
Robust Estimation of Cronbach’s Alpha

Andreas Christmann and Stefan Van Aelst

August 26, 2002

Andreas Christmann is statistician at the University of Dortmund, HRZ, 44421 Dortmund,

Germany. The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, ”Reduction

of complexity in multivariate data structures”) is gratefully acknowledged. Stefan Van Aelst is

professor at the Department of Applied Mathematics and Computer Science, Ghent University,

Krijgslaan 281 S9, B-9000 Gent, Belgium. E-mail: Stefan.VanAelst@rug.ac.be (corresponding au-

thor)

1



Abstract

Cronbach’s alpha is a popular method to measure reliability, e.g. in quanti-

fying the reliability of a score to summarize the information of several items in

questionnaires. The alpha coefficient is known to be non-robust. We study the

behavior of this coefficient in different settings to identify situations, which

can easily occur in practice, but under which the Cronbach’s alpha coeffi-

cient is extremely sensitive to violations of the classical model assumptions.

Furthermore, we construct a robust version of Cronbach’s alpha which is in-

sensitive to a small proportion of data that belong to a different source. The

idea is that the robust Cronbach’s alpha reflects the reliability of the bulk of

the data. For example, it should not be possible that some small amount of

outliers makes a score look reliable if it is not.

Key words: Cronbach’s alpha, MCD, M-estimator, Robustness, S-estimator.
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1 Introduction

We consider the problem of constructing a measure of reliability for a set of items

such as in a test. Cronbach (1951) proposed the coefficient alpha as a lower bound

to the reliability coefficient in classical test theory (see also Kuder and Richardson,

1937). This popular measure has been investigated further by e.g. Feldt (1965), Ten

Berge and Zegers (1978), Kraemer (1981), and Bravo and Potvin (1991).

Consider a series of items Yj = Tj + εj for j = 1, . . . , p, where Tj are the true

unobservable test scores and εj are the associated errors which are independent from

the true test scores and distributed with zero mean. The score Z of the p items is

defined as the sum, i.e. Z = Y1 + . . . + Yp. Then Cronbach’s alpha is given by

αC
n =

p

p − 1

Var
(∑p

j=1 Yj

)
− ∑p

j=1 Var (Yj)

Var
(∑p

j=1 Yj

)
=

p

p − 1

∑ ∑
i�=j Cov(Yi, Yj)

Var
(∑p

j=1 Yj

) (1)

=
p

p − 1

[
1 −

∑p
j=1 σ2

j∑p
j=1

∑p
k=1 σjk

]
,

where σ2
j is the variance of item Yj and σjk is the covariance of the pair (Yj, Yk). It

has been shown that Cronbach’s alpha is always a lower bound of reliability (Gutman

1953).

Cronbach’s alpha can be estimated by substituting empirical variances and co-

variances in expression (1) above. However it is well known that classical estimators

such as empirical variances and covariances can be heavily influenced by a few erro-

neous observations (see e.g. Hampel et al. 1986). Therefore the resulting estimate

of Cronbach’s alpha can be completely misleading as soon as some mistaken obser-

vations are present. We want to avoid this problem and aim to construct a robust

version of Cronbach’s alpha in the sense that this reliability measure is able to resist

some outlying observations. The robust Cronbach’s alpha will thus measure the

reliability of the most central part of the observations while not being affected by

some outlying observations. A robust measure of reliability was already proposed by

Wilcox (1992) who used the midvariance and midcovariance as robust estimates for

the variances and covariances in (1). In this paper we propose to estimate the co-

variance matrix of Y = (Y1, . . . , Yp)
t using a robust estimator and then we substitute

the elements of this robust covariance estimate into (1).
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Many robust estimators of multivariate location and scatter have been inves-

tigated in the literature, such as M-estimators (Maronna 1976, Kent and Tyler

1991), the minimum volume ellipsoid and minimum covariance determinant estima-

tor (Rousseeuw 1984), and S-estimators (Davies 1987, Rousseeuw and Leroy 1987,

Lopuhaä 1989).

