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Abstract. Ounline monitoring data measured in intensive care exhibit periods of relative constancy cor-
responding to a steady state and interruptions representing slow monotonic trends and level shifts. These
signals are overlaid with a high level of noise and many measurement artifacts. Methods are needed that
allow a fast and reliable denoising of the data and separate artifacts from information of clinical relevant
changes in the patient’s condition. The underlying signal can be approximated by fitting a local linear
trend within a moving time window using e.g. the repeated median (Davies, Fried and Gather, 2002). We
compare the finite-sample performance of robust functionals for scale estimation in trend periods as these

can be used to detect outliers and level shifts.
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1 Introduction

In intensive care physiological variables like the heart rate are recorded at least every minute. For
suitable bedside decision support in time-critical situations, systematic changes in the variables
have to be detected quickly and distinguished from clinical irrelevant short term fluctuations and
measurement artifacts. Therefore, methods working in real-time are needed which decompose the
observed time series into a smooth underlying signal and rough noise terms (Wernecke et al., 1988,
Gather et al., 2002).

Tukey (1977) suggests median filtering to prefilter a noisy time series, to clean the data from
artifacts and to extract an underlying signal. Atypical observations (outliers) and sudden changes
(level shifts) in the data generating mechanism can be detected if we additionally apply a reliable
estimator of scale like the Median Absolute Deviation about the Median (MAD). However, in
view of high sampling frequencies most changes occur gradually, and in trend periods most scale
estimators are strongly biased. Davies, Fried and Gather (2002) fit a local linear trend to the data
using e.g. the repeated median (Siegel, 1982) because of its high robustness and its computational
speed. This provides information on the occurrence of trends and it may improve the estimation

of scale.

In this paper, we compare the finite-sample performance of functionals for scale estimation in trend
periods. Important aspects for online monitoring are the unique existence of the estimate in any
data situation, low computation time, high robustness and satisfactory finite sample efficiency.
Functionals which do not have a unique solution in any data situation are useless in an automatic
online application, just like functionals which afford too much computation time. Therefore we
restrict to functionals for which explicit formulae in terms of e.g. order statistics exist to guarantee

unique existence and to avoid iterations. This excludes most M- and S-functionals for instance.



W.r.t. robustness we take a global perspective considering the finite-sample replacement breakdown
point and bias curves. The breakdown point should ideally be 50%, and (patches of) outliers should
not cause a large bias. Satisfactory finite-sample efficiency in a Gaussian sample is preferable but

it is not an overriding concern here.

We proceed as follows. In Section 2 we review some robust functionals for scale estimation. In
Section 3 we perform a simulation study to compare the finite-sample properties of these methods
when applied to a single time window with a linear trend. In Section 4 applications to real and

simulated time series are presented before we give some conclusions.

2 Methods

Let x1,...,2 N be real valued data measured at time points t = 1,..., N. We assume that there
is an underlying signal u;, t = 1,..., N, that is overlaid by additive random noise. In order
to separate signal and noise we assume that the signal is simple, i.e. smooth with possibly a few
sudden changes, while the noise E1, ..., Enx consists of independently distributed random variables
with mean zero. Hence, we consider z1,...,zy to be a realization of random variables X1,..., Xy,
that are decomposed as

Xe=pu+Ee;t=1,... N.

Our main concern is the estimation of o = \/Var(Ey).

Data in intensive care monitoring cannot be assumed to be stationary as there are slow monotonic
changes and the variance o7 may vary over time as well (Gather et al., 2002). In order to accom-
modate such changes we approximate p; and o; using a moving time window of small or moderate
length n = 2m + 1. For simplicity we renumber the observations in the current time window by

T my. -, Ty in the following.

2.1 Robust scale estimators

Median filtering is a highly robust method for extraction of an underlying signal which preserves
sudden changes in the data. It implicitly assumes that the level is almost constant in the current
time window, i.e. u; = p and oy = o, t = —m,...,m. Rousseeuw and Croux (1992) discuss a
couple of explicit robust scale estimators in this location-scale model. They consider the influence
function, the gross error sensitivity and the breakdown point, and they compare the finite sample
efficiencies by simulation. We select some promising scale estimators based on their and other
author’s results for further comparison. All these estimators can be calculated in O(nlogn) time

using suitable algorithms.

The perhaps most commonly used robust scale estimator in the location-scale model is the median

absolute deviation about the median f
MAD = c¢-medi{|z: — 1|}

Here, ¢ is a small sample correction factor that can be chosen depending on the sample size to

achieve unbiasedness. The breakdown point of the M AD is asymptotically 50% and its gross-error



sensitivity is the smallest possible for a Fisher-consistent scale estimator, namely 1.17. It is the
minimax asymptotically biased Huber M-estimator in a model with symmetric (strongly) unimodal
noise distribution (Hampel et al., 1986, Martin and Zamar, 1993). The asymptotic efficiency of
the M AD is 36.7%, which is rather small. Collins (1999) points out that the discontinuity of the
influence function of the M AD causes its asymptotic variance to increase in an e—contamination

neighbourhood with arbitrarily small € resulting in an even smaller efficiency of 14.5% then.

While the M AD is a location-based estimator as it measures the deviations of the observations

from a (robust) location estimate, the interquartile range

IQR = c (T(n—|n/a)) = T(|n/aj+1)) -

where z(y),...,Z(,) is the ordered sample, is a location-free estimator. Location-free estimators
have the advantage that they do not implicitly rely on a symmetric noise distribution. At symmetric
distributions, IQ R has the same influence function as the M AD. However, its breakdown point is
only 25%.

A location-free estimator with breakdown point 50% can be derived using the nested scale func-
tional

SN = c-med;med;z;|z; — ;| .

Its asymptotic efficiency is 58.2%, which is larger than those of similar functionals with the outer
median replaced by other quantiles. Replacing the outer median by a minimum for instance results
in an estimator with the same influence function and the same asymptotic efficiency like the M AD.
The influence function of SN is also discontinuous, and its gross error sensitivity is 1.625. An

algorithm for computation of SN in O(nlogn) time is described by Croux and Rousseeuw (1992).

Another location-free 50% breakdown estimator is obtained using a trimmed mean of median
deviations .
TMM=c- Z{med#i|a:i —zjli=—m,...,m}y).

k=1
T M M has a continuous influence function and a gross error sensitivity of 1.458 but smaller asymp-
totic efficiency than SN, namely 52%. Replacing absolute by squared deviations results in an es-
timator with a slightly larger asymptotic efficiency (53%) and slightly larger gross error sensitivity
(1.467), that is not considered further on here.

Rousseeuw and Croux (1993) propose a location-free estimator with 50% breakdown point and

higher efficiency based on an order statistic of all pairwise differences

QN =c-{|lz; —zj| : —m < i <j<m}ay, h:<m;1>-

Its asymptotic efficiency is 82.3%, which is larger than that of estimators based on weighted sums
of the smallest (m; 1) absolute or squared differences. Its influence function is smooth and its gross
error sensitivity is 2.069. It can also be computed in O(nlogn) time (Croux and Rousseeuw, 1992).

The length of the shortest half (Griibel, 1988, Rousseeuw and Leroy, 1988)

LSH = c-min{|Z(iym) — 2|1 = —m,...,0}



is another location-free scale estimator with 50% breakdown point. It has the same influence
function and thus the same asymptotic efficiency as the M AD. For small samples, however, its
efficiency is larger than that of the M AD, and its maximum bias in case of many outliers is smaller
than that of the M AD. The reason is that the M AD is centered by the median, that itself is
influenced by a large percentage of outliers, while a location estimator is not necessary for the
LSH. Indeed, the shorth is the minimax bias robust scale estimator with general location (Martin
and Zamar, 1993).

Replacing the range by the standard deviation we get a least trimmed squares estimator
LTS = c-minisdv{x (), ..., T(iym),i = —m,...,0}.

Its asymptotic efficiency is smaller than that of the LS H, namely 30.7%, but its influence function
is continuous. Croux and Haesbroeck (2001) find LTS to resist outliers better than estimators

based on subranges like the LSH, while LSH performs better for inliers.

While for LTS the standard deviation needs to be calculated for all subranges, this is not necessary

if we use location-based trimming like

1 m—+1
SMAD = p—— I;{(ﬂ?i — )%= —m,...,m}p),

Rousseeuw and Croux (1992) call this estimator a smoothed M AD as it is similarly defined like the
M AD and has a continuous influence function. For SM AD we use asymmetric trimming based on
absolute values to achieve a breakdown point of 50%. The breakdown point of the 50%-trimmed
standard deviation

n—[n/4]
1 Ny
TS= |—— S {@mi—@%i=-m...mp
m+1
k=|n/4]+1

is 256% only as it trims symmetrically w.r.t. the location estimate. It has the same influence
function as LT'S and SM AD.

All these scale estimators are strongly biased in trend periods. An estimator which avoids this
bias can be based on pairs of subsequent observations (x;,z;1) instead of all pairs (z;, ;). The

maximal breakdown point is 25% then obtained by using
MAS =c¢-med{|ziz1 — x;i|,i = —m,...,m — 1}.

While for QN there are n(n — 1)/2 pairs, there are only n — 1 pairs of subsequent observations.
Hence, the efficiency of M AS is much smaller than that of QN in the steady state, but it is much
less biased in trend periods.

We do not consider M-estimators or S-estimators here which need to be calculated iteratively.
Optimal B-robust M-estimators e.g. are appealing but they cannot attain an efficiency of more
than 50.6% if we insist on a 50% breakdown point (Hampel et al., 1986). Highly efficient and high-
breakdown M-estimators suffer from a strongly increasing (finite) bias for contamination much

smaller than 50% (Croux, 1994), whereas k-step M-estimators which also combine 50% breakdown



point and high efficiency typically have discontinuous influence function and large gross-error sen-
sitivity, and their bias curve is close to that of the exact M estimator in spite of the higher
breakdown point (Rousseeuw and Croux, 1994). The above functionals can be used for fast pre-
processing of online monitoring data as well as for initialization of algorithms which compute robust

M-estimators.

2.2 Robust filtering with trends

For better estimation of monotonic trends we can approximate not only the level ug in the center

but all levels u; in the current time window ¢ = —m,...,m. We assume a trend to be locally
linear, i.e.

Xt =po+tho+Ey, t=-m,...,m, (1)
where p; & po + tBy,t = —m, ..., m, is the level at the ¢-th time point in the current window and

Bo is the slope in the center (as the slope is assumed to be approximately constant in the window).

Thus, we need to approximate the level g, the slope 5y and the scale 0.

Davies et al. (2002) compare the small sample performance of L;-regression, the repeated median
(Siegel, 1982) and the least median of squares (Hampel, 1975, Rousseeuw, 1984) for extraction of a
local linear trend. The first two methods have higher efficiency, while the least median of squares
has the smallest bias and MSE if there are between 20% and 40% outlying observations in the
time window. The repeated median performs somewhat better than L;-regression in accordance
to its higher breakdown point of 50%. Since analysis of real and simulated data shows that the
least median of squares can be seriously mislead by certain patterns in the time window, we use

the repeated median

Bo = med; (med#i a:, — x]>
t=7

fio = med;(z; — Poi),

in the following to approximate po and 5. We can then estimate oy from the trend corrected
observations r; = z; — tfBy, t = —m, ..., m. Any of the estimators mentioned above can be used for
this purpose. To achieve unbiasedness we derive finite sample correction factors for all methods

by simulation.

3 Comparison within a single time window

Most of the properties of the above scale estimators are based on large sample asymptotics. For an
application to online monitoring data, however, we have to choose small to medium window widths
n = 2m + 1 as we assume the underlying approximations to hold only locally and since the time
delay m must not be too large. The preliminary robust linear regression step may also influence
the properties of the scale estimators. Therefore, we compare the finite-sample performance of the
methods for a single time window in the following. We simulate data from the model

Y}:,u-l-ﬂ-t+Et,t:—m,...,m,



with g = 0 and for several different slopes 3. The error E is always Gaussian white noise with

zero mean and unit variance.

3.1 Efficiency

First we calculate the small sample efficiencies measured by the mean square error MSE of the
distinct methods for various sample sizes, cf. Table 1. For each setting 20000 samples are generated.
All estimators are unbiased when using finite sample correction factors with the only exception
M AS, which shows an increasing positive bias with increasing slope. We find this bias to be small

for a realistic slope |3| < 0.5 and all sample sizes considered here. Thus, we concentrate on 8 = 0.

Obviously, the asymptotic efficiencies are good approximations for most of the estimators if n > 20.
Only QN has a much smaller finite sample efficiency which converges slowly. Nevertheless, its finite
sample efficiency is the largest among these robust methods, and the differences increase with n.

The ordering w.r.t. finite sample efficiency is
QN >SN >TMM >LSH >IQR > LTS~ MAD > SMAD ~TS ~ MAS

for n > 30. We also consider a trend-corrected version M ASC of M AS but do not find a note-
worthy improvement over M AS for realistic slopes here and in the following, and thus neglect
it.

3.2 Small contamination

In online monitoring, rules for the replacement of detected outliers can be formulated to improve
the results. However, we cannot completely rely on such rules since especially outliers that are not
very large may remain undetected. Therefore, the robustness of the methods against some small
to moderate outliers is important. Since the repeated median is regression equivariant we restrict
to u = B =0, and we consider the window width n = 31 only. We replace an increasing number of
0(1)7 observations by additive outliers of increasing size 2(1)5 with random sign at random time
points in the window. This corresponds to a percentage of contaminated observations between 0%
and 22.5%. Each of the 32 cases is simulated 10000 times and the squared bias, variance and MSE
are calculated.

Table 1: Finite sample efficiencies relatively to the MLE measured by the simulated MSE for
N(0,1) errors.

m B MAS MAD SN TMM QN LSH LTS SMAD TS MASC IQR

5 0.0 41.7 32.2 47.8 44.7 49.8 34.6 33.9 29.9 40.0 40.6 42.7

10 0.0 35.6 34.6 51.6 47.1 61.3 38.6 35.8 30.6 31.0 35.5 35.2

15 0.0 335 35.0 54.4 48.3 66.4  39.5 35.7 31.1 34.1 33.6 38.6

20 0.0 329 35.5 55.4 48.9 69.7 40.2 35.5 30.7 30.7 32.9 35.5

25 0.0 33.0 354 56.0 49.2 72.0 40.1 34.9 30.1 32.0 33.0 37.5

30 0.0 31.7 36.4 57.1 50.4 73.6  40.9 35.2 31.1 30.7 31.7 36.4

50 0.0 31.2 35.6 57.6 50.9 76.9  40.9 34.4 30.4 30.4 31.2 35.9



Figure 1: Moderate number of small to medium-sized outliers: Simulated MSE for M AS x, M AD
o, SN A, TMM %, QN <7 (left), and LSH x, LTS o, SMAD A, TS %, IQR vy (right).

0.8 0.8
0.6 . 0.6

0.

IS

0.

N

number of outliers size number of outliers

size

Figure 1 depicts the results for outliers with random sign. Obviously, most of the estimators resist
a few small to medium-sized outliers rather well. Only M AS shows poor performance. Closer
analysis shows that both its bias and its variance strongly increase with the number and the size
of the outliers, while the variance of the other methods is not much affected. QN looses its largest
relative efficiency in the presence of three or more moderate outliers because of its increasing bias,
and the same is true to a smaller extent for SN. All the other methods show similar performance

here.

When considering only one-sided positive outliers (Figure 2), IQ R becomes more strongly affected
as well, while SN and QN are slightly inferior to the other methods for more than 4 positive
outliers. Only T'S is worse than these for 7 outliers. For 4 or more outliers, LSH and LTS show
the best performance, closely followed by SM AD and TM M and then the M AD.

3.3 Implosion

Variables measured in intensive care, e.g. the central venous pressure, sometimes have little vari-
ability relative to the measurement scale. This may result in identical measurements causing scale
estimators to become negatively biased and possibly even in zero estimates (”implosion”). There-
fore we investigate the effect of identical observations on the scale estimators. For y = = 0 and
n = 31 we replace an increasing number 0(1)15 of observations by zero values. Each of the 15
cases is simulated 10000 times and the squared bias, variance and MSE are calculated. Since the
variances of all estimators are slightly decreasing with increasing number of zero measurements

without important differences we restrict to the bias in Figure 3.

QN shows the best performance here, followed by MAD, TMM and SN, while SMAD and
LTS are inferior to the other methods. This may be due to the positive weights given to small
deviations. We also considered other settings. In case of an alternation between two values, e.g.,

the M AD shows a strongly increasing variance and worsens somewhat, while the ordering of the



Figure 2: Moderate number of small to medium-sized positive outliers: Simulated MSE for M AS
X, MAD o, SN A, TMM x, QN <7 (left), and LSH x, LTS o, SMAD A, TS %, IQR v/ (right).
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Figure 3: Inliers: Simulated bias for M AD (solid), SN (wide dots), TM M (dash-dot), QN
(dashed), LSH (dash-dot-dot-dot), LT'S (short dashed) and SM AD (dotted).
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other methods remains the same. However, the situation shown here is much worse. M AS, IQR

and T'S are not considered any longer because of their vulnerability to outliers found above.

3.4 Level shift and explosion

Estimators with identical breakdown points can nevertheless be very differently influenced by many
outliers. Berrendero and Zamar (1999) compare the maximal asymptotic bias of M AD, SN, QN,
and LSH for almost 50% contamination and find LSH to have the best worst-case behaviour as
the maximal bias goes to infinity twice as fast for the M AD as for the LSH, while this rate is
1.6 and 2.12 for SN and QN respectively. Therefore, we analyze the relative performance of the
estimators for a large percentage of contamination. Again we consider a window width n = 31 and
replace an increasing number 0(1)15 of observations by additive outliers. For the outlier generating

mechanism we use:

1. Additive outliers of fixed, increasing size 0(2)10.
2. Additive outliers generated from an N (0, {2 + j}?)-distribution, j = 1,...,4.

3. Additive outliers generated from an N (3j, j2)-distribution, j =1,...,4.

Additionally, we insert level shifts of several sizes into the time window as the detection of level
shifts is important in online monitoring. Since in intensive care changes that last at least five
minutes can often be regarded as clinical relevant, we define a level shift by five outliers of the
same size at the end of the time window. For each case 4000 samples are generated and the squared

bias, variance and MSE are calculated.

Figure 4 depicts the results for the first setting and a level shift of size 10. LSH, LTS and TM M
perform very similar with LT'S having the smallest bias and M SE. QN performs worse than these
methods but better than M AD and SN in case of many outliers of the same size. The reason is
that many outliers of the same size and possibly a level shift mean that we actually sample from
several distributions with the same variance and different means, and this influences a method like
@N which is based on an a-quantile of the pairwise differences with a < 0.5 less than location-
based methods like the M AD. The SM AD not shown here performs similar to the M AD. As the
SM AD does not seem to provide significant improvements on the M AD in our context we neglect

it in the following.

Although outliers of similar size are a typical problem in intensive care monitoring because of e.g.
the drawing of blood samples, we also consider outliers with random size and random sign. Figure
5 depicts the results for setting 2. Only the MSE is shown as there are only minor differences w.r.t.
the variance, that is much smaller than the squared bias. Here, QN is worse than M AD and SN,
while LSH, LTS and TM M are again superior with LTS being slightly better than LSH and
TMM.

As one-sided outliers (setting 1) affect the estimators more strongly than outliers with random sign
(setting 2), we also considered another setting 3 with positive outliers generated from a normal
distribution with increasing mean and variance. Here, we do not find large differences and thus

the results are not shown here.



Figure 4: Outliers of fixed positive size and level shift of size 10. Simulated squared bias (top),
variance (middle) and MSE (bottom) for LSH x, LTS o, TMM A (left), and M AD x, SN o,
QN A (right).
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Figure 5: Outliers of random size and random sign, level shift of size 10, MSE for LSH x, LTS o,
TMM A (left), and MAD x, SN o, QN A (right).
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4 Application

Now we check the performance of the distinct methods for time series filtering. We consider two
real examples from intensive care monitoring as well as a simulated time series. The performance
of the repeated median w.r.t. the real time series is discussed in Davies et al. (2002). Therefore

we concentrate on the scale estimators here.

The first time series shown in Figure 6 represents the heart rate of a critically ill patient. There
are some patches of clinically irrelevant positive outliers, that cause all estimates to increase. The
QN is the most affected method by these outliers. The M AD shows some large fluctuations, while
the LSH is considerably smaller than the other methods at about ¢ = 145. This might be due to

some subsequent observations which are almost identical.

The second time series also shown in Figure 6 represents the arterial blood pressure of another
patient. The methods perform rather similarly here with the QN and the M AD being occasionally
slightly more affected by outliers than the other methods.

Finally, we consider a simulated time series of length 500. We have inserted linear trend periods
between ¢t = 100 and ¢ = 200 as well as between ¢t = 300 and ¢ = 400, and ¢ increases at ¢ = 300
from 1 to 2. 10% of the observations have been replaced by additive (patchy) N (0, 6%)-distributed
outliers, and another 10% have been replaced by additive outliers of fixed size 6. To explore the
effect of identical measurements, we have replaced another 10% of the observations by the preceding
values. The results are shown in Figure 7. Again, QN is most affected by the outliers, but it also
shows the best performance when identical measurements occur. Between the other methods there

is not a large difference.
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Figure 6: Top: Time series (dotted) representing heart rate (left) and arterial blood pressure

(right) and level approximates (solid). Bottom: Some scale approximates: M AD (solid), TM M
(dashed-dotted), QN (dotted), LSH (dashed).
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Figure 7: Left hand side: Simulated time series with 20% outliers and 10% inliers (dotted), under-
lying level (solid) and level approximate (dashed). Right hand side: Scale approximates: M AD
(solid), T M M (dashed-dotted), QN (dotted), LSH (dashed). The true scale increases from o = 1
to o =2 at t = 300.
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5 Conclusion

Reliable algorithms for artefact detection should be applied before a very noisy time series can
be analyzed finally. We have investigated explicit robust scale estimators for filtering with locally
linear time trends. High breakdown point methods have to be recommended as some standard
methods like TQR with 25% breakdown point turned out to be strongly influenced already by
more than 10% contamination of moderate size. An additional analysis not presented here shows
that IQR and T'S can be useful if there are many inliers and a few outliers only. Among the high
breakdown point methods, none of them has been found to be uniformly superior in all situations.
QN and SN have large efficiency in a Gaussian sample, but they loose this advantage if there
are about 10% outliers of moderate size. QN performs rather well for level shifts and outliers
of the same size as well as for inliers. The M AD provides robustness against outliers without
being much affected by some inliers, but it is outperformed by LSH, LTS and TM M in terms of
efficiency in a Gaussian sample and in case of many large outliers. LTS and SM AD cannot be
recommended if one has to protect against inliers. Altogether, if a large percentage of outliers is
more a problem than inliers, LSH and TM M can be recommended for robust scale estimation in

time series filtering with T'M M providing stronger protection against inliers.
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