just the same way as a fractional process. Thus, the variance of the partial
sums of an I(0) process increase by definition at the rate T , whereas that of a fractional long
memory (I(d)) process increase at the rate T 1+2d. Diebold and Inoue show that exactly the
same behaviour is observed if an independent process is added to a random variable that changes
value with a particular low probability. If this probability is p = O(T 2d−2) for 0 < d < 1, then
the variance of the partial sums grows like T 1+2d. Hence, it is argued, such a process might
be mistaken for a fractionally integrated process in a given sample. We also comment on this
conclusion in the sequel.

The paper is structured as follows. Section 2 describes a class of nonlinear models based on
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random switches of regime (local mean) with durations following a power law. We establish the
basic property of the processes, that the autocorrelations also follow a power law, and describe
a simple mechanism for contingent regime shifts which preserves this property. Section 3 then
develops the properties of the aggregate process, showing that it has a linear representation and
deriving an invariance principle. It is also shown that different limits arise without aggregation.
Section 4 relates our findings to the cited literature on these models, and Section 5 reports some
simulations of tests of linearity in an ARFIMA framework. Section 6 contains concluding remarks,
and Section 7 collects the proofs of the main results.

2 A Stochastic Regimes Model

The building blocks of the models we consider in this paper are processes having the form

Xt = mt + εt (2.1)

where εt is a stationary, short-memory ‘I(0)’ process,1 and

mt = kj , Sj−1 < t ≤ Sj

where {Sj ,−∞ < j <∞} is a strictly increasing, integer-valued random sequence, and {kj ,−∞ <
j < ∞} is a real zero-mean random sequence, representing the conditional mean of the process
during regime j. The duration of the jth regime is the integer-valued random variable

τ j = Sj − Sj−1.

The basic assumption is that the tail probabilities of the τ j follow a power law.
The full set of assumptions to be maintained in the sequel are as follows. These are intended

to cover as many alternatives as possible, while keeping the proofs of the important properties
reasonably compact. They can certainly be extended in various directions to encompass special
cases, and also features such as deterministic components, without altering the basic character-
istics we are interested in. We will make use of the symbol ' as follows: an ' bn for bn > 0 if
|an|/bn → C for some unspecified 0 < C <∞. This is equivalent to an ∼ Cbn, where an ∼ bn is
used to mean |an|/bn → 1.

Assumption 1 (a) The bivariate process {kj , τ j}∞−∞ is strictly stationary.

(b) P (τ j = c) ' c−1−αL(c) as c → ∞, 0 < α < 2, where L(.) is slowly varying at ∞ and ∃
β > 0 such that L(c)/ logβ c→ 0. 2

(c) E(kj) = 0, E(k2j ) = σ2k < ∞, E(kjkj+s) ≥ 0 for s ≥ 0, and
P∞

s=0E(kjkj+s) < ∞. If
0 < α < 1, then in addition, E(kjkj+s) ≥ E(kjkj+s+1) for s ≥ 0.

(d) Let T denote the σ-field generated by {τ j ,−∞ < j <∞}. There exists a constant 0 < B <
1 such that for s ≥ 0,

BE(kjkj+s) ≤ E(kjkj+s|T ) ≤ B−1E(kjkj+s) a.s. (2.2)

1We define an I(0) process as one whose normalised partial sums converge weakly to regular Brownian motion.
See Davidson (2002a) for further details.

2 In the sequel, the symbol L is used for a generic slowly varying component. For example, if L satisfies the
indicated restrictions then so does L2, which might be represented by writing L2 = L.
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If 0 < α < 1 then in addition, for s ≥ 0,

B[E(kjkj+s)−E(kjkj+s+1)] ≤ E(kjkj+s|T )−E(kjkj+s+1|T )
≤ B−1[E(kjkj+s)−E(kjkj+s+1)] a.s. (2.3)

(e) {εt}∞−∞ is strictly stationary with E(εt) = 0 and E(ε2t ) = σ2ε,
P∞

s=0E(εtεt+h) < ∞, and
E(mtεt+h) = E(εtmt+h) = 0 for all h ≥ 0. If 0 < α < 1, then in addition, E(εjεj+s) ≥
E(εjεj+s+1) for s ≥ 0.

Thus, note that (b) implies the key power law property

P (τ > c) ' c−αL(c).

Note the important distinction between the cases 1 < α < 2 and 0 < α ≤ 1. In the first case the
expected duration of a regime is finite, given according to Assumption 1(b) by

E(τ) =
∞X
c=1

cP (τ = c) <∞. (2.4)

However, this sum diverges in the second case and the process is nonstationary.
Assumption 1(c) controls the dependence of successive regimes in a fairly natural manner. All

the restrictions hold if the regimes are independent, for example, and also if they are connected by
a first-order autoregressive process. They can certainly be relaxed in particular cases, where more
specific restrictions can be invoked, but to cover all these cases would complicate the arguments
excessively.

Assumption 1(d) controls the dependence between the {kj} and {τ j} processes by extending
the restrictions of part (c) to the conditional distributions. These are essentially mild constraints
to ensure that the parameter α is relevant to the memory of the process in the manner to be shown
subsequently. Note that given Assumption 1(c), (2.3) implies (2.2), but the reverse implication
does not hold.

Assumption 1(e) describes the noise process and is likewise mainly simplifying, to rule out
awkward cases, and might be relaxed at the cost of more specific restrictions on the behaviour
of the noise process. The main problem here is that εtmt+h = εtmt so long as t + h falls in the
current regime, so that summability restrictions on these covariances are tricky to handle.

Under these assumptions, the process is covariance stationary (and hence strictly stationary)
and long memory, in the case 1 < α < 2, and difference stationary (the differences strictly and
covariance stationary) in the case 0 < α < 1.3

Theorem 2.1 Let Assumption 1 hold.

(i) If 1 < α < 2, then letting γh = E(XtXt+h), γh > 0 for all h and γh ' h1−αL(h).

(ii) If 0 < α < 1, then letting γh = E(∆Xt∆Xt+h), γh < 0 for h ≥ 1, γh ' h−1−αL(h), and
γ0 + 2

P∞
h=1 γh = 0.

3The case α = 1 requires a different treatment from that developed here. Essentially, the sequence {γh} is
slowly varying in case (i) of the theorem and the partial sums slowly varying in case (ii). This case will not be
treated explicitly.

4



A fairly wide class of data generation processes are covered by Assumption 1. In the simplest
case, the pair kj , τ j are drawn at time Sj−1, and are then conditionally fixed for the duration of
the jth regime. However, it is more realistic to suppose that switching times can depend on the
current state of the process, and the following example shows how this might happen.

Let a random drawing at time Sj−1 give, not τ j , but a conditional Bernoulli distribution
governing the switch date, under which the mean time-to-switch follows the power law. At each
date t, an independent binary random variable with values ‘switch’ and ‘don’t switch’ is drawn.
Let pj denote the switch probability in regime j, so that the probability of a switch after exactly
m periods is (1− pj)

m−1pj . Therefore

P (m ≥ x) = pj

∞X
m=x

(1− pj)
m−1 = (1− pj)

x−1 (2.5)

and the mean of the distribution is

µj = pj

∞X
m=0

m(1− pj)
m−1 =

1

pj
− 1

so pj = 1/(µj + 1). Regimes must run for at least one period, so µj ≥ 1. In the simplest case,
this parameter might be drawn from the power law distribution with density

f(µ) = αµ−1−α. (2.6)

Note that this integrates to 1 over [1,∞), and P (µ > x) = x−α for x ≥ 1, as required.

Theorem 2.2 Let τ j be the number of periods until switching of a regime driven by µj, a drawing
from the distribution in (2.6). Then, P (τ j > c) ' c−α.

With this set-up, it is more accurate to write the duration as τ jt, a random variable evolving
according to the rule: τ j,t+1 = τ jt + 1 with probability 1 − pj , and τ j,t+1 = τ j+1,t+1 = 0,
otherwise. Note that Assumption 1 allows the independent Bernoulli random variable at date t
to be dependent on the innovations of the noise process εt, and hence a shock hitting the system
can precipitate a change of regime. Only the probability of this occurrence (which can be related
to the size of shock needed to precipitate the switch) is fixed at time Sj−1.

3 The Aggregation Model: Representation and Invariance Prin-
ciple

Our interest in these processes is their relationship with the phenomena of long memory and
fractional integration. Cross-sectional aggregation is a crucial feature of the analysis, and our ap-
proach follows essentially that of Taqqu et. al. (1997). Suppose that stochastic regime processes
govern the behaviour of agents in the economy at the micro level, and that what is observed is
the aggregate of their activities. Consider the normalised aggregate process

FM
t =M−1/2

MX
i=1

X
(i)
t

where X(1)
t , . . . ,X

(M)
t are independent copies of Xt. Note that

E(FM
t FM

t+h) = γh 1 < α < 2
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E(∆FM
t ∆F

M
t+h) = γh 0 < α < 1

follows from the independence, where γh is defined by Theorem 2.1, parts (i) and (ii) respectively.
Let {Ft}∞−∞ denote the limiting random process as M →∞, defined by the relation

(FM
t1 , . . . , F

M
tK
)

d→ (Ft1 , . . . , FtK ) 1 < α < 2 (3.1)

(∆FM
t1 , . . . ,∆F

M
tK
)

d→ (∆Ft1 , . . . ,∆FtK ) 0 < α < 1 (3.2)

where t1, . . . , tK is any finite collection of time coordinates. Under the assumptions, note that the
limits in (3.1) and (3.2) are multivariate Gaussian, with covariance matrix having elements γ|tj−tk|
for 1 ≤ j, k ≤ K. The extension to the infinite-dimensional process {Ft}∞−∞, stationary and
Gaussian with autocovariance sequence {γh > 0, h = 0, 1, 2, . . .}, is assured by the Kolmogorov
consistency theorem (e.g. Davidson (1994) Th. 12.4). Note that allowing the micro-processes to
have heterogeneous distributions, subject to the Lindeberg condition, is an easy extension. We
assume the distributions to be identical solely to avoid undue complications.

Let H = (3− α)/2 for 1 < α < 2 and H = (1− α)/2 for 0 < α < 1, corresponding to Hurst’s
coefficient. We next show that the aggregate processes, whether partial sums or ‘partial sums of
differences’, have the variance characteristics associated with long memory increments. Define
the partial sum variance

σ2T =
TX
g=1

TX
h=1

γ|g−h| =

(
E
¡PT

t=1 Ft
¢2
, 1 < α < 2

E(F 2T ), 0 < α < 1

)
.

Theorem 3.1 σ2T = O(T 2HL(T )).

The bounding cases of the stationary process, α = 2 and α = 1, correspond to H = 1
2 and H = 1

respectively, whereas the bounding cases of the difference-stationary process, α = 0 and α = 1,
correspond to H = 1

2 and H = 0 respectively. In view of the stationarity, we can assume the
existence of a finite positive constant

σ2 = lim
T→∞

(T 2HL(T ))−1σ2T (3.3)

Our next result extends the often-quoted rationale for the ARMA class of processes, based
on Wold’s theorem, to the sphere of long memory models.

Theorem 3.2 The limiting aggregate process {Ft,−∞ < t < ∞} has a linear moving average
representation

Ft =
∞X
j=0

θjηt−j 1 < α < 2 (3.4)

∆Ft =
∞X
j=0

θjηt−j 0 < α < 1 (3.5)

where
P∞

j=0 θ
2
j <∞, ηt ∼ NI(0, σ2η), σ

2
η = γ0/

P∞
j=0 θ

2
j , and

P∞
j=0 θj = 0 in case (3.5).

In other words, the (by construction) strictly nonlinear process Ft, generated by aggregating
independent stochastic regime processes, nonetheless has a strictly linear representation such
that the shock sequence is i.i.d. This shows that linearity need not be an intrinsic feature of
the data generation process in order for linear models to be useful for modelling purposes. As
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we show in Section 5, the ARFIMA(p, d, q) model could provide a good approximation in many
cases, with d = H − 1

2 .
The next step is to establish the invariance principle. To unify notation, write

ZM
T (ξ) =

 σ−1T
X[Tξ]

t=1
FM
t 1 < α < 2, H = (3− α)/2,

σ−1T FM
[Tξ] 0 < α < 1, H = (1− α)/2,

 , 0 ≤ ξ ≤ 1 (3.6)

where [x] denotes the largest integer not exceeding x. The following result is obtained by adapting
Theorem 3.1 of Davidson and de Jong (2000).

Theorem 3.3 ZM
T

d→ σBH as M,T →∞ (sequentially), where BH denotes fractional Brownian
motion4 with parameter H.

The expression ‘M,T → ∞ (sequentially)’ means that M must be taken to the limit for each
t = 1, . . . , T , with T fixed, and the limit of this procedure is taken with respect to T . It is
clear that this is the case relevant to the present context, but note that the limit with respect to
T,M → ∞ (sequentially) may be different, as may any scheme of joint convergence by setting
(say) M = M(T ) for some monotone increasing function. The next theorem in this section
illustrates the importance of the distinction. See Phillips and Moon (1999) for a discussion of
the relationships between sequential and joint convergence (weakly, or in probability) for double-
indexed samples.

For the case 1 < α < 2, Theorem 3.3 may also be obtained by a direct appeal to Billings-
ley (1968) Theorem 15.6 to establish the tightness, given that Gaussianity and the covariance
structure are already given. However, this approach does not work for the case 0 < α < 1. Note
that the case α = 1 corresponds to the boundary-nonstationary case, analogous to d = 1

2 in the
fractional integration model and, as remarked previously, requires an alternative approach.

It may be the case (and this assertion is explored in the simulations reported in Section 5) that
quite a low value of M is sufficient to yield an adequate linear approximation. However, the next
result shows that, without some degree of cross-sectional aggregation, the invariance properties
demonstrated are not obtained. In other words, the usual argument from time aggregation fails.
We focus attention on the case 1 < α < 2, and introduce the following extra assumptions.

Assumption 2 (a) The sequence {(kj , τ j), −∞ < j <∞} is i.i.d.

(b)
Z
{τj≤c}

P (σ−1k |kj | > c/τ j |τ j)dF (τ j) = o(c−α).

Then, we have the following result.

Theorem 3.4 For 1 < α < 2, let XT (ξ) = (T 1/αL(T ))−1
P[Tξ]

t=1 Xt, 0 ≤ ξ ≤ 1, where Xt is

defined in (2.1). If Assumptions 1 and 2 hold then XT
d→ Λα, where Λα is stable Levy motion

with stability parameter α.

Since 1/α < H in the range 1 < α < 2, note the implication of this result, that with M = 1 the
process defined in (3.6) converges to zero, albeit slowly because (3−α)/2 and 1/α are quite close
over most of the range (1, 2). Of course, this fact points to the inappropriateness of normalising
by the variance of the process, which is diverging as T → ∞. Also, since the increments of the

4This is fractional Brownian motion of type I, as defined by Robinson and Marinucci (1999). See also Davidson
and de Jong (2000) for details.
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limit process have no variance, note how reversing the order of M and T in Theorem 3.3 cannot
yield a Gaussian limit in this case.

Assumption 2(a) is imposed just for simplicity. Results for dependent regimes are certainly
available, but the additional complications with the proof go beyond the scope of the present
paper, where the aim is simply to exhibit a counter-example to the Gaussian case. Assumption
2(b) is a natural extension of Assumption 1(d), and ensures that kj does not itself contribute to
the tail behaviour of Uj in such a way that α does not define the relevant power law. Again,
this is just for simplicity. It will certainly be satisfied if the conditional probability declines
exponentially with c, for example.

A result corresponding to Theorem 3.4 is not expected in the nonstationary case, however.
The time aggregation involved in forming the partial sums is an essential feature of this result,
and the diverging variance does not appear to be a feature of the nonstationary regimes process.
Rather, it appears that this process will exhibit regimes even in the limit. That is to say, as T
increases, a regime must sooner or later arise that accounts for a segment of the realization of
order T . We may conjecture that a nonstationary limit process does exist in this case, and may
even have Gaussian features, but it would apparently not be a.s. continuous.

4 Discussion

The results of the last section demonstrate three main conclusions. First, that a fairly general
class of nonlinear processes can exhibit the covariance structure associated with long memory.
Second, that there exists a sub-class of nonlinear processes, characterised by ‘sideways aggrega-
tion’, that are observationally equivalent to fractionally integrated processes. Specifically, their
normalised partial sums converge to fractional Brownian motion (fBM), and they have a Wold lin-
ear representation, with independent Gaussian increments. Third, there exist counter-examples
demonstrating the necessity of the aggregation to obtain the last result, in which the limit of the
normalised partial sums is demonstrably different from fBM.

These considerations serve to emphasise the fact that the autocovariance structure is only
part of the characterisation of a fractionally integrated process. The error duration (ED) model
proposed by Parke provides a useful illustration. This has the form (in Parke’s notation)

yt =
tX

s=−∞
gs,tεs (4.1)

where gs,t is the indicator of the period running from s to time t = s+ ns. The random variable
ns is a stochastic duration obeying a power law similar to our τ j , and εs is analogous to our kj .
Our noise term εt is set to 0 here. With these definitions, the ED model can be accommodated
in our aggregation framework by allowing M to depend on t.

Consider the stationary ED model, such that 1 < α < 2 where α denotes the power law
parameter, as above. The number of nonzero terms in the sum at date t, Mt say, must settle
down to a stationary integer random sequence. Since a new component starts up every period,

E(Mt) =
∞X
c=1

cP (ns = c) <∞

corresponding to the Parke (1999) parameter λ. In many cases, the ‘birth’ of a nonzero term
will be matched by the ‘death’ of another, and then the situation is observationally equivalent
to a switch of regime in a single process. In case there is no match of a birth or death, this
can be treated as a component either leaving or joining the aggregate, although it might also be
rationalised, in our set-up, by having kj = 0 with positive probability.
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It is now possible to see the sense in which the stationary ED process can be treated as frac-
tionally integrated. When α is close to 2, E(Mt) is correspondingly small, while as α approaches
1, it tends to ∞. Suppose, to take a concrete example, that

P (ns = c) =
c−α−1

ζ (1 + α)
. (4.2)

where ζ(·) denotes the Riemann zeta function. In this case

E(Mt) =
1

ζ (1 + α)

∞X
c=1

c−α =
ζ (α)

ζ (1 + α)
.

Illustrative values are ζ(1.5)/ζ(2.5) = 1.947, ζ(1.1)/ζ(2.1) = 6.784, and ζ(1.01)/ζ(2.01) = 61.49.
In other words, only for the case where α is very close to the nonstationary case of unity (corre-
sponding to the I(d) process with d close to 0.5) is the number of terms in the aggregate large.
Clearly, the central limit theorem cannot be invoked to justify Gaussianity in this process. While
it may be that the shocks εt themselves are Gaussian, yt is the sum of a randomly varying num-
ber of independent terms, and therefore its marginal distribution would be mixed Gaussian in
that case. From this point of view, we must be careful to distinguish between the stationary
ED process and the fractionally integrated process. In particular, the partial sums of the former
process do not converge to fBM, in general.

In the nonstationary case of (4.1) the number of terms in the sum increases with time, and
the conventional argument from time aggregation appears to imply a Gaussian limit. In view
of the covariance structure demonstrated in Parke (1999), this suggests possible convergence to
fBM with 1

2 < d < 1. However, the proof of this conjecture would require a different approach to
that adopted for Theorem 3.3. Note that even with Gaussian shocks, a linear representation of
the form (3.5) does not hold for the difference process; this is

∆yt = εt −
t−1X

s=−∞
∆gs,tεs

where the number of nonzero terms for s < t is a random variable with mean falling between
zero and 1.

Unlike the ED model, the models constructed by Diebold and Inoue (2001) are explicitly
‘false’, in the sense that they define stochastic arrays in which the incidence of regime shifting is
linked to sample size. In all of their cases, allowing the sample size to increase sufficiently would
reveal that the processes are nonlinear random walks, having the covariance characteristics of an
I(1) process. The message of these authors is that modellers face a hazard of mis-identification,
because the incidence of structural change is adventitiously linked to the length of available series.

However, like Parke (1999), they focus wholly on the issue of the autocovariance structure.
This, as we have shown, is only one defining characteristic of a fractionally integrated process,
and we have highlighted the existence of a linear representation as another. The nature of
the connection between these features can be clarified informally by ‘discretising’ the fBM. Let
X(ξ), 0 ≤ ξ ≤ 1, be fBM with Hurst parameter H and, for convenience, normalised such that
EX(1)2 = 1. Fix a finite integer n ≥ 1 and consider the sequence

xnt = (2n)
2H(X((t+ 1)/2n+ 1

2)−X(t/2n+ 1
2)), t = −n, . . . , (n− 1). (4.3)

Then note that xnt ∼ N(0, 1) by construction, and also, as would be expected,

Theorem 4.1 E(xntxn,t+h) ' h2H−2.
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Taking n large, let an approximate Wold decomposition, truncated at n lags, be applied to
the sequence xn1, . . . , xnn. In view of the Gaussianity, the shock process in this decomposition
is independently distributed, and in view of the autocovariance structure, it can also be seen
that the linear representation approximates to the fractional integration model. What this shows
is that if a partial sum process converges to fBM, then under some degree of time aggregation
(averaging successive blocks of observations of length [T β] for 0 < β < 1, say) the time-aggregated
sequence (with [T 1−β] + 1 terms) should possess an increasingly exact linear representation, as
T increases. We suggest the value of this remark is to show that, even if we do not postulate
that the process in question is exactly linear in the sense of Theorem 3.2, there always exists a
natural approach to distinguishing processes having fBM as their weak limit from alternatives.
This is by tests of linearity.

5 Testing Linearity

In this section we consider tests of linearity applied to models in the aggregated-regimes class.
For a practical implementation, we have to limit consideration to a class of linear models having
the right covariance structure in a finite parameterisation. The ARFIMA(p, d, q) class is the
natural choice for this purpose. It is true that the class of models we would wish to include in
the null hypothesis is larger than the ARFIMA class, but there are grounds for thinking that
the ARFIMA class can approximate linear processes with the requisite properties pretty well.
Recall that these processes have the structure Xt =

P∞
j=0 bjUt−j where Ut represents a stable

ARMA(p, q) process, and bj = Γ(d+ j)/(Γ(d)Γ(j + 1) ' jd−1. Since Ut =
P∞

k=0 φkηt−j−k where
φk decays geometrically and ηt ∼ iid(0, σ2η), we have the representation Xt =

P∞
j=0 θjηt−j where

θj =

jX
k=0

φkbj−k.

The φk can be of either sign and can decay monotonically, sinusoidally and discontinuously, so
a wide range of decay patterns of the θj coefficients can be approximated while preserving the
property θj ' jd−1.

We report some simulations in which ARFIMA models are fitted to aggregated-regime pro-
cesses. This is not a Monte Carlo study, since there is no special interest in determining the
distribution of the estimators. The approximating models are simply fitted to large samples, of
20,000 data points each, so that the parameter estimates can be regarded as close to their proba-
bility limits. To simplify the model selection process, the class of models considered is restricted
to the ARFIMA(p, d, 0), and p was chosen to optimise the value of the consistent Schwarz (1978)
criterion. For the selected equation, test statistics for model adequacy were recorded.

The chosen diagnostic test for nonlinearity is the McLeod-Li (1983) portmanteau test, cor-
responding to the Box-Pierce statistic computed for the squared residuals. Correlation in the
squares is in any case a natural dummy alternative hypothesis in a diagnostic test for nonlin-
earity, but these models in particular are likely to resemble GARCH processes. Forcing a linear
representation onto a process exhibiting periodic jumps in the local mean is likely to induce condi-
tional heteroscedasticity, in the form of runs of larger than average residuals in the neighbourhood
of the jumps. There is therefore hope that this test should be relatively powerful against the
alternatives of interest.

The model simulated is the Bernoulli-switching model described in Section 2, with the condi-
tional mean duration generated from (2.6). The processes µj , and kj ∼ N(0, 1) and εt ∼ N(0, σ2ε)
are mutually and serially independent in all cases. Experiments were conducted for α = 1.5 and
α = 0.5, representing the stationary and nonstationary cases respectively, and for σ2ε = 0.2 and
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M 100 20 10 5 1

d 0.31 0.31 0.31 0.30 0.28
p 2 2 2 2 2

λmax 0.37 0.38 0.39 0.42 0.42
B-P(25) 28 15 18 16 11
M-L(25) 29 45 115 222 1027

Table 1: α = 1.5, σ2� = 0.2

M 100 20 10 5 1

d 0.30 0.29 0.28 0.28 0.21
p 2 2 2 2 3

λmax 0.31 0.32 0.35 0.37 0.49
B-P(25) 16 22 24 17 25
M-L(25) 20 36 38 64 994

Table 2: α = 1.5, σ2� = 0.5

M 1000 100 20 10 5

d −0.33 −0.32 −0.34 −0.30 −0.33
p 4 5 4 4 4

λmax 0.50 0.53 0.45 0.43 0.44
B-P(25) 10 10 25 29 24
M-L(25) 137 428 1104 2240 2844

Table 3: α = 0.5, σ2� = 0.2

M 1000 100 20 10 5

d −0.38 −0.39 −0.36 −0.41 −0.42
p 9 9 9 8 9

λmax 0.71 0.70 0.72 0.67 0.71
B-P(25) 39 10 59 16 51
M-L(25) 30 8 36 101 239

Table 4: α = 0.5, σ2� = 0.5
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σ2ε = 0.5. Within these four cases, a range of values of M were examined. The models were
estimated by the Whittle quasi-maximum likelihood procedure, based on the periodogram of the
series. The following statistics are reported in the tables: the estimate of d; the value of p, se-
lected by the Schwarz criterion; the largest AR root; and the residual Box Pierce and McLeod-Li
statistics, computed with 25 lags in each case.

The ‘true’ values of the fractional integration parameter d should be 1−α/2 = 0.25 in Tables
1 and 2 and −α/2 = −0.25 in Tables 3 and 4. It is evident that there is a fairly constant
asymptotic bias away from zero, in all these estimates, that varies only slightly with M . There
is no obvious explanation for this, but it is plausibly related to the technical misspecification
of the model.5 Also note the much larger number of autoregressive terms needed to achieve an
adequate representation in Tables 3 and 4. These latter models are fitted to the differences of
the (nonstationary) generated series, and all the AR coefficients are negative, without exception.

In a sample of 20,000, the diagnostic statistics should have their asymptotic distributions
when the null of independence is true – χ2(25 − p) for the Box-Pierce and χ2(25) for the
McLeod-Li – and in the latter case, should reject with probability of, effectively, unity if the
linear approximation is inadequate. The 5% critical value for the χ2(25) is 37, and on this basis,
the evidence indicates that quite a low value of M is adequate for the linear approximation,
in three out of the four cases considered. The poor approximation evident in Table 3, even
with M = 1000, can be explained by the fact that with α = 0.5, the occurrence of regimes
running for hundreds and even thousands of periods is significant. While rare, these account for
a significant proportion of the data points; see the remarks in the last paragraph of Section 4.
For the averaging to succeed when the noise level is low, it is necessary that ‘most’ of the time
periods coincide with a break, in one or more components of the aggregate. Regime changes are
much more frequent in the case α = 1.5. However, Table 4 shows that when the noise component
is relatively large, the linear approximation can still be quite good, even in the nonstationary
case.

6 Conclusion

In this paper we have re-considered the problem of distinguishing the phenomenon of fractional
integration from classes of nonlinear long memory process. We emphasize that the correlation
structure of the process is not the only relevant information contained in the data, and draw
attention to the distinction between processes that have a linear representation and those that
do not. Linear long memory processes (or their partial sums, in the stationary case) converge
to fractional Brownian motion under quite general conditions, but we show that a nonlinear
process may have a non-Gaussian limit. Processes generated by cross-sectional aggregation may
be linearised by virtue of their Gaussianity. Simulation experiments show that quite a modest
degree of aggregation may be sufficient for a good linear approximation.

7 Proofs

7.1 Proof of Theorem 2.1(i)

By Assumption 1(e),
γh = E(mtmt+h) +E(εtεt+h).

5A couple of the samples have been re-estimated by conditional least squares, with nearly identical results.
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We show that the first term satisfies the stated power law. The theorem will then follow because
the second term forms a summable sequence, also by Assumption 1(e).

First, write

mt =
∞X

j=−∞
kj1(Sj−1,Sj ](t). (7.1)

Letting J(t) = min{j : t ≤ Sj}, note that by Assumptions 1(c) and 1(d), and the law of iterated
expectations,

E(mtmt+h) =
∞X

i=−∞

∞X
j=−∞

E[kikj1(Si−1,Si](t)1(Sj−1,Sj ](t+ h)]

=
∞X

i=J(t)

E[kJ(t)ki1(Si−1,Si](t+ h)]

=
∞X

i=J(t)

E[1(Si−1,Si](t+ h)E(kJ(t)ki|T )]

∈ [B,B−1]E∗(mtmt+h) (7.2)

where the notation x ∈ [B,B−1]y denotes that By ≤ x ≤ B−1y and we also define

E∗(mtmt+h) =
∞X

i=J(t)

E(kJ(t)ki)P (Si−1 < t+ h ≤ Si) ≥ 0. (7.3)

The second equality of (7.2) uses the fact that 1(SJ(t)−1,SJ(t)](t) = 1 by construction.
For the leading term of (7.2) i = J(t), we show that

P (t+ h ≤ SJ(t)) =
∞X
c=1

max{0, (1− h/c)} c

E(τ)
P (τ = c)

'
∞X

c=h+1

(1− h/c)c−αL(c)

' h1−αL(h) (7.4)

where E(τ) is defined in (2.4). The equality here uses the following two facts. First, by sta-
tionarity, the position of t in regime J(t) is uniformly distributed with probabilities 1/τJ(t), and
hence

P (t+ h ≤ SJ(t)|SJ(t) − SJ(t)−1 = c) = max{0, (1− h/c)}.

Second,

P (SJ(t) − SJ(t)−1 = c) =
cP (τ = c)

E(τ)
(7.5)

where the left-hand side probability is to be thought of (given the definition of J(t)) as the
probability of a randomly selected observation Xt falling in a regime of duration c. Note that for
every ε > 0, some β > 0, and h large enough,

h1−α−ε '
∞X

c=h+1

c−α−ε <
∞X

c=h+1

c−αL(c) <
∞X

c=h+1

c−α logβ c ' hα−1 logβ h (7.6)

13



where the equivalence of convergence rates can be shown by an integral approximation. It fol-
lows that there exists a slowly varying function L(h), satisfying Assumption 1(b), such that the
equivalence in (7.4) holds.

Next, consider the case i = J(t) + 1 in (7.2). Note that

P (SJ(t) < t+ h ≤ SJ(t)+1) = P (t+ h ≤ SJ(t)+1)− P (t+ h ≤ SJ(t)) (7.7)

where by analogy with (7.4),

P (t+ h ≤ SJ(t)+1) =
∞X

c=h+1

max{0, (1− h/c)} c

2E(τ)
P (τ1 + τ2 = c) (7.8)

and

P (τ1 + τ2 = c) =
c−1X
j=1

P (τ2 = c− τ1|τ1 = j)P (τ1 = j)

'
c−1X
j=1

(c− j)−1−αj−1−αL(c− j)L(j)

' c−1−αL(c) (7.9)

using standard summability arguments (see e.g. Davidson and de Jong (2000) Lemma A.1).
Hence, substituting into (7.8) yields similarly to (7.4)

P (t+ h ≤ SJ(t)+1) ' h1−αL(h).

In other words, the two terms on the right-hand side of (7.7) have the same order of magnitude,
so that their difference has this order of magnitude at most. The same argument can be applied,
recursively, for each i = 2, 3, . . . . It follows that

E∗(mtmt+h) ' h1−αL(h).

and the same property extends to E(mtmt+h), by assumption.

7.2 Proof of Theorem 2.1(ii)

From (7.1),

∆mt =
∞X

j=−∞
kj [1(Sj−1,Sj ](t)− 1(Sj−1,Sj ](t− 1)]

=

(
∆kJ(t), t = SJ(t)−1 + 1

0, otherwise.

where ∆kJ(t) = kJ(t) − kJ(t)−1. In other words, the process is nonzero only when date t falls
in regime J(t) and t − 1 in regime J(t) − 1. Hence, defining the T -measurable random variable
Q(t, i) =

Pi−1
s=0 τJ(t)+s,

∆mt∆mt+h =


∆k2J(t), h = 0

∆kJ(t)∆kJ(t)+i, h = Q(t, i)

0, otherwise.
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Therefore note that
E(∆m2

t ) = E(∆k2J(t)).

For the cases h > 0, note first that under stationarity and Assumption 1(c),

E(∆kj∆kj+i) = 2[E(kjkj+i)−E(kjkj+i−1)]

(
< 0, i = 1

≤ 0, i ≥ 2.
(7.10)

Applying arguments similar to those in the proof of Theorem 2.1(i), it follows using Assumption
1(d) that

E(∆mt∆mt+h) =
∞X
i=1

E[1{Q(t,i)=h}E(∆kJ(t)∆kJ(t)+i|T )]

∈ [B−1, B]E∗(∆mt∆mt+h) (7.11)

where

E∗(∆mt∆mt+h) =
∞X
i=1

E(∆kJ(t)∆kJ(t)+i)P (Q(t, i) = h) < 0. (7.12)

Therefore, consider
γh = E(∆mt∆mt+h) +E(∆εt∆εt+h) (7.13)

where the cross-products vanish by Assumption 1(e). The assumption further ensures, by analogy
with (7.10), that the second right-hand side term is both negative and of smaller order than the
first one. These results therefore show that γh < 0 for h > 0, and also that γh ' h−1−αL(h) from
Assumption 1(b).

Next, note that for any covariance stationary random sequence xt,

E(∆x2t ) + 2E(∆xt∆xt−1) + · · ·+ 2E(∆xt∆xt−h) = E(xt − xt−1)(xt + xt−1 − 2xt−h−1)
= 2[E(xtxt+h)−E(xtxt+h+1)]. (7.14)

Therefore, in view of (7.11), (7.12) and the assumptions,

E(∆m2
t ) + 2

∞X
h=1

E(∆mt∆mt+h) = E(∆k2J(t)) + 2
∞X
i=1

∞X
h=1

E[1{Q(t,i)=h}E(∆kJ(t)∆kJ(t)+i|T )]

= E(∆k2J(t)) + 2
∞X
i=1

E(∆kJ(t)∆kJ(t)+i)

= 0. (7.15)

Note that the second equality in (7.15) holds by linearity of the expectation, so that

∞X
h=1

E[1{Q(t,i)=h}E(∆kJ(t)∆kJ(t)+i|T )] = E

· ∞X
h=1

1{Q(t,i)=h}E(∆kJ(t)∆kJ(t)+i|T )
¸

= E[E(∆kJ(t)∆kJ(t)+i|T )]
= E(∆kJ(t)∆kJ(t)+i).

Since (7.14) also applies to εt, we conclude from (7.13) that

γ0 + 2
∞X
h=1

γh = 0

which completes the proof.
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7.3 Proof of Theorem 2.2

The required probability is given, from (2.5) and (2.6), by

P (τ j > c) = α

Z ∞

1

µ
µ

µ+ 1

¶c−1
µ−1−αdµ. (7.16)

Note that for µ > c− 1,

Lc ≤
µ

µ

µ+ 1

¶c−1
≤ Uc (7.17)

where Lc and Uc can be made arbitrarily close to e−1 and 1, respectively, by taking c large
enough. Also, simple calculus shows that

max
1≤µ<∞

µ
µ

µ+ 1

¶c−1
µ−1−α =

µ
1− 1 + α

c− 1

¶c−1µ c− 1
1 + α

− 1
¶−1−α

≈ e−1−α(1 + α)1+αc−1−α

where the approximation improves as c increases. Therefore, defining

A1(c) = α

Z c

1

µ
µ

µ+ 1

¶c−1
µ−1−αdµ

A2(c) = α

Z ∞

c

µ
µ

µ+ 1

¶c−1
µ−1−αdµ

such that P (τ j ≥ c) = A1 +A2, note that for c large enough,

A1(c) ≤ e−1−α(1 + α)1+αc−α

and also, using (7.17) with c large enough,

e−1c−α ≤ A2(c) ≤ c−α.

Hence,
e−1 ≤ cα[A1(c) +A2(c)] ≤ 1 + e−1−α(1 + α)1+α

uniformly in c. We can conclude that cα[A1(c)+A2(c)]→ C for some constant C in the specified
interval, and the theorem follows.

7.4 Proof. of Theorem 3.1

In the case 1 < α < 2, note from Theorem 2.1(i) that the sequence {γh} is positive and monotone,
and γh ' h2H−2L(h). It follows directly that

PT
h=1 γ|g−s| = O(T 2H−1L(T )).

In the case 0 < α < 1, Theorem 2.1(ii) establishes that
P∞

h=1 γ|g−s| = 0. Hence, 0 ≥ γh '
h2H−2L(h) implies that

TX
h=1

γ|g−s| = −
∞X

h=T+1

γ|g−s| '
∞X

h=T+1

h2H−2L(h) ' T 2H−1L(T )

where the final rate of convergence follows, under Assumption 1(b), by an argument analogous
to (7.6).
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7.5 Proof of Theorem 3.2

The sequences {Ft} (1 < α < 2), and {∆Ft} (0 < α < 1), respectively, are strictly stationary
with finite variance γ0, and purely nondeterministic, by construction. The Wold decomposition
theorem (see e.g. Davidson (2000) Theorem 5.2.1) therefore implies the forms (3.4) and (3.5)
respectively, where the sequence {ηt} is stationary and uncorrelated with variance

σ2η =
γ0P∞
j=0 θ

2
j

.

Further, {Ft} (1 < α < 2) and {∆Ft} (0 < α < 1), respectively, are Gaussian by the Lindeberg
Levy central limit theorem, as noted in the text. According to theWold construction, the residuals
ηt are arbitrarily well approximated by finite linear combinations of the observed process. They
are therefore themselves Gaussian and, being uncorrelated, are independently and identically
distributed. This completes the proof for the case 1 < α < 2.

Considering the case 0 < α < 1, note that

FT =
TX
s=1

∆Fs =
TX

t=−∞
aTtηt

where

aTt =


PT−t

j=0 θj , t > 0PT−t
j=1−t θj , t ≤ 0.

. (7.18)

Hence

E(F 2T ) = σ2η

TX
t=−∞

a2Tt = σ2η

0X
t=−∞

µ T−tX
j=1−t

θj

¶2
+ σ2η

TX
t=1

µT−tX
j=0

θj

¶2
. (7.19)

However, we also know from Theorem 3.1 that

E(F 2T ) = O(T 1−αL(T )).

Considering the second block of terms on the right-hand side of (7.19), it is clear we have a
contradiction unless the sequence of squared sums is o(1) as T →∞, for any fixed t.

7.6 Proof of Theorem 3.3

From Theorem 3.1 we can deduce that for δ > 0,

E(ZM
T (ξ + δ)− ZM

T (ξ))
2 → δ2H (7.20)

as M,T → ∞ (sequentially), which is the covariance structure of fractional Brownian motion.
In view of the Gaussianity of the finite dimensional distributions already established under the
limit with respect to M , it remains only to establish the tightness of the sequence of measures
with respect to T .

By Theorem 3.2, the process has a linear representation asM →∞ with T fixed. Specifically,
adapting the notation of Lemma 3.1 of Davidson and de Jong (2000) (henceforth DdJ), generalise
(7.18) by defining

aTt(ξ + δ, ξ) =




P[T (ξ+δ)]−t

j=0 θj , t > [Tξ]P[T (ξ+δ)]−t
j=[Tξ]+1−t θj , t ≤ [Tξ]

 , 1 < α < 2

( −P∞
j=[T (ξ+δ)]+1−t θj , t > [Tξ]P∞

j=[Tξ]+1−t θj −
P∞

j=[T (ξ+δ)]+1−t θj , t ≤ [Tξ]

)
, 0 < α < 1
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such that aTt previously defined becomes aTt(1, 0). Then, holding T fixed we can write

ZM
T (ξ + δ)− ZM

T (ξ)
d→ σ−1T

[T (ξ+δ)]X
t=−∞

aTt(ξ + δ, ξ)ηt as M →∞.

In view of Theorem 3.1, we have shown that

σ2T = σ2η

TX
t=−∞

aTt(1, 0)
2 = O(T 2HL(T ))

and hence,

σ−2T σ2η

[T (ξ+δ)]X
t=−∞

aTt(ξ + δ, ξ)2 → δ2H as T →∞. (7.21)

We have therefore established conditions sufficient for Theorem 3.1 of DdJ. This result uses
the linearity of the fractionally integrated process to establish the uniform tightness, and the
conditions are easily established because here the increment process {ηt} is i.i.d., so that DdJ’s
Lemma 3.2 holds trivially. The properties required to be satisfied by the moving average co-
efficients are those leading to condition (B.36) of DdJ, which corresponds here to (7.21). This
completes the proof.

7.7 Proof of Theorem 3.4

Assume without loss of generality that S0 = 0. Since τ j is the duration of regime j,

[T 1/αL(T )]−1
[Tξ]X
t=1

Xt = [T
1/αL(T )]−1

µJ([Tξ])−1X
j=1

kjτ j

+ kJ([Tξ])([Tξ]− SJ([Tξ])−1) +
[Tξ]X
t=1

εt

¶

= σk[J(T )
1/αL(J(T ))]−1

J([Tξ])−1X
j=1

Uj + op(1)

where J(T ) is defined following (7.1), and

Uj = E(τ j)
−1/αkjτ j

σk

noting that, since T =
PJ(T )

j=1 τ j where τ j is an i.i.d. and integrable random variable,

J(T )1/αL(T )

T 1/αL(J(T ))

pr→ E(τ j)
−1/α.

Further note that Uj is an i.i.d., zero-mean random variable. By Assumption 2(b)

P (|kj |τ j > c) =

Z
{τj>c}

P (σ−1k |kj | > c/τ j |τ j)dF (τ j) + o(c−α).
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Also note that

C1P (τ j > c) ≤
Z
{τj>c}

P (σ−1k |kj | > c/τ j |τ j)dF (τ j) ≤ P (τ j > c)

where C1 is an almost sure lower bound of P (σ−1k |kj | > 1|τ j), and C1 > 0 since a random variable
with unit variance must have positive probability mass above 1. Hence

P (|Uj | > c) ' P (τ j > c) ' c−αL(c).

Let FU denote the c.d.f. of Uj . Since E(kj) = 0 and τ j > 0, both tails of the distribution obey
the power law such that

1− FU (c) ' c−αL(α), FU (−c) ' c−αL(α).

Thus, we have
1− FU (ξc)

1− FU (c)
→ ξ−α,

FU (−ξc)
FU (−c)

→ ξ−α.

According to (e.g.) Theorem 9.34 of Breiman (1968), this condition is necessary and sufficient
for FU to lie in the domain of attraction of a stable law with parameter α. In other words,

a−1J(T )

µJ([Tξ])−1X
j=1

Uj − bJ(T )

¶
d→ Λα(ξ)

where
nP (Uj > anc)→ c−α as n→∞ (7.22)

and bT → 0. Note that setting an = n1/αL(n) for a suitably chosen slowly varying function L
solves (7.22) (see Davis (1983), or e.g. Feller (1966) Sections 9.6 and 17.5). Finally, the theorem
follows by application of (e.g.) Embrechts et al. (1997) Theorem 2.4.10.

7.8 Proof of Theorem 4.1

It follows from the properties of fBM (see e.g. Davidson and de Jong (2000) equations (2.8)-(2.9))
that for 0 ≤ ξ < 1 and 0 < δ < 1− ξ,

E(X(ξ)X(ξ + δ)) = 1
2

£
ξ2H + (ξ + δ)2H − δ2H

¤
. (7.23)

Therefore, for 0 ≤ η ≤ 1− ξ − δ,

E(X(ξ + δ)−X(ξ))(X(ξ + η + δ)−X(ξ + η))

= 1
2

£
(η + δ)2H − 2(η)2H + (η − δ)2H

¤
Putting δ = 1/2n and η = h/2n for integer h ≥ 1, and substituting from (4.3), we therefore have

E(xntxn,t+h) = (2n)
2HE(X((t+ h+ 1)/2n)−X((t+ h)/2n))(X((t+ 1)/2n)−X(t/2n))

= 1
2

£
(1/2n+ h/2n)2H + (h/2n− 1/2n)2H − 2(h/2n)2H

¤
= 1

2h
2H
£
(1 + 1/h)2H + (1− 1/h)2H − 2

¤
≈ (H − 1

2)h
2H−2

where the approximation is obtained from Taylor’s expansions to second order of the first two
terms around 1, and improves as h increases.
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