Recently, robust multivariate statistical methods based on robust estimation of

location and scatter have been developed and investigated such as factor analysis

(Pison et al. 2002a), principal component analysis (Croux and Haesbroeck 2000),

canonical correlation analysis (Croux and Dehon 2001) and multivariate regression

(Rousseeuw et al. 2001). An advantage of constructing a robust Cronbach’s alpha

as proposed in this paper is that it can be obtained immediately from the robust

scatter matrix estimate computed for the robust multivariate analysis without any

additional computational load. This a clear advantage over the proposal of Wilcox

(1992) that has to be computed separately and does not take into account the

multivariate nature of the data.

In Section 2 we review robust estimators of multivariate location and scatter.

The robust Cronbach’s alpha is introduced in Section 3 where we also investigate

some important properties. Section 4 contains some simulation studies that show

that the robust Cronbach’s alpha performs well in situations with some outlying

observations. A real data example is given in Section 5 while Section 6 summarizes

the conclusions.

2 Robust estimators of location and scatter

The robust Cronbach’s alpha can be computed from any robust scatter estimate.

For the simulations and examples in this paper we will mainly use the reweighted

minimum covariance determinant (RMCD) estimator and S-estimators which are

highly robust estimators that can be computed with standard statistical software

packages, e.g. S-PLUS.

Consider a multivariate data set {yi; 1 ≤ i ≤ n} with yi = (yi1, . . . , yip)
t ∈ IRp.

Fix �n/2� ≤ h ≤ n, then the MCD looks for the subset {yi1 , . . . , yih} of size h which

is the most concentrated subset of size h in the sense that its covariance matrix

has the smallest determinant. The estimate for the center is then defined as the

mean t0n = 1
h

∑h
j=1 yij of the optimal subset and the covariance estimate is given

by C0
n = cn

1
h

∑h
j=1(yij − t0n)(yij − t0n)t, which is essentially the classical covariance
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estimator based on the data of the optimal subset. The factor cn makes the MCD

consistent and unbiased at finite-samples (see Pison et al. 2002b).

The breakdown value of an estimator is the smallest fraction of observations that

has to be replaced by arbitrary values to make the estimator useless (i.e. its norm

goes to infinity). See e.g. Rousseeuw and Leroy (1987) for more information about

the breakdown value. We will denote γ = (n − h)/n so that 0 ≤ γ ≤ 0.5. It then

follows that the MCD has breakdown value equal to γ. This means that a fraction

γ of the data points may contain errors without having an unbounded effect on

the MCD estimates of the location and scatter. Moreover, the MCD location and

scatter estimators are asymptotically normal and have a bounded influence function

(Butler, Davies, and Jhun 1993, Croux and Haesbroeck 1999) which means that a

small amount of contamination at a certain place can only have a bounded effect on

the MCD estimates, see Hampel et al. (1986) for more information on the influence

function. Two common choices for the subset size h are h = [(n + p + 1)/2] ≈ n/2

(so γ ≈ 0.5) which yields the highest possible breakdown value, and h ≈ 3n/4 (i.e.

γ ≈ 0.25) which gives a better compromise between efficiency and breakdown.

To increase the performance of the MCD it is customary to compute the reweighted

MCD estimates (t1n, S1
n) which are defined as

t1n =

∑n
i=1 w(d2

i )yi∑n
i=1 w(d2

i )
and C1

n = dn

∑n
i=1 w(d2

i )(yi − t1n)(yi − t1n)t∑n
i=1 w(d2

i )
. (2)

The weights w(d2
i ) are computed as w(d2

i ) = I(d2
i ≤ qδ) where qδ = χ2

p,1−δ and

d2
i = (yi − t0n)t(C0

n)−1(yi − t0n) is the squared robust distance of observation yi based

on the initial MCD estimates (t0n, C0
n). It is customary to take δ = 0.025 (Rousseeuw

and van Zomeren 1990). Similarly as for the initial MCD, the factor dn makes

the MCD consistent and unbiased at finite-samples (Pison et al. 2002b). The

reweighted MCD estimators (RMCD) preserve the breakdown value (Lopuhaä and

Rousseeuw 1991) and the bounded influence function (Lopuhaä 1999) of the initial

MCD estimators but have a higher efficiency as shown by Croux and Haesbroeck

(1999). Recently, Rousseeuw and Van Driessen (1999) constructed a fast algorithm

to compute the RMCD.

The S-estimates of location and scatter are defined as the couple (tSn, CS
n ) that

minimizes det(Cn) under the constraint

1

n

n∑
i=1

ρ(
√

(yi − tn)tC−1
n (yi − tn) ) ≤ b, (3)
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over all tn ∈ IRp and Cn ∈ PDS(p), where PDS(p) is the set of all positive definite

symmetric matrices of size p. See e.g. Lopuhä (1989) for important conditions on the

ρ function. The constant b satisfies 0 < b < ρ(∞) and determines the breakdown

value of the estimator which equals min( b
ρ(∞)

, 1 − b
ρ(∞)

) (see Lopuhaä 1989). The

most popular choice of ρ function is Tukey’s biweight function which is given by

ρc(t) = min

(
t2

2
− t4

2c2
+

t6

6c4
,

c2

6

)
, t ∈ IR. (4)

Its derivative is given by

ψc(t) = t

(
1 − t2

c2

)2

I(|t| < c), , t ∈ IR. (5)

The tuning constant c in the ρ function (4) can be selected such that consistency

at a specific model distribution is obtained. It is customary to choose c such that

EH [ρ(‖y‖)] = b for H = N(0, Ip). This implies that the S-estimators are consis-

tent for the parameters (µ, Σ) of the normal distribution N(µ, Σ). S-estimators are

asymptotically normal and have a bounded influence function (Davies 1987, Lop-

uhaä 1989). Efficient algorithms to compute S-estimators have been constructed by

Ruppert (1992) and Rocke and Woodruff (1993). The S-estimators based on Tukey’s

biweight function will be denoted Sbw.

Another class of robust scatter matrix estimators are M-estimators. We will con-

sider the M-estimator based on the assumption of Student’s t3 distribution which

will be denoted by T3. It has reasonable robustness and efficiency properties, but

also some additional advantages. There exists a unique solution of the objective

criterion under very weak assumptions and there exists an always converging iter-

ative algorithm to compute the estimate, as was shown by Kent and Tyler (1991).

Furthermore, this estimator is intuitively appealing as it is a maximum likelihood

estimator if the errors follow a multivariate t3 distribution. However, the main

disadvantage of T3 is its low breakdown point.

3 Robust Cronbach’s alpha

Consider a dataset Yn = {yi; i = 1, . . . , n} ⊂ IRp and denote by tn and Cn the

corresponding robust estimates of location and scatter such as the RMCD estimates

or S-estimates defined above. Then the robust Cronbach’s alpha estimate is defined

as

αR
n =

p

p − 1

∑ ∑
j �=k cjk∑ ∑
j,k cjk

(6)
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where cij, i, j = 1, . . . , p, are the elements of the matrix Cn. Hence, instead of

substituting the empirical variances and covariances in (1) we now use their robust

counterparts to obtain a robust estimate of Cronbach’s alpha.

Let us now consider the class of unimodal elliptically symmetric distributions

Fµ,Σ with density function

fµ,Σ(y) =
g(y − µ)tΣ−1(y − µ)√

det(Σ)
(7)

with µ ∈ IRp and Σ ∈ PDS(p) and where the function g has a strictly negative

derivative. Multivariate normal distributions obviously belong to this class of dis-

tributions. With Σ = (σij), we then focus on estimating the quantity

α =
p

p − 1

∑ ∑
j �=k σjk∑ ∑
j,k σjk

. (8)

If the scatter estimator Cn is consistent in probability or almost surely, then it fol-

lows immediately from Slutsky’s theorem that the corresponding Cronbach’s alpha

estimator given by (6) is a consistent estimator of α (in probability or almost surely).

Consistency of robust location/scatter estimators at elliptically symmetric distribu-

tions has been shown by Butler, Davies, and Jhun (1993) for the MCD, by Lopuhaä

(1999) for the RMCD and by Davies (1987) and Lopuhaä (1989) for S-estimators.

The influence function (IF) describes the local robustness of the functional ver-

sion of an estimator. A statistical functional corresponding to an estimator Cn is

a map C which maps any p-variate distribution G on C(G) ∈ PDS(p) such that

C(Fn) = Cn for any possible empirical distribution function Fn. The functional

version of the robust Cronbach’s alpha associated with a scatter functional C will

be denoted by αR
C . Hence, by using the elements of C(G) into (6) we obtain αR

C(G).

It follows immediately that αR
C(Fµ,Σ) = α whenever C(Fµ,Σ) = Σ, that is, C is

Fisher-consistent for Σ at elliptical distributions Fµ,Σ.

The influence function of the functional αR
C at the distribution Fµ,Σ measures the

effect on αR
C(Fµ,Σ) of adding a small mass at a certain point y. Such a perturbation

mimics the occurrence of isolated outliers, e.g. due to typing errors. Hence, a

robust method should have a bounded influence function such that contamination

at any point can only have a limited effect on the estimate. If we denote by ∆y the

distribution putting all its mass on y, then the influence function is given by

IF (y; αR
C , Fµ,Σ) = lim

ε↓0
αR

C((1 − ε)Fµ,Σ + ε∆y) − αR
C(Fµ,Σ)

ε

=
∂

∂ε
αR

C((1 − ε)Fµ,Σ + ε∆y)|ε=0
. (9)
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See Hampel et al. (1986) for further details. For scatter matrix estimators possessing

an influence function the following result can easily be derived from (6) by computing

the derivate of αR
C with respect to ε as in (9).

Theorem 3.1 If the scatter matrix estimator C possesses an influence function

then the influence function of αR
C at elliptically symmetric distributions F := Fµ,Σ

is given by

IF (y; αR
C , F ) =

p
p−1

∑ ∑
j �=k IF(y; cjk, F ) − αR

C(F )
∑ ∑

j,k IF(y; cjk, F )∑ ∑
j,k σjk

.

It follows that the influence function of the robust Cronbach’s alpha is bounded

as soon as the influence function of the robust scatter matrix estimator is bounded

which is the case for RMCD, T3, and S-estimators. Therefore, our approach based on

a robust estimate of the scatter matrix indeed yields a robust estimate of Cronbach’s

alpha.

As an example, let us consider the influence function of the S-estimator of scatter

based on Tukey’s biweight function (4) for a multivariate standard normal distribu-

tion F = N(0, I) which is given by

IF(y; CS, F ) =
2

γ3

(ρ(||y||) − b0) +
1

γ1

pψ(||y||) ||y||
(

yyt

||y||2 − 1

p
I

)
, (10)

where

γ1 = (p + 2)−1EF

[
ψ′(||Y ||) ||Y ||2 + (p + 1)ψ(||Y ||) ||Y ||] , (11)

γ3 = EF [ψ(||Y ||) ||Y ||] . (12)

(see Lopuhaä (1989), Corollary 5.2). The influence function of Cronbach’s alpha

based on the S-estimator Sbw for the bivariate standard normal distribution is given

in Figure 1. Note that the influence function is smooth and bounded. Furthermore,

for points with large euclidean norm ||y|| it is constant, but not necessarily equal

to zero for general multivariate normal distributions. Hence, data points lying far

away from the bulk of the data cloud only have small impact on this robust version

of Cronbach’s alpha.

As the influence function is an asymptotical concept, it is also interesting to

consider empirical versions of the influence function for finite sample sizes. Here,

we consider the empirical influence function EIFn and the sensitivity curve SCn, c.f.

Hampel et al. (1986, p. 93). The empirical influence function and the sensitivity
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Figure 1: Influence function of Cronbach’s alpha based on the S-estimator Sbw at

the bivariate normal distribution.

curve of Cronbach’s alpha αn given a multivariate data set (y1, . . . , yn−1) are defined

by

EIFn(y) = αn(y1, . . . , yn−1, y) , y ∈ IRp, (13)

and

SCn(y) = n [αn(y1, . . . , yn−1, y) − αn−1(y1, . . . , yn−1)] , y ∈ IRp. (14)

Hence, EIFn describes the behavior of the estimate if one arbitrary data point y is

added, whereas SCn is a scaled version of EIFn.

Empirical influence functions and sensitivity curves of Cronbach’s alpha based

on empirical (co)variances and its robustifications based on robust estimates of the

covariance matrix are given in the upper left subplots of Figures 2 and 3 for the

bivariate standard normal distribution, respectively. Note that due to different

magnitudes of the empirical influence function and of the sensitivity curves the scal-

ing of the z-axes in the plots are not identically for all four estimates. Besides the

classical Cronbach’s alpha based on the empirical covariance matrix S, we also con-

sider robust Cronbach’s alpha based on RMCD and the S-estimator Sbw (both with

an asymptotical breakdown point of 25%), and the M-estimator T3. Both figures

show that the impact of even one single additional observation can be extremely

large for the original definition of Cronbach’s alpha, whereas the robustifications

behave much more stable. From the empirical influence functions shown in Figure

9



2 we see that even the extreme values of −1 or +1 for the classical Cronbach’s al-

pha are possible, although all data points with the exception of a single outlier are

generated from the bivariate standard normal distribution for which the theoretical

value of Cronbach’s alpha coefficient is of course equal to zero. In contrast to that,

the three robust measures behave much more reliable in this respect. Especially the

sensitivity curves based on RMCD and Sbw are very stable for observations far away

from the bulk of the data, cf. Figure 3. Note that the influence function of Cron-

bach’s alpha based on the S-estimator Sbw given in Figure 1 and the corresponding

sensitivity curve shown in Figure 3 are very similar, although we used only a mod-

erate sample size of n = 100 to construct the latter. Cronbach’s alpha based on

Kent and Tyler’s M-estimator T3 shows a smooth and more robust behavior than

the classical estimator, but it is not as robust as the other two estimators based on

RMCD and Sbw for extreme outliers. In contrast to Figure 3, the sensitivity curves

for Cronbach’s alpha and its robustifications are shown in Figure 4 at a bivariate

normal distribution with mean vector 0, both variances equal to 1, and a covariance

of 0.5. The corresponding sensitivity curves are qualitatively similar in both figures.

Please note, that the sensitivity curves of the robust Cronbach’s alpha coefficient

based on RMCD or on the S-estimator are constant outside a circle with midpoint

approximately equal to the true mean vector 0 in Figure 3, whereas the sensitivity

curves of these robust Cronbach’s alpha coefficients in Figure 4 are constant outside

an ellipse. This is of course due to the non-zero correlation in the latter situation.

Software code written in SAS and S-PLUS to compute our robust versions of

Cronbach’s alpha is available from

http://www.statistik.uni-dortmund.de/sfb475/berichte/cronbach.zip .
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Figure 2: Empirical influence functions for a 2−dimensional data set with n = 100

observations simulated from F = N(0, I).
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Figure 3: Sensitivity curves for a 2−dimensional data set with n = 100

observations simulated from F = N(0, I).
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Figure 4. Sensitivity curves for a 2−dimensional data set with n = 100

observations from F = N(0, Σ), where Var(Y1) = Var(Y2) = 1, and

Cov(Y1, Y2) = ρ = 0.5.

4 Simulations

We investigate the behavior of the classical and robust Cronbach’s alpha estimators

for finite sample sizes via simulations for sample sizes of n = 40, 100, and 500.

Let X1, . . . , Xn be independent and identically distributed random vectors with

multivariate distribution F . For dimension p = 2 we define location vectors µ =

(0, 0)′, µ1 = (2, 2)′, and µ2 = (−2, 2)′. For dimension p = 10 we define location

vectors µ = 0 ∈ IRp, µ1 = (2, . . . , 2)′, and µ2 = (−2, 2, . . . , 2)′. As scatter matrices

we use Σ = (σij) ∈ IRp×p, where σij = 1, if i = j, and σij = ρ, if i 	= j, and
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Σ1 = (σij) ∈ IRp×p, where σij = 1, if i = j. If p = 2 the off-diagonal elements of

Σ1 are σ12 = σ21 = −ρ. If p = 10 we set the off-diagonal elements of Σ1 equal to

σij = −ρ, if {i = 1 or j = 1 and i 	= j}, and σij = ρ, if {i > 1, j > 1 and i 	= j}. We

use δ = 0.05, 0.10, and 0.20 as contamination proportions, and study correlations

of ρ = 0, 0.5, and 0.8. In the simulations the following five probability models are

considered:

• N: multivariate normal F = N(µ, Σ)

• t3: multivariate Student’s t with 3 df F = t3(µ, Σ)

• δ% M1: contamination model 1 with different covariance matrix:

F = (1 − δ)N(µ, Σ) + δN(µ, Σ1)

• δ% M2: contamination model 2 with different location parameter and covari-

ance matrix: F = (1 − δ)N(µ, Σ) + δN(µ1, Σ1)

• δ% M3: contamination model 3 with different location parameter:

F = (1 − δ)N(µ, Σ) + δN(µ1, Σ)

To allow a visual comparison of these probability models, scatterplots of data sets

simulated according to these five models for p = 2, n = 100, ρ = 0.8, and δ = 10%

are given in Figure 5. The data points generated from the contamination part of the

distributions are marked as dots. For each of the sample sizes we generated 1000

datasets and computed bias and mean squared error of the Cronbach’s alpha based

on the classical covariance matrix estimator S and based on the robust alternatives

MCD, RMCD, Sbw and T3. The main results of the simulations are summarized in

Tables 1 to 4 and Figures 6 and 7. The simulations results for the other situations

were very similar.

First, note that these simulations confirm that the classical Cronbach’s alpha is

non-robust with respect to violations of the model assumptions. It can seriously

overestimate (contamination model 3, Table 1) or underestimate (contamination

models 1 and 2, Table 3) the reliability of a score. Student’s distribution t3 is

elliptically symmetric with heavier tails than the normal distribution and is often

a good approximation to the distribution of high quality data, c.f. Hampel et al.

(1986, p. 23). However, even in this situation the bias and the MSE of Cronbach’s

alpha is often much larger than under the classical assumption. The same is true

for contamination model 1 where the contaminating distribution is a normal with

14
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Figure 5. Scatterplots of simulated data for p = 2, n = 100, ρ = 0.8, and δ = 10%.

the same mean vector but a different covariance matrix than the main part of the

mixture distribution, see Tables 3 and 4. If the contamination is asymmetric as in

the other two contamination models, the behavior of Cronbach’s alpha can be even

worse.

The robust Cronbach’s alpha coefficients based on all three robust covariance

estimators measure the reliability of a score in a more stable manner than the

classical approach. In most cases Cronbach’s alpha based on the RMCD estimator

gives better result than the Cronbach’s alpha based on the MCD estimator, which

often has a higher bias and a higher mean squared error. Hence, we will not consider

the MCD approach in more detail. Cronbach’s alpha coefficient based on RMCD

is the only estimator under consideration which still gives reasonable results if the

mixing proportion is as high as δ = 20%. Furthermore, this estimator often gives

already better results with respect to bias and mean squared error than Cronbach’s

alpha under a multivariate t3 distribution. When the assumption of normality is not

valid, Cronbach’s alpha based on the Tukey biweight S-estimator, i.e. Sbw, performed

best except for contamination models with contamination proportion δ = 20%.

Moreover, this robust method performed almost as good as the classical estimator, if
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the assumption of normality is fulfilled. The application of the M-estimator T3 yields

more robust results than the classical approach based on the empirical covariance

matrix, but even for models with 5% of contamination it often gives worse results

than the estimators based on RMCD or Sbw, especially for contamination model 3

where the outlying observations can be interpreted as good leverage points in the

sense of Rousseeuