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Abstract

The determination of toxicokinetic parameters is an essential component in the risk
assessment of potential harmful chemicals. It is a key step to analyse the processes
involved in the formation of DNA adducts which are connected with the
development of chemical-induced cancer.

A genera problem is the extrapolation of toxicological data from experimental
animals to the human organism. Therefore a valid characterisation of the relevant
processes for the whole species is required, i.e.,, of population mean parameters
instead of sets of parameters for different individuals. These, again, may vary
between repeated experiments at the same or at different administered doses.
Nevertheless, these differences are of great importance in obtaining a more precise
insight into the variability structure of process investigated within the test animal
population, so that avalid basis for further research is the final result.

The theory of hierarchical models, particularly the work of Racine-Poon (1985) and
Racine-Poon and Smith (1990), provides a procedure which incorporates both,
modelling of the variability structure and estimation of population mean parameter
vectors. The present study was designed to elucidate interindividual and
interoccasion variability of toxicokinetic parameters relevant for the biological

transformation of one of the basic petrochemica industrial compounds, ethylene
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(ethene), which is also a physiological body constituent, to its metabolite, ethylene
oxide, which is a proven carcinogen.
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1. Introduction

The determination of toxicokinetic parameters is an essential component in the risk
assessment of potential harmful chemicals. Most chemical carcinogens are
transformed into a chemical active form, its metabolite, that is able to interact with
cellular macromolecules such as DNA, RNA, and protein, and might finally lead to
the development of cancer. The relationship between applied dose and tumor
response is nonlinear (Filser and Bolt, 1984). This non-linearity is supposed to be
connected with the kinetic processes involved in the formation of DNA adducts
(Hodl et al., 1983). Hence an important step to assess the risk of a xenobiotic is to
investigate the kinetic processes of its uptake, metabolism, and exhalation.

The recognition of wide genetic variations in human metabolism of foreign
chemicals has focussed toxicological interests on pharmacogenetic factors in
experimental toxicological studies (Lovell, 1993). In particular, the importance of the
genetic make-up of a test animal population for experimental toxicity testing has
been stressed in view of the wide genetically determined variability of toxicokinetic
and toxicodynamic relationships in natural populations (Hedrich and Loscher, 1993).
The experimental use of inbred strains of rodents is an important tool to reduce the
biological interindividual variability of toxicological responses to chemicals, much in
contrast to the situation in humans to which atoxicity extrapolation is made.

It is now established that much of the differences in toxicodynamic responses to
chemicals within a population is based on matters of toxicokinetics, in particular on
genetically imprinted differences in activities of enzymes involved in the metabolism
of foreign compounds. It is therefore important to define the intrinsic experimental
variability of toxicokinetic factors between the members of inbred rodent strains used

for toxicological studies.



The present study has been designed to elucidate interindividual and interoccasion
variability of toxicokinetic parameters relevant for the carcinogenicity of one of the
basic petrochemical industrial compounds, ethylene (ethene).

A two-compartment model is used to describe the processes of uptake, exhalation,
and metabolic elimination of ethylene approximating the real kinetic processes by
first order kinetics. Two kinds of experimental designs are investigated: Repeated
exposure to equal (group A) and to different (group B) doses. We apply nonlinear
hierarchical models estimating the individual and population mean parameters as
well as the unknown covariance matrices by the use of an EM algorithm.

Furthermore, we provide a method to check the assumptions of first order kinetics.

2. Project and Data

The aim of this investigation is to determinate the population mean kinetic
parameters of uptake, exhalation, and metabolism of the chemical ethylene and to
quantify the variability due to interindividual and interoccasion differences where the
conditions at repeated occasions may be equal (group A) or different (group B).
Ethylene is one of the basic petrochemical industrial compounds. In the living
mammalian organism, ethylene is partly transformed, by hepatic metabolising
enzymes (cytochrome P-450) to ethylene oxide (Filser and Bolt, 1983) which is
biologically reactive and thereby genotoxic (Kirkovski et al., 1998). The principles
of the toxicokinetics of this transformation have been extensively studied (Filser and
Bolt, 1984; Bolt er al., 1984), and estimates of the carcinogenic risk of ethylene
based on its metabolic transformation to ethylene oxide were published (Filser and
Bolt, 1984; Thier and Bolt, 2000). Recent interest has been focussed on
"endogenous’ carcinogenic risks of ethylene. Ethylene is not only an exogenous and
potentially toxic foreign chemical, but also a physiological body constituent (Filser et
al., 1992; Bolt, 1996; Bolt er al., 1997). This particular aspect has a potential impact
for legal regulations of weak genotoxinsin general (Filser et al., 1994; Bolt, 1998)
Previous inhalation experiments with ethylene have indicated that the metabolism

may be well approximated by first order kinetics at concentrations below 800 ppm



(parts per million). At higher concentrations the metabolism of ethylene becomes
more and more saturated (Bolt and Filser, 1987).

Experimental design

Two different groups of experiments were investigated at the Institute of
Occupational Physiology at the University of Dortmund, each with 10 male Sprague-
Dawley rats. The animals had an average weight of 300 g.

Both groups of experiments were carried out using the "closed chamber technique”
as reviewed by Filser (1992), which allows investigations of kinetics of volatile
chemicals in vivo (cf. Quinke et al., 2000; Selinski et al., 2000, for further details).

The experiments of the first group (group A) had the following design:

Each of the ten rats was exposed to an initial concentration of about 100 ppm
ethylene for atime period of about 8 hours. In that time about 20 samples per animal
were taken, i.e.,, one sample every 25 minutes. This procedure was repeated four
times with the same initial concentration of about 100 ppm ethylene, so that we
finaly received five experimental series per anima observed under identical
conditions.

The design of the second group of experiments (group B) differed in so far from the
previous as each of the ten further rats was observed at different and increasing
initial concentrations of 20, 50, 100, 200 and 500 ppm ethylene (cf. Quinke et al.,
2000; Selinski and Urfer, 1998, for further details).

Note, that due to the experimental conditions the initial concentrations are not
exactly known and have to be treated as additional parameters.

3. Models and Methods

The following section presents the toxicological models as basis of the data analysis,
a method for checking an essential part of these assumptions — overall first order
kinetics and introduces the statistical models and the computational formulas.



3.1 Two-compartment model

The two-compartment model used by Filser (1992) for the characterisation of
exposure to volatile xenobiotics describes uptake, endogenous production, excretion,
and the metabolic elimination of the substance. The moddl is depicted as follows: a
xenobiotic gas, in this case ethylene, enters the body and is exhaled. This processis
described by introducing two compartments, the first, C;, representing the
environment outside the body, here the inhalation chamber of the exposition system,
and the second compartment, C,, the body itself. The volatile xenobiotic migrates
from one compartment to the other through a theoretical interface. During this
process, some portion of the xenobiotic within the organism, at any stage, is

eliminated by metabolic processes, and another portion is again exhaed (cf. Fig. 1).
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Figure 1. Two-compartment block model in the case of metabolic turnover

3.1.1 First order kinetics
This paper concentrates on overall first order kinetic processes which seem to be a

valid approximation of the true processes within the applied range of concentrations
of 20 to 500 ppm ethylene (Bolt and Filser, 1987; Selinski et al., 2000).

Let y,(2), [ = 1, 2, denote the concentration of a xenobiotic in compartment / at time ¢
and let V; describe the volume of the compartment.

In the case of overall first order kinetics, each partial process can be characterised by

one rate or velocity constant , that is k5! for the uptake, kL' for the exhalation, and



k' for the metabolic elimination (cf. Fig. 1). Thus the two-compartment model can
be described as follows (Beckaer al., 1993):
The concentration in the first compartment (atmosphere) is given by

(Aol (el 1
(- 1,) 5 @

the concentration in the second compartment (organism) is given by

o) = (0 AN ) 6 g i1 @

0 (A =2 )akld

where Alz_zﬁr(klkhk[khk[’ﬂ) (e + KL+ A - agl gl H a,=V,/V,

is the ratio of volumes, and y(0) is the initial concentration in compartment 1 (Urfer
and Becka, 1996).

3.1.2 Standardisation
In the practical application we have to take into account, that the individual

organisms have different volumes which are also varying between repeated

experimental occasions. According to Filser (1992) the individual rates of uptake

kX exhalation LY and metabolic elimination k' are related to the respective rates
k2, ko; and k,; for astandard rat of 1000 m!/ by

kiy =k, 337,

ki =k 037, and ©)

KN =k, O,, where
000 :
v, = V depends on the actual volume of the organism 7, and the standard
2

volume 1000 m!.
Substituting the real kinetic parameters in the respective formulas yields
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/]1'2 :%ﬁ» (klz 22/3 + kzl"é/3 + keIVZ)i \/(k12V22/3 + kzl";/3 +k,v, )2 - 4k12ke/V§/3 ﬁa

B=(ki>, ko, ke, ¥(0)" = (¢", ¥(0))" is the vector of the standardised kinetic
parameters ¢ = (k;», k>, k.;)" and theinitial concentration y(0).

3.2 Hierarchical models for repeated application of equal

(group A) or different (group B) doses

3.2.1 Notation

The observed concentrations of ethylene in the atmosphere of the exposition system
(compartment 1) are denoted by y;, with

i= ., 10 (group A) or rather i=11,...,20 (group B) the number of the
individual rat

j=1,...,Jtheindex of thetime point # and

k=1, ..., 5the number of the experiments.

The functional relationship is given by

y(/k f(ﬁ/k’t) //k’
i=1,...,100rratheri=11,...,20,/=1,...,J,k=1,...,5,

where f(8,.¢;) isanon-linear function of the individual parameter vector 3, and

the time ¢. The function f(f,,¢,) denotes the expected concentration-time curve of

the ith individual at the kth occasion.
In the present application the function f'is derived from the two-compartment model

and is given by eq. (4) substituting Bby B, so that

=y [%klsz"gf + A eXp{/‘szt } (kZJJkVéfks + Ao )exp{/\llkt j} % (6)
’k (/\:Lik /\z,k) E’
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where v, = B% H depends on the volume of the ith rat at the kth occasion V% and
O
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with Aoy < A1 < 0.



The parameter vector By = (k1o kari keis vi(0))" = (91, yu(0))", where @y = (ksou,

k>t ke,,-k)T represents the vector of the standardised kinetic parameters, differs from

individual to individual and is of dimension p = 4.

Our main interest are not the individual responses to the experimental conditions but
is focussed on a population mean process, which underlies the different individual
processes. The individual parameter vectors ¢; may be regarded as to vary at
random across an individual mean parameter vector ¢;, which describes the genera
behaviour of the respective processes for that individual. Furthermore the individual
mean processes are supposed to vary across a population mean process with
parameter vector ¢ in the manner of a random sample. Additionally we suppose that
the variances of the observed concentration-time curves differ from individual to

individual and from occasion to occasion.

3.2.2 Hierarchical model in case of repeated application of equal

doses (group A)

A Bayesian approach according to Racine-Poon (1985) and Racine-Poon and Smith
(1990) is applied to the data. We are interested especially in the variation of the
individual responses at different dosing occasions, the so called interoccasion

variability, and the variation between the individuals, the intersubject variability.

Non-linear hierarchical model
We propose a four-stage non-linear hierarchicl model assuming that our
observations y;; of the concentration of ethylene in the atmosphere of the exposition

system are independent and have the following distribution:

given By, 12 Yk~ N(AB 1), TF) i=1,...,10,j=1,... Jand
k=1,...5,
with Bi = (9, vi0))", and @i = (krou, korin keiw)”
given S, Q;: Bi~NG ,Q)i=1,...,10 andk=1,...5
with Bi= (¢, yi(0))", and @ = (ki kori kerr)',
given S, 2. Bi~N(, %) i=1,...,10,



with B= (¢, y©)), and ¢ = (kp2, ko, kur)”
p(B 01 0B0IR"

In case of the present application f'is specified by eq. (6).

Linear hierarchical model

We obtain the Bayes estimates for the population mean and individual parameter
vectors B, 5 and S by transforming the non-linear hierarchical model into a linear
one, such as provided by Lindley and Smith (1972). For that purpose the
observations y;; are replaced by an "almost" sufficient statistic {j with

ijDN(ﬂik,TiZCik), i=1,...,10,k=1,...,5.
In the case of uninformative priors for the variances 7’ the maximum likelihood

estimate of [ can be used as a good approximation for {; (Racine-Poon, 1985;
Selinski, 2001).

The resulting linear hierarchical model is given by:

given By, 17 i ON (B, T2 Ci), i=1,...,10,k=1,...,5
given 3 ,.Q;: B ON (B, Q)), i=1,...,10,k=1,...,5
given S, Z: B, ON (B, ), i=1,...,10

p(B) U 1, OB 0 IR

where 7,°C;" isthe information matrix (cf. Selinski and Urfer, 1998; Selinski, 2001,

for computational formulas):

PP O g2 O
Tikzcikl = Eg_mlnL()/l,l,l""’ylo,.],5‘ﬁ1,1""’ﬁlO,S’Tfl""’TlZOﬁ)E (7)
In case of known variances 7, and covariance matrices Q; and I the Bayes

estimates can be computed as expectations of the posterior distributions of 8, 5, and
Bwi=1 ...10, k=1,... 5 which can be derived easily from the linear
hierarchical model (Lindley and Smith, 1972; Selinski et al., 2000). However, we
have only vague knowledge about these covariance matrices, and the aim of our
investigation is to gain information about just these covariances, especialy with

regard to the interoccasion and interindividua variability. Hence, we need a method



to estimate both the parameter vectors and the covariance matrices. Such a method is

presented in the following section.

Estimators in the case of unknown covariance matrices

In the case of unknown variances 75,i=1,...,10,k=1,...,5, Racine-Poon and
Smith (1990) suggest to replace them by suitable estimates 7;. Thus we

approximate the Bayes estimate of 72 by (Selinski, 2000)

J

2 =% by -leet, ) Li=1..,10k=1,...,5 ®)
J=

For the joined estimation of the individual and the population mean parameters as
well as the covariance matrices Q,, . . ., Q;p and Z an EM-type iterative algorithm as
proposed by Dempster er al. (1977) is adapted to our four stage model. We assume,
that the inverse covariance matrices Q*, i=1,...,10, and =™ follow Wishart
distributions with degrees of freedom p; and p, and matrices R; and R, respectively.
Thus R*/(p:- p-1) and R;/(p>- p-1) play the role of prior estimates of Q; and X.
Vague knowledge about the inverse covariance matrices Q;*, ..., Q,,and ™ can
be expressed by choosing p; and p, as small as possible, i. e. py=p,=p=4. The
choice of R; and R, respectively, seems to have little influence on the estimates
(Racine-Poon, 1985).

Substituting 72 for 72, if necessary, we obtain the approximations of the Bayes
estimates at the /th iteration of the EM-algorithm, 8%, B, B, Q" and =%, i =

1,...,10,k=1,...,5 by computing the expectation of the posterior distribution of
B, B, and By,

replacing the covariance matrices by their current approximations Q™ ..., QU™
and =7, (E-Step) and calculating QV,..., QY, and = afterwards as the
posterior modes using B, B, and B, i=1,... 10, k=1,...,5 ( M-Step)

(Selinski e al., 2000).
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E-Step
Approximating Q;, ..., Qi Zby QU™ ..., Q¢ and = we obtain

B =5 5 (o, vl +x) ﬁ D 3 Fic ra? ez ) e @

Using the current estimate S of Byields
5 7t 5
ﬁi(l) ) @ (f’i Cik " Q’(l_l) )_1 E-I- Z(/_l) _lg @ (f’i Cik + Ql(l_l) )_1 III'k HF Z(/_l) B EBU) B
= 0 = 0 O
(10)

and

-1
,3,5(1) — f; C, )'1 + (Ql(l—l) +30D )'1 5 [gf’i C, )‘1 7, + (Ql(l—l) +30D )‘1 BY 5

(1D)

M-Step
Setting By, Band B, i=1,...,10, k=1, ..., 5 equa to their current values 3",

B, and B, the conditional posterior mode s given by

5

R+ Z BY - lg(/) B - go )7’

QW = " , i=1,...,10,and (12
P~

R+ %ﬁ(ﬁf” ;0 )(,3,-(” 10 )”

s0 = = (13)
10+ p, -

Both steps are repeated until QY , ..., Q¥, and = converge. Racine-Poon (1985)

suggests as criterion for convergence, that the maximum change in the elements of
the covariance matri ces between successive iterations should be less than 0.001.

Reasonable starting values Q?, ..., QY , and = are given by

R+ Z(Z,k -7 e -2)

QO = :5+p 5 : i=1,...,10, and
R 2
10 -
RF+S (2 -7 )2 -7)
5O = i=1 ’
10+p,-p-3

where 7, == ¢, and Z_:%ZO 510225
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3.2.3 Hierarchical model in case of repeated application of

different doses (group B)

Analysing the experiments of group B it has to be taken into account that the initial

concentration varies from occasion to occasion.

Non-linear hierarchical model

As we are merely interested in the kinetic parameter we ignore the potential
dependence between their estimates and the initial concentration. Otherwise we
would receive a more complex model which would be much more difficult to
estimate as it was the case for model A (Selinski, 2001). Moreover, assuming overall
first order kinetics implies this independence, athough we have to verify this
assumption, of course. A suitable test is presented in section 3.3.

Hence, we propose a four-stage non-linear hierarchica model assuming that our
observations y;; of the concentration of ethylene in the atmosphere of the exposition

system are independent and have the following distribution:

given @y, viu(0), T2 yix ~ N(APuo y(0), 1), T5) i=11,...,20,j=1,...,J,

k=1,...,5,
with By = (@, yu(0) )", and @y = (ki korin, eid)”
given ¢, Q;: @i~ N(¢: , Q)), i=11,...,20,k=1,...,5,
with @, = (k12 ka1 ker)',
given ¢, Z: ¢~ N(¢, %) i=11,..., 20,
with ¢ = (ki, ko, ko))"

p(9)01 O¢OIR.

Linear hierarchical model
The non-linear hierarchical model is transformed into alinear one by substituting the
observations y;; by the Maximum-Likelihood estimates {j. Thus, we receive the

following linear moded!:
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given 6, : Z ON(8.7),

where ¢ = ({iar - - o Coos)s :(Iglz,k,l;m,lge,,k)[are the three first
components of the Maximum-Likelihood estimate i of By, =61, . . ., 82)",

0.=(Bity - $5), V =diag{(T2,Cp11), - - - (T25Cros)}, and T2C, denotes

the left upper 3x3 matrix of the inverse of the Information matrix (T,iC,k )_l.

given ¢, Q: G0N (Z,y, Q),
where , 6= (9“, C 92())T, 9,- = (¢,-,1, C ¢i5)T, (/I = (¢“, . ¢2())T

B{ 0 - .- OH
o ‘0
g-zll H D[ |:|
& 0 5 M I 0 0
Q=U . O andz,=0b 1 o :0is a suitable
. Q, EF 0 0
U] . U]
0 o . og
QZO EF : 0 [D
Do o ]
design matrix.
given ¢, A\ WON (Z3¢, N),
where ¢ = (k]g, ks, ke[)T, N= diag{Z, ey Z}, and Z3 = (]3, C ey [3)T isasuitable
design matrix,
p(¢4) O 1, O¢ O IR,

The Bayes estimates and the computational formulas of the EM agorithm are the
same asin case of equal doses (group A). Note, that the dimension p of the parameter

vectorsisthreeinstead of four.
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3.3 Checking assumption of overall first order kinetics

An essential assumption of the present modelling approach is the assumption that all
Kinetic processes under investigation may be approximated well by first order or
linear kinetics. The following section presents a method to check if this
approximation isvalid.

In the case of ethylene preceding experiments suggest that the processes of uptake,
exhalation, and metabolism of ethylene may be well approximated by first order
kinetics for concentrations below the point of saturation of about 800 ppm ethylene
(Bolt, 1998). In the present inhalation study doses of about 20 — 500 ppm ethylene
were used so that overall first order kinetics should provide a valid approximation of
the real non-linear kinetic processes.

However, the assumption of first order kinetics has to be checked to avoid critical
departures from linearity. For this purpose the experiments of group B, which
provide information about the behaviour of the kinetic processes at different doses,
serve as database for a test of first order kinetics. Moreover the results are

counterchecked by an explorative analysis.

3.3.1 A distribution-free test for departures from first order
kinetics

Assuming first order kinetics means that the processes are independent from the
initial concentration. This assumption of independence can be used to test if the data
may be well approximated by linear kinetics (Becka, 1994). So, the concentration-
time curves depend on the initial concentration only through the factor y;(0).

In the case of overal first order kinetics the standardised observations
ylff"'l:i,izl,...,l,kzl,...,K, (14)
(V)
with ;° denoting the index of the time point #:, are independent from the initial
concentration y;(0) in compartment 1. Testing the null hypothesis of independence
from the initial concentration a time point ¢+ is chosen, where observations are
availablefor al individualsi =1, . . ., 1, and dosing occasions k=1, . . ., K. Usualy a
later time point ¢+ should be chosen as possible departures from first order kinetics
would result in a clearer dependency of the standardised observations and the doses
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due to the duration of the partial processes.

Asthe initial concentration is often not exactly known in toxicokinetic experiments,
vi(0) has to be estimated. If a model is aready fitted the estimate of y;(0) may be
used for standardising the observations. Otherwise, the first observation provides
usually an adequate approximation for theinitial concentration.

A further approach is to test for independence of the kinetic parameters from the
initial concentration. Assuming first order kinetics this independence should hold for
the estimates of the standardised individual and experiment specific kinetic
parameters, as the shape of the concentration-time curves does not depend on the
dose. The term 'standardised kinetic parameters’ means here that the influence of the
animal’s volume is eliminated according to the procedure provided by Filser (1992).
Thus, the null hypothesis of independence of the standardised rates of uptake k12,
exhalation k1, and metabolism kg, respectively, from the initial concentration is
tested separately for each parameter.

Hence, it is possible to detect the partial processes, which are not approximated well
by first order kinetics. Moreover, detecting such departures from linearity the
direction of correlation between parameters and initial concentration is of substantial
interest.

Usually, the sample sizes of toxicokinetic studies are quiet smal so that non-
parametrical tests will be the method of choice. Additionally, these methods are more
robust against outliers.

Becka (1994) provides a procedure to test for departures from first order kinetics
based on the Spearman rank correlation coefficient 5. Following this attempt the
Kendall test for independence is applied. Thistest is based on the Kendall correlation
coefficient 7 The required properties of the data are the same for both statistics,
which also contain the same amount of information about the sample. However, |7] <
[*s| in amost every case. The advantage of 7 is that its distribution converges faster
against the normal distribution than the distribution of s does (Buning and Trenkler,
1994).

Kendall’s correlation coefficient 7 is defined as follows (Hollander and Wolfe,
1999):
Let (x;, v1), . . ., (xn, yu) be arandom sample from a continuous bivariate population,

i.e. the n bivariate observations are mutually independent and identically distributed.
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The Kendall population correlation coefficient is defined as

r=— (15)
T (m-Ynl2’

where K isthe Kendall statistic

n-1 n
K=% % 0(x,y).(x,.y,)) and (16)

i=1 j=i+l

0L fd-b)c-a)>0

@M=L 1 ira-bye-ay<o 1=/ </=" (1)
isthe sign statistic.
In case of many ties the modified correlation coefficient 7° is given by
¥ = T with (18)

\/(n—l)n/Z—TX\/(n—l)n/Z—UY ’
g h

Te=) (=Dt /2and U, =% (u, =Du, /2,
i=1 J=1

where 1; is the size of the tied X group i, g is the number of tied X groups, u; is the

size of thetied Y group/, and % is the number of tied ¥ groups.

A test of independence of X and Y based on Kendal’s 7 is given by the following
definition.

3.3.2 Kendall's test for independence
Let (x;, v1), - - ., (xn, yu) be arandom sample from a continuous bivariate popul ation.

The Kendall test of independence is defined as atest of

Hy: XandY are mutually independent =

Fxyx.y) = F(x)Fr(y), U (x,y) pairs

versus
a. Two-Sided Test

H;: XandY arecorrelated < 120
b. One-Sided Upper-Tail Test

H,: XandY are positively correlated = 7>0
¢. One-Sided Lower-Tail Test

H;: XandY arenegatively correlated = 1<0

at the a-level of significanceif

16



a |Kl2k,, Two-Sided Test
reject Hp if b. K=k, One-Sided Upper-Tail Test
c. K<-k, One-Sided Lower-Tail Test

otherwise do not reject.

Critical values are given for example by Hollander and Wolfe (1999) for sample
sizes up to 40 and by Neave and Worthington (1992) for sample sizes up to 50.

For large sample sizes n the standardised Kendall correlation statistic K* has
asymptotically anormal distribution and is given by

K—-E,(K
* — # (19)
YVvar, (K)
where Eo(K) = 0 is the expected value of K under Hp and
-1)(2n +5
var, (k) = "= V@n +9) (20)

18

isthe null variance of K (Hollander and Wolfe, 1999).
When Hy is true and » tends to infinity, K* has an asymptotic N(0O, 1) distribution.
Thus,

a |K* =z, Two-Sided Test (21)
reject Hp if b. K*2z,  One-Sided Upper-Tail Test (22)
c. K¥<-z, One-Sided Lower-Tail Test (23)

otherwise do not reject.

In the case of ties among the X and/or among the Y observations, replace the function
O(a, b), (¢, d)) in (17) by

1 if(d-b)(c—a)>0
0*((a,b),(c,d))=00 if(d-b)(c-a)=0 (24)
F1 if(d-b)(c-a)<0

and compute K with these modified paired sign statistics. Note, that the test is now
only approximately, and not exactly, of significance level a.

Applying the large-sample approximation (19) it has to be taken into account, that
the tied observations result in areduced variability, while the expectation of K under
Hy is not affected. In the case of tied X and / or Y observations the null variance is
given by

17



B g h O
D’Z(I’Z _1)(2n +5) - Zt/ (t/ _1)(2t/ + 5) - Zu,/ (u,/ _1)(2uj + S)D
Varo(K) = O = /- U

18

g h [l
(. =D(t. -2 (u. -D(u. -2
E;t,(t, ), -2y D, -2

=

Mn-1)(n-2)

g h |:|
EZI, t, -y u,(u, —1)%
=1

+

(25)

j=1

2n(n-1)

+

where g denotes the number of tied X groups, / the number of tied Y groups, ¢ is the
size of thetied X group i and u; isthe size of the tied Y group ;.
If neither the X group nor the Y group contains tied observations, we have g=h=n
and ¢, = u; = 1. In that case each term involving (z; —1) and / or (1, —1) reduces to zero
and (25) is equal to the usual null variance of K as given in equation (20).
Thus, in the case of large-sample size n and tied observations, compute K* with the
modified paired sign statistic (24) using the null variance of K as given by (25):

K

K* = —W (26)

Hence, the approximations (21), (22) or (23) can be applied.

3.3.3 Graphical analysis
As in toxicologica studies the database for testing hypothesis about the underlying

kinetic processes is usually sparse Becka (1994) suggests to countercheck the results
graphicaly. For this purpose the estimates of the standardised kinetic parameters are

compared with the maximum concentration in the respective compartments. Thus,
the maximum likelihood estimates lglzl.k and the Bayes estimates k,,, of the rate of
uptake are plotted against the estimated initial concentration y,(0) in the first
compartment. Further, the maximum likelihood estimates lgm and lgc,l.k as well as
the Bayes estimates k,,, and k,, are plotted against the estimated maximum
_In(A/1,)

) (/\2 _/\1)

concentration in the second compartment at time point ¢, : (Selinski,

2001).
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4. Results

The methods presented in the previous chapter were applied to the data from the
ethylene study. The calculations were performed using the SASo program package.
In case of normality, the maximum likelihood estimates ¢;; coincide with the least
sguares estimates. Thus, ¢ can be conveniently estimated using the PROC NLIN
procedure. The estimation was performed using the Marquardt algorithm in PROC
NLIN (SAS STAT users guide, 1994). The EM agorithm was implemented in
SAS/IML®. For programs and further details, see Schirm (1999) and Schirm and
Selinski (2000).

The estimates of the kinetic constants are computed in 47/, the initial concentration is

measured in ppm.

4.1 Estimates for group A

The maximum likelihood or rather least squares estimation of the kinetic parameters
and the initial concentration required several weeks. It was possible to obtain
estimates for al data sets of group A but for animal 10, 5" occasion, where no
observations were available as animal 10 was dropped out of the experiment during
the fourth day (cf. Quinke er al., 2000, for further details). The results of the
maximum likelihood estimation are given by Schirm and Selinski (2000) and
Selinski (2001).

The estimates of the variance 72,i=1,...,10,k=1, ..., 5, are given by the mean
squared residuals. They give afirst hint with respect to the fit of the model and the
occurrence of possible outliers or some specia features of the data, animal 3, 2™

occasion, for instance (see figure 2).
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Figure 2. Measured concentration of ethylene in the atmosphere of the inhalation
chamber of rat 3 at the 2™ exposure occasion; time in hours since application of

ethylene.

The estimates of 72 are given in table 1 (Schirm and Selinski, 2000).

Table 1: Estimates of T in group A; occ. denotes the occasion and Jy, the number of

observations.
rat | occ. | Ji 72 raa | occ. | Jy 72
1 1 19 | 0.3751 6 1 21 | 1.5588
2 20 | 7.6993 2 20 | 1.8800
3 21 | 23942 3 21 | 1.1651
4 20 1.1378 4 21 | 11731
5 20 | 0.8222 5 21 | 1.0177
2 1 19 | 0.5984 7 1 20 | 1.9394
2 20 | 0.7304 2 21 | 0.8443
3 21 | 8.0063 3 19 | 15757
4 21 | 2.6939 4 21 | 2.1700
5 21 | 8.8819 5 20 | 1.2412
3 1 19 | 0.8810 8 1 20 | 14161
2 20 | 46.7935 2 19 | 0.9936
3 21 | 0.7284 3 19 | 0.8557
4 21 | 0.7362 4 21 | 04737
5 19 15714 5 20 | 5.9009

20



4 1 19 | 0.3881 9 1 21 | 0.9357
2 20 | 16.7085 2 19 | 6.3617
3 21 | 0.7776 3 19 | 8.7399
4 21 | 0.4518 4 20 | 21776
5 21 1.0244 5 21 | 0.3247

5 1 19 | 0.2953 10 1 21 | 1.5953
2 20 | 0.6920 2 21 | 05121
3 21 | 0.5447 3 21 | 0.7565
4 20 1.5790 4 16 | 0.6898
5 18 | 0.9940 5 0 ---

4.1.1 EM estimation in model A

The EM agorithm as given in section 3.2.2 was implemented using SAS/IMLo. The
algorithm converged quite fast with computational times of about 10 to 15 minutes.
Tables 2 — 4 show the estimators of the population mean, individual mean and
specific kinetic constants 8, B, and B,,i=1,...,10, k=1,...,5 (Schirm and

Selinski, 2000).

Table 2. Estimated population mean parameters from group A.

*
k12

*
k21

k:/ y* 0)

0.0195

1.9459

7.9203 | 120.7751

Table 3. Estimated individual mean parameters from group A.

rat kIZ/ k;li k:// Y ,* 0)

1 0.0165 | 1.7996 | 8.2271 | 122.0978
2 0.0251 | 1.4295 | 9.7140 | 125.9349
3 0.0172 | 1.6769 | 8.6843 | 123.6201
4 0.0170 | 1.5062 | 9.4373 | 124.6642
5 0.0395 | 2.7110 | 5.9216 | 109.8376
6 0.0152 | 1.8898 | 7.8890 | 121.3839
7 0.0153 | 1.7540 | 8.3365 | 122.1477
8 0.0185 | 2.3801 | 6.5166 | 116.9047
9 0.0171 | 2.1202 | 7.2037 | 119.2689
10 0.0163 | 1.9532 | 7.6405 | 120.7579
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Table 4. Estimated individual occasion-dependent parameters from group A.

ra | occasion k, ks, k, ¥, (0)
1 1 0.017867 2.042351 7.813926 | 120.407321
2 0.036978 1.177360 8.338775 | 121.954447
3 0.027586 3.744748 5983159 | 115.581855
4 0.017331 2.807415 7212940 | 118.964772
5 0.016146 1.754080 8218057 | 121.935002
2 1 0.016227 1.813242 8310704 | 122.296099
2 0.015744 0.576604 10147568 | 129.166689
3 0.028768 2.911374 6.958533 | 118.202267
4 0.024134 0.983018 8.914000 | 124.252370
5 0.027182 1.112956 8530211 | 122.715473
3 1 0.013899 1.286805 9.032062 | 125.334979
2 0.038556 1.437662 8196556 | 121.583943
3 0.020023 2.689459 6.866247 | 116.936443
4 0.020142 2.398732 7.347466 | 118.715818
5 0.017125 1.540455 8297491 | 122.116976
4 1 0.016811 2.397992 7.108658 | 118.141629
2 0.016057 2.093109 7.769620 | 120.366496
3 0.018866 2.863103 6171412 | 115.147041
4 0.016776 1.982590 7.929145 | 120.859000
5 0.017125 1.253202 9.114037 | 124.816619
5 1 0.015103 1.372176 8.604388 | 124.441190
2 0.016994 2.521933 7138030 | 117.399421
3 0.017026 1.603022 8.333555 | 122.633271
4 0.029043 3.919082 5563675 | 113.474553
5 0.049548 3.508707 6.293463 | 115.809103
6 1 0.015754 1.497588 8.434854 | 122.763099
2 0.014801 0.584613 9.353037 | 126.586386
3 0.014648 1.506484 8.401046 | 122.698102
4 0.015206 1.957088 7.950639 | 120.984710
5 0.014473 1.914141 8.028343 | 121.263201
7 1 0.017682 1.288865 8.488848 | 122.887635
2 0.017778 1.817587 8.015805 | 121.080294
3 0.015246 1.804568 8.060977 | 121.285943
4 0.012670 2.428750 7.304145 | 118.953311
5 0.014744 1.695325 8200570 | 121.844066
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8 1 0.019036 1.201966 8.975108 124.478546
2 0.018865 1.301862 8.951265 124.449674
3 0.019677 1.484649 8.703304 123.573169
4 0.018887 2.643065 6.684446 116.532885
5 0.017386 2.773638 6.894735 117.743190
9 1 0.018555 2.807156 6.807675 116.768842
2 0.021778 3.366203 6.798242 118.278075
3 0.018139 2.209665 7.735031 120.243264
4 0.016314 1.675937 8.291964 122.270009
5 0.016378 2.247555 7.544129 119.360711
10 1 0.021022 1.450429 8.325077 122.279515
2 0.026133 2.643840 6.920083 116.773079
3 0.020052 3.172268 6.344221 115.066653
4 0.015975 2.016850 7.893261 120.738310

These results are consistent with the maximum-likelihood estimates. In genera,
extreme data points in some components are corrected towards a common mean by

the Bayes estimation.

A comparison of the interindividual and interoccasional variability can be made by

computing estimates of the covariance matrices Q,,i=1,...,10and ¥ .

Table 5. Estimates of the individual covariance matrices Q, from group A.

rat ki> k2 kel »(0)
1 11112 0.0011 -0.0027 -0.0088
0.0011 1.6942 -0.6174 -1.7940
-0.0027 -0.6174 1.8052 2.0536
-0.0088 -1.7940 2.0536 7.2421
2 11111 0.0011 -0.0004 -0.0035
0.0011 1.4855 -0.4734 -1.5382
-0.0004 -0.4734 24212 3.6635
-0.0035 -1.5382 3.6635 11.8527
3 11112 0.0001 -0.0023 -0.0092
0.0001 1.3083 -0.3080 -1.1427
-0.0023 -0.3080 1.7335 2.3199
-0.0092 -1.1427 2.3199 9.78%4
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4 11111 0.0002 -0.0005 -0.0014
0.0002 1.4746 -0.9026 -2.5671
-0.0005 -0.9026 3.4722 6.5698
-0.0014 -2.5671 6.5698 19.5659
5 1.1113 0.0064 -0.0157 -0.0880
0.0064 1.6835 -0.7500 -2.8888
-0.0157 -0.7500 2.8058 9.0527
-0.0880 -2.8888 9.0527 54.7850
6 11111 0.0000 0.0000 -0.0002
0.0000 1.3276 -0.2519 -0.8607
0.0000 -0.2519 1.4142 0.9997
-0.0002 -0.8607 0.9997 4.5410
7 11111 -0.0003 0.0002 0.0008
-0.0003 1.1869 -0.0815 -0.2881
0.0002 -0.0815 1.2343 0.4160
0.0008 -0.2881 0.4160 2.5251
8 11111 -0.0003 0.0005 0.0014
-0.0003 1.5085 -0.8097 -2.5331
0.0005 -0.8097 2.9916 5.7585
0.0014 -2.5331 5.7585 18.8444
9 11111 0.0008 -0.0003 -0.0011
0.0008 1.3607 -0.1300 -0.4652
-0.0003 -0.1300 1.3226 0.5785
-0.0011 -0.4652 0.5785 3.0218
10 11111 0.0010 -0.0010 -0.0059
0.0010 1.3578 -0.2673 -1.1618
-0.0010 -0.2673 1.4147 1.2539
-0.0059 -1.1618 1.2539 6.7316

Table 6. Estimates of the population covariance matrix Z from group A.

ki k2; kel ¥(0)
ki 1.1112 | 0.0016 | -0.0038 | -0.0235
ko 0.0016 | 1.2665 | -0.4653 | -1.7714
kel -0.0038 | -0.4653 | 2.5475 | 5.1850
»(0) | -0.0235 | -1.7714 | 5.1850 | 22.3028
Interestingly, all covariance matrices Q;, i = 1, . . ., 10, are all very similar and they

arevery similar to the covariance matrix . They have the same structure and all very
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similar entries. Only the variance of the initial concentration differs much between
the animals. The rates of uptake, exhalation, and metabolism seem to be independent.
Furthermore, there is no clear dependency between the initial concentration and the
rates of uptake and exhalation. On the contrary the results indicate a correlation
between the rate of elimination and initial concentration of ethylene, which is not

consistent with the assumption of afirst order kinetic process.

To evaluate the quality of the estimates the coefficient of determining
J J
R :1_2(3/,/_37/)2/2(% _yj)z (27)
J= J

is calculated, where y, denote the observations and the y, are the estimated

observations. R? provides a measure of fit of the model relating the variance
explained by the model to the total variance.

R?2 was caculated for al single inhalation experiments separately and for all
estimates including the maximum likelihood estimates. For the individual mean and

the population mean parameters the initial concentration from B~ was used.

Otherwise the estimated individual and population mean kinetic parameters would
appear to be rather bad just due to the shift of the estimated concentration-time
curves to a higher or lower initia concentration than the one of the specific
experiment. Note, that the initial concentration is only a scaling factor in case of
kinetic processes of first order (Selinski, 2001).

Table 7. R* calculated for the maximum likelihood estimates {, and for the Bayes
estimates B, B, B from group A as well as the difference between R*(3 ) and

R(Z,).

rat |occasion| RA({,) | RAB) | RA(B") | R(B) | difference

1 1 0.9933 0.9933 08813 | 009784 0.0000
2 0.9693 0.9685 01121 | 04478 -0.0008
3 0.9667 08113 51731 | -34714 -0.1554
4 0.9736 0.8248 06271 | 03758 -0.1488
5 0.9873 0.9869 09801 | 07243 -0.0004

2 1 0.9877 0.9873 03461 | 0.7131 20,0005
2 0.9900 0.9782 12830 | -0.8462 -0.0118
3 0.9201 0.8446 06997 | -0.9633 -0.0755
4 0.9806 0.9437 08467 | 0.8360 10,0369
5 0.9479 0.8985 09188 | 0.8456 -0.0494
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3 1 0.9796 0.9698 0.3083 -0.9110 -0.0099
2 0.8358 0.8325 0.0078 0.3242 -0.0032

3 0.9873 0.9771 -0.3935 0.4591 -0.0102

4 0.9886 0.9858 0.2485 0.8083 -0.0028

5 0.9746 0.9440 0.9259 0.5036 -0.0306

4 1 0.9910 0.9898 0.1595 0.9097 -0.0012
2 0.7453 0.7450 0.5755 0.6727 -0.0003

3 0.9838 0.9701 -1.6673 0.03%4 -0.0137

4 0.9924 0.9924 0.8422 0.9078 0.0000

5 0.9870 0.9829 0.9649 0.4753 -0.0041

5 1 0.9945 0.9944 -11.0791 0.1413 -0.0002
2 0.9857 0.9843 -4.8625 0.8815 -0.0014

3 0.9925 0.9925 -6.2837 0.7823 0.0000

4 0.9751 0.7795 0.6418 -5.2533 -0.1956

5 0.9921 0.6241 -0.4460 -7.1038 -0.3680

6 1 0.9759 0.9695 0.8885 0.4011 -0.0065
2 0.9746 0.9298 -0.1257 -1.2145 -0.0447

3 0.9786 0.9759 0.8493 0.1946 -0.0027

4 0.9773 0.9773 0.9767 0.6932 0.0000

5 0.9788 0.9786 0.9659 0.5065 -0.0003

7 1 0.9775 0.9668 0.9441 0.6265 -0.0106
2 0.9887 0.9886 0.8872 0.9291 0.0000

3 0.9755 0.9753 0.9743 0.6397 -0.0002

4 0.9397 0.9281 0.7094 0.5337 -0.0117

5 0.9781 0.9772 0.9633 0.3780 -0.0010

8 1 0.9858 0.9792 0.3057 0.7277 -0.0066
2 0.9898 0.9853 0.3516 0.7688 -0.0045

3 0.9914 0.9892 0.6031 0.9049 -0.0022

4 0.9910 0.9873 0.9435 0.5890 -0.0037

5 0.8826 0.8439 0.8107 0.3617 -0.0388

9 1 0.9824 0.9587 0.3894 0.4211 -0.0237
2 0.8852 0.6014 -2.1123 -1.9223 -0.2839

3 0.8843 0.8805 0.8685 0.8673 -0.0038

4 0.9647 0.9600 0.6595 0.6196 -0.0046

5 0.9937 0.9932 0.9907 0.9452 -0.0005

10 1 0.9854 0.9828 0.9220 0.9523 -0.0027
2 0.9949 0.9823 -0.4063 0.1020 -0.0126

3 0.9862 0.9516 -1.1030 -0.3694 -0.0346

4 0.9811 0.9811 0.9796 0.8360 0.0000

median 0.9811 0.9759 0.6031 0.5337 -0.0041
minimum 0.7453 0.6014 -11.0791 -7.1038 -0.3680
maximum 0.9949 0.9944 0.9907 0.9784 0.0000

In general the fit of the individual and occasion specific parameter vectors 3 is

very good. The median of R? is about 0.98, it minimum value is about 0.60 and its
maximum about 0.99. In five cases the performance of the Bayes estimate is much

worse than the fit of the maximum likelihood estimate. The difference in the worst
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case is 0.3680 (rat 5, 5™ occasion). Considering the fit of the individual mean and the
population mean yield differing results. R? ranges from 0.99 to —11.08 in case of the
individual mean and from 0.98 to —7.10 in case of the population mean. In most
cases, the fit of both means to the data from the single experiments is satisfying. A
discussion and an analysis of the outlier problem is given by Selinski (2001) and
Selinski and Becker (2001).

4.2 Estimates for group B

Analysing the data from group B (repeated application of different doses) yielded
poor maximum likelihood and Bayes estimates. Due to the bad performance of these
estimates, outliers were detected and eliminated from the data. The maximum
likelihood and EM estimation were repeated afterwards. As no animal was dropped
out of the experiment the data set is complete.

The maximum likelihood or rather least squares estimation of the kinetic parameters
and the initial concentration was performed using the Marquardt algorithm in PROC
NLIN (SAS STAT users guide, 1994; Schirm, 1999). The estimation procedure
required even more time than for group A. Although severa sets of starting values
were used it was not possible to obtain estimates for all individuals and dosing
occasions. The agorithm did not converge for rat 11, 2nd and 5th dose and for rat 16,
5th dose (Selinski, 2001).

The EM algorithm was implemented using SAS/IML® (Schirm, 1999; Schirm and
Selinski, 2000) and required 15 iterations. So, the computational effort was minor
compared with the least squares estimation. Note, that there are no estimates of ¢,
available for rat 11, 2™ and 5™ dose, and for rat 16, 5" dose as the respective
maximum likelihood estimates were not available.

Although the performance of the maximum likelihood estimates was good —
median = 0.97 — the fit of the individual and dose specific parameter vectors ¢, ,
i=11,...,20, k=1, ..., 5, isvery poor for several animals (cf. Selinski, 2001 for
further details). Rat 12, 13, 15, 17, and 20, where the rates of uptake were all
negative, showed values of R? from -3585 to -47 Millard! For the rest of the animals
the results were very good. The lack of fit was not related to the body weight of the

individuals. Considering the individual and population mean the performance of the
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population mean is much better than of the individual mean and — in case of the rats
with poor fit of ¢, — much better than the performance of the individual and dose-
dependent parameter vectors. Note, that there is no relationship between R*(¢;) and
R*(¢u), i.e. animals with a poor fit of ¢, do not display worse resultsfor ¢~ than the

other individuals.
The following observations were identified as outliers using a modified Hampel
identifier (Selinski and Becker, 2001).

Table 8. Outliers in group B, estimation of the concentration-time curve performed

by the use of the Bayes estimate of {y from group B, time in hours since application

of ethylene.
rat | occasion time rat | occasion time
11 3 0:25 15 1 3:20
11 3 7:05 17 3 3:20
12 1 0:25 18 1 4:10
13 2 8:20 18 3 2:30
13 5 0:25 18 3 7:30
14 1 3:45 18 5 3:20
14 2 0:25 20 1 5:00
14 3 3:20 20 5 0:25
14 3 3:45 20 5 5:25
14 4 375 20 5 500

After removing the observations given by table 8 from the data set and checking the
assumptions of first order kinetics the estimation procedure was repeated. Using
severa sets of starting values the least squares estimation took several weeks. Again,
it was not possible to obtain estimates for rat 11 and 16, 5" dosing occasion, both
(Selinski, 2001).

As no maximum likelihood estimates for rat 11 and 16, 5" dose, were available the
population parameters from the first EM estimation were used instead. The estimates
of the kinetic parameters were substituted by .00414 for the rate of uptake, 1.27489
for the exhalation, and 8.35140 for the metabolic elimination. For details with respect

to the estimation of the initial concentrations of both experiments see Selinski

(2001). Thus, 77 was estimated for these particular data sets as 7= 21.1392
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(J115 = 20) and T 5= 10.9553 (J;55 = 21). The estimates of 7 for the rest of the

data setsare given in table 9.

Table 9. Estimates of the variance T; and numbers of observations Jy (second

estimation).

rat dose Ji i’ rat dose Ji 7

11 1 21 0.0664 16 1 21 0.1465
2 21 0.5956 2 21 0.4888
3 19 0.5426 3 21 1.4759
4 21 2.5780 4 21 6.1062
5 - - 5 - -

12 1 20 0.0142 17 1 21 0.1074
2 21 0.6108 2 21 0.2679
3 21 1.0455 3 20 0.6135
4 20 2.3203 4 21 3.2113
5 20 32.9998 5 21 27.5246

13 1 21 0.1999 18 1 19 0.0839
2 19 0.2281 2 19 0.1962
3 21 0.2952 3 18 0.2688
4 20 1.4387 4 21 3.8432
5 20 11.7717 5 20 11.1034

14 1 20 0.0420 19 1 20 0.0871
2 20 0.3239 2 21 0.4350
3 18 0.2687 3 21 1.6764
4 19 2.4961 4 21 9.2073
5 21 22.1548 5 21 14.4091

15 1 20 0.0885 20 1 20 0.1011
2 21 0.3462 2 21 0.1985
3 21 0.8770 3 21 1.7925
4 21 1.6208 4 21 5.4733
5 21 20.9219 5 18 3.2550

A second EM estimation was performed with the new maximum likelihood
estimates. The EM algorithm converged within 8 minutes requiring 21 iterations. The
new population mean is given in table 10. Note, that the estimated rates of uptake
and exhalation are higher than those from the first estimation procedure, whereas the
rate of metabolism is lower.
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Table 10. Bayes estimates of the population mean @ of the kinetic parameters from

group B (second estimation).

* *

klZ k;l k

0.00919383 2.48195581 6.07420137

The second estimates of the individual means contain no negative rates of uptake.
The new estimated rates of exhalation are higher than the respective estimates from
the first estimation procedure whereas the new estimates of the rates of metabolism

are lower (seetable 11).

Table 11. Bayes estimates of the individual means @; of the kinetic parameters from

group B (second estimation).

*

rat ki,

* *

by | K

13

11 0.008159 | 2.566444 | 7.955422
12 0.004663 | 2.632562 | 4.996317
13 0.009752 | 2.703144 | 4.963009
14 0.011046 | 2.619991 | 3.841387
15 0.007859 | 1.522446 | 4.381336
16 0.010371 | 2.764825 | 4.164892
17 0.006331 | 3.091274 | 6.510701
18 0.010644 | 2.397212 | 3.208884
19 0.007144 | 2.589783 | 11.35654
20 0.008846 | 1.839113 | 7.420888

The estimates of the individual and dose specific kinetic parameters are given in
table 12. For 4 animals negative estimates of the rate of uptake were obtained. These
were rat 12, all but 3% dose, rat 13, only 3" dose, rat 14, 1% and 4™ dose, and rat 16,
all doses. Remarkably, these individuals correspond only partly to those of the first
estimation procedure whose estimates of k;,; were aso negative (rats 12, 13, 15, 17,
and 20). Furthermore, not al of the estimated rates of uptake of these specific
individua were affected.
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Table 12. Bayes estimates of the individual and dose-specific kinetic parameters @i

from group B (second estimation).

rat dose ki ke ki
11 1 0.00798 2.585867 6.206487
2 0.008014 2.561593 6.202799
3 0.008203 2.263459 6.275936
4 0.007949 2.59943 6.20916
5 0.007954 2.389376 6.217159
12 1 -0.00367 2.721866 5.968923
2 -0.00284 2.821971 5.935779
3 0.002171 2.701235 5.971985
4 -0.00025 2.845661 5.923158
5 0.002122 2.761023 5.95977
13 1 0.009891 2.824627 5.738727
2 0.004327 2.814266 5.741295
3 -0.00105 3.060259 5.547908
4 0.004996 2.858488 5.727517
5 0.005535 2.931295 5.688083
14 1 -0.01011 2.885706 5.606174
2 0.004299 2.739558 5.662993
3 0.003109 2.743573 5.662277
4 -0.00286 3.27717 5.038739
5 0.001784 2.842023 5.630116
15 1 0.08689 0.926819 4520482
2 0.033398 1.88046 5.057021
3 0.033398 1.88046 5.057021
4 0.033398 1.88046 5.057021
5 0.0334 0.900386 3.704453
16 1 -0.01726 3.050767 575792
2 -0.0008 2.898646 5.830125
3 -0.00297 3.027369 5.773353
4 -0.0031 3.251369 5.565021
5 -0.00197 3.125021 5.701347
17 1 0.004988 3.396908 6.391919
2 0.004982 3.398874 6.394717
3 0.004981 3.400052 6.596803
4 0.005026 3.361487 6.353749
5 0.004986 3.155935 6.317406
18 1 0.009444 3.057763 5.02804
2 0.011858 2.338577 5.688958
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0.008966 1.4981 6.159701
0.00897 1491188 | 6.163765
0.008975 1462438 | 6.181617
0.008964 1.498669 6.15937

3 0.011769 2.414216 5.705137

4 0.010302 2.530091 5.697991

5 0.013028 2.306737 5.677196
19 1 0.006098 2.700983 6.733596

2 0.006085 2.706705 6.738767

3 0.006562 2.327167 6.597734

4 0.006732 1.757249 7.211028

5 0.006167 1.401046 8.387891
20 1 0.008978 1.490754 6.164023

2

3

4

5

The estimates of the covariance matrices in model B provide information about the
intraindividual differences under different exposure conditions (see table 13) and the

interindividual variability of the population of test animals (see table 14).

Table 13. Estimates of the intraindividual covariance matrices Qyy, . . ., Q9 from
group B (second estimation).
rat ki> k2; ker

11 2.500000 0.000003 0.000304
0.000003 2.531161 0.183396
0.000304 0.183396 6.255533
12 2.500014 -0.000652 0.005148
-0.000652 2.550923 -0.237880
0.005148 -0.237880 4.379745
13 2.500004 0.000471 -0.002723
0.000471 2.584080 -0.355338
-0.002723 -0.355338 4.483218
14 2.500011 0.000518 -0.009002
0.000518 2.546324 -0.420793
-0.009002 -0.420793 9.586907
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15 2.500000 0.000181 0.000374
0.000181 3.667813 2.199416
0.000374 2.199416 6.737400
16 2.500007 0.000825 -0.006043
0.000825 2.623253 -0.736641
-0.006043 -0.736641 7.792127
17 2.500004 -0.001303 -0.000606
-0.001303 2.988963 0.216383
-0.000606 0.216383 2.604890
18 2.500009 -0.000283 -0.009880
-0.000283 2.530364 0.307641
-0.009880 0.307641 13.851830
19 2.500001 -0.000132 -0.005617
-0.000132 2.536888 0.700922
-0.005617 0.700922 35.451378
20 2.500001 -0.000673 0.001241
-0.000673 3.035140 -0.964107
0.001241 -0.964107 4.296670

Table 14. Estimates of the interindividual covariance matrix Z from group B (second

estimation).
9%, ka; kel
ki> 1111116 -0.000071 -0.002056
ka1 -0.000071 1.322422 0.082168
ke -0.002056 0.082168 7.283284

Asin case of group A the intra- and interindividual covariance matrices are al very
similar. They have the same structure and very similar entries. Regarding just the
intraindividual covariance matrices Qi, . . ., Q2o shows that the differences in the
variability structure of the processes between the individuals manifest most in the
metabolic elimination. The variance of k. and the covariance of k. and k%, the
rate of exhalation show the most dissimilarity between the individuals. In general,
the kinetic constants seem to be independent as required in case of overall first order
Kinetics.

According to the proceeding for the first estimation the fit to the data is measured in
terms of R2. Database for the calculation of R? is the data set without the outliers
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given in table 8 The results are given in table 15. Note, that no maximum likelihood
estimates were available for rat 11 and 16, 5" dose.

Table 15. R? calculated for (i, @i, @, and @, data set without outliers.

rat | dose | R¥(di) R(ur) R(¢) R(¢)
11 1 0.9070 0.1364 0.8925 -0.1906
2 0.9659 0.5335 0.0426 0.6780
3 0.9835 -1.4506 -2.1779 -0.3693
4 0.9747 -6.6341 -3.7872 -7.2245
5 - -30.6329 -21.4582 -40.3800
12 1 0.5698 -56.0277 -0.3866 -5.2208
2 0.9745 -7.9342 -3.0105 -2.9447
3 0.9833 0.0187 -0.4433 -0.0244
4 0.9806 -2.6260 -0.1046 0.0405
5 0.8254 -19.9743 -33.0128 -30.1312
13 1 0.7619 0.4046 0.6832 -0.8849
2 0.9825 0.3017 -0.6175 0.5237
3 0.9920 -14.8619 -5.4395 -9.9383
4 0.9860 -0.2184 -2.1770 0.0048
5 0.8978 -51.8458 -80.9596 -49.3104
14 1 0.9427 -47.2022 -0.7459 -11.8703
2 0.9792 0.2899 -0.4865 0.7275
3 0.9964 0.2759 -0.6973 0.6463
4 0.9945 -4.3776 -0.9957 -3.2818
5 0.9315 -4.1971 -24.8273 -6.8534
15 1 0.8400 -165.3988 -0.4292 -2.8251
2 0.97%4 -7.9177 0.5076 0.0214
3 0.9839 -5.6725 0.7207 0.5690
4 0.9827 -8.3406 0.4230 0.9108
5 0.9153 -97.0310 -22.4543 -32.1130
16 1 0.8251 -70.2370 -0.5869 -10.4834
2 0.9686 -0.3063 -3.3844 -0.3461
3 0.9785 -0.5551 -1.1147 0.6872
4 0.9359 -1.4125 -9.1157 -1.5358
5 -18.8334 -83.1219 -32.1821




17 1 0.5318 0.4865 0.4495 -0.0382
2 0.9775 -1.5767 -1.1191 -0.8332

3 0.9903 -2.3528 -2.4726 -2.4384

4 0.9690 -4.3954 -5.0761 -5.1842

5 0.8448 -9.6885 -9.6459 -8.7681
18 1 0.8887 -18.7871 -9.0275 -38.0404
2 0.9778 -1.1567 -6.2555 -0.3893

3 0.9958 0.8797 -0.3047 0.6762

4 0.9651 0.8667 -0.7362 0.5556
5 0.9255 -67.0190 -117.8679 -50.5485

19 1 0.7689 -5.3373 -0.2019 -9.6235
2 0.9678 -0.2597 0.6302 -0.7742

3 0.9904 -0.7991 -1.5091 -0.1413

4 0.9671 -2.3346 -2.3890 -0.0730

5 0.9763 0.0518 0.8224 -0.5576

20 1 0.8686 0.7122 0.6863 -2.1347
2 0.9833 0.6689 0.6524 -0.5648

3 0.9772 0.6573 0.6519 0.2906

4 0.9666 0.7684 0.7712 0.1563
5 0.9837 -15.3233 -15.5692 -34.6259

median 0.9688 -2.3437 -0.8708 -0.8037
minimum 0.5318 -165.3988 -117.8679 -50.5485

maximum 0.9964 0.8797 0.8925 0.9108

In genera, the performance of the maximum likelihood estimates is quite good

(median = 0.9688) whereas the fit of ¢, isvery poor for most individuals and doses.
R2isranging from -165 to 0.8797 for ¢, . The performance of the individua and the

population mean is similar though their fit isin general better than of ¢, (median = -
0.87 and -0.80, respectively). Remarkably, the fit of the different Bayes estimates to

the single data sets is often discordant, i.e., poor fit of ¢, , worse fit of ¢~ and good

fit of ¢, . For a detailed discussion of the results and the estimation procedure, see

Selinski, 2001.
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4.3 Checking assumptions of first order kinetics

The experiments of group B, where ten rats were exposed five times each to different
concentrations of ethylene of about 20, 50, 100, 200, and 500 ppm ethylene, where
used to check the assumption of ‘good’ approximation of the real kinetic processes by

first order kinetics applying Kendall’s test of independence .

To test the null hypothesis of independence of the standardised observations from the
initial concentration the 18" observation, after 7 ¥ hours, had been chosen as one of
the last time points where the observations are complete. The maximum likelihood
estimates of the initial concentrations (first estimation procedure) were used to
standardise the observations (Selinski, 2001). Alternatively the first observations
may be used. Thus, it is possible to test the hypothesis of overall first order kinetics
without fitting a model.

Furthermore, checking the single processes the respective estimates of the
standardised individual and occasion dependent rates of uptake, exhalation, and
metabolism and the corresponding estimated initial concentrations where used.

Moreover, Kendall's modified correlation coefficients 7° are calcul ated.

4.3.1 Test of overall first order kinetic processes
Using the maximum likelihood estimates of the initial concentrations and the large-

sample approximation in the case of ties (26) the Kendall correlation coefficient was
given by 7% = 0.14122 for the 18" observations.

The probability of the given value of the test statistic under the null hypothesis, the
so-called p-value, is 0.1479.

Estimating the initial concentration by the first observation yielded 1° = 0.10367
corresponding to a p-value of 0.2881.

Thus, the null hypothesis of independence of the standardised observations from the
initial concentration could not be rejected for neither choice of the estimate for the
dose. Hence, overal first order kinetic processes seem to be a good approximate of

the real kinetic processes of uptake, exhalation, and metabolism of ethylene.
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4.3.2Test of first order kinetic partial processes
The results of the corresponding tests and Kendall correlation coefficients for each

partial process are given in table 16:

Table 16. Results of Kendall's test for independence and Kendall's correlation

coefficients.

partial process 7 p-value

uptake (k;21) 0.05735 0.5581
exhalation (k) | 0.01143 0.9068
metabolism (k.. ) | 0.08657 0.3752

Thus, the null hypothesis of independence of the respective individual and occasion
dependent rate and the initial concentration cannot be rejected. Hence, considering
all partial processes separately, the first order approximation of the kinetic processes
seems to be valid.

4.3.3 Graphical analysis
The estimation of y>(fmax) is performed using ¢; and the maximum likelihood

estimates y, (0) for the comparison with the Bayes estimates of k., and k. and
using {i for the comparison with the respective maximum likelihood estimates.

Thus, we compared al estimates, which may possibly reveal a dependency between
parameters and concentrations.
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Figure 3. Comparison of Bayes estimates of ko and estimated maximum

concentration in the first compartment.
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Figure 4. Comparison of maximum likelihood estimates of kjx and estimated

maximum concentration in the first compartment.

38



k21ik

0 5 10 15 20 25
Yaik(tmax)

Figure 5. Comparison of Bayes estimates of ki and estimated maximum
concentrations in the second compartment using @y and the maximum likelihood

estimates of yi(0).
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Figure 6. Comparison of maximum likelihood estimates of ki and estimated

maximum concentrations in the second compartment using (.
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Figure 7. Comparison of Bayes estimates of ke and estimated maximum

concentrations in the second compartment using @y and the maximum likelihood

estimates of yi(0).
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Figure 8. Comparison of maximum likelihood estimates of ke and estimated

maximum concentrations in the second compartment using {i.

The graphica analysis (see figure 3 — 8) supports the validity of the assumption of
overall first order kinetics. No graph revealed a dependency or a clear structure so
that a functional relationship between the estimated Kinetic parameters and the

maximum concentration in the respective compartments could not be detected.
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Thus, we conclude that the real kinetic processes of uptake, exhalation, and
metabolic elimination of ethylene may be well approximated by first order kinetics
up to concentrations of about 500 ppm in inhalation studies of the described design.

4.4 Conclusions

The disadvantage of the presented method is the duration of the least squares
estimation. The subsequent application of the EM algorithm, which converged in
general within a few minutes, requires therefore a computational effort, which could
be neglected. The Bayes estimation via the EM algorithm provides important
information about the covariance structure of the processes and, at least in case of

model A, valid population parameters of the investigated processes.

The performance of the Bayes estimates in model A is satisfying so that a reanalysis
after elimination of outliers as performed for data set B is omitted. Thus model A
yields estimates of the kinetic parameters that seem to be valid for the whole
population of test animals.

The comparison of the results of the first and second estimation of model B is quite
difficult. For several animals, where the performance of the estimated individual
dose specific parameters was very good, the second EM estimation yielded worse
results than the first estimation procedure. On the other hand the estimates for the
rest of the individuals were not as severe asin case of the first estimation procedure.
Nevertheless, the performance of the Bayes estimates in model B is very poor. It can
be excluded that the lack of fit of the first estimates of ¢, for several animals is

caused by endogenous factors as the respective second estimates were not

remarkable. Probably the lack of fit of ¢, is dueto numerical difficulties related to

the inversion of the respective matrices. Although the outlier identifying procedure
worked well (Selinski and Becker, 2001), a positive effect of the elimination of
outliers and a subsequent reanalysis cannot be deduced from the present example and
has to be investigated using different models and / or data sets.

The main results of the present analysis are the population parameters for the
processes of uptake, exhalation, and metabolism of ethylene for male Sprague-
Dawley rats and the estimation of individual and population covariance matrices.
The latter provide useful information about the variability of the investigated
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processes within the population under investigation.

The estimates of the population mean from the different models and estimation
procedures vary within the range of the individual outcomes of the experiments. For
the rate of uptake the estimates of group B are lower than for group A. The estimates
of group A are higher than the value given in the literature (0.0111 #”'; Filser and
Bolt, 1984), the estimate from model B (second estimation) is almost the same. In
case of the exhalation and metabolism the results cannot be ordered according to the
design of the study. Except the second estimate from model B they are also higher
than the values given in the literature for the exhalation and metabolism of ethylene
(0.37 ' and 6.95 i, respectively) (Filser and Bolt, 1984).

Considering the intraindividual covariance matrices Q;, . . . , Q from both
experimental designs reveals that the rate of metabolism displays more differences
between the individuals than the rates of uptake and exhalation do. The latter
describe the interaction of the organism with its environment whereas the metabolic
elimination of the substance within the organism is expected to be less influenced by
environmental factors. Thus, differences between the individuals should manifest in
that particular process.

Though tests of independence and graphical analysis suggest that the approximation
of the real kinetic processes by first-order kinetics is valid, the estimated covariance
matrices of group A give a hint to a possible violation of the assumptions of overall
first order kinetics as the rate of metabolism and the initial concentration show a
slight dependency.

The similarity of the individual covariance matrices with each other and with the
population covariance matrix, which is apparent for both data sets is probably due to
the close genetic relationship of the animals as inbreed strains are used for

experimentation.

5. Discussion

The main results of the present evaluation are the similarity of the interoccasion
covariance matrices with one another and their similarity to the intersubject

covariance matrix. It means that the individual mean processes are varying across the
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population mean process much in the same way as the occasi on-dependent processes
of al individuals do across their respective individual mean processes. This is
obviously related to the close genetic relationship of inbred test animals.

Furthermore, the individual differences seem to manifest more in the metabolic
elimination than in the uptake and exhalation, processes that are influenced more by
environmental factors than the metabolism.

The present approach simplifies the complex biological processes of highly
organised living organisms by the reduction to two-compartment models and the
approximation of non-linear kinetics by linear ones. Using linear kinetics we have to
be aware of the possible errors, which result from the dependence of the parameters
on the concentration if the underlying processes are non-linear. Assuming first order
kinetics the processes of uptake, exhalation, and metabolic elimination are
independent from the dose. Before summarising the information provided by
experiments within arange of concentrations, like in the experiments of group B, itis
necessary to verify that a first order approximation of the processes is valid. In fact,
the experiments of group A show a correlation between the metabolism and the
initial concentration. However, a careful analysis of the data of group B, where a
possible violation of the assumptions of first order kinetics should become apparent,
confirmed that the approximation of the real kinetic processes by first order kinetics
seems to be valid up to concentrations of about 500 ppm ethylene.

Implementing the models in a computer using SASIML", we experienced severe
numerical difficulties, especialy with model B and more complex approaches
(Selinski, 2001).

Model A, while neglecting some aspects of the covariance structure of the parameter
vectors, has the advantage to be computable by a numerically stable algorithm and
therefore yielding numerically quite accurate results.

Dueto the lack of fit of the first and second estimates of model B using an alternative
approach, Markov Chain Monte Carlo methods, for instance, may provide a
methodology, which enable the estimation of all relevant parameters as well as the
estimation of the intra- and interindividual covariance matrices. Thus it seems likely
to avoid the computational difficulties which occurred with the present approach.
Recent research on Gibbs sampling, a Markov Chain Monte Carlo method closely
related to the EM agorithm, has great potential for estimating the parameters of

complex models, because it reduces the problem of dealing simultaneously with a
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large number of related parameters into a much simpler problem of dealing with one
unknown quantity at atime. A further application of the EM algorithm in geneticsis
given by Urfer et al. (1999). Gilkset al. (1993) have reviewed applications of Gibbs
sampling in immunology, pharmacology, cancer screening, industrial and genetic
epidemiology. Wikle er al. (1998) propose the use of hierarchical Bayesian space-
time model with five stages to achieve more flexible models and methods for the
analysis of environmental data distributed in space and time. They implement their
models in a Markov chain Monte Carlo framework using the Gibbs sampler
approach. Increasing familiarity and experimentation with new Markov chain Monte
Carlo methods for exploring and summarising posterior distributions in Bayesian
statistics will lead to new insights in toxicokinetics and may provide a useful tool to

handle datasets and problems as introduced in the present thesis.
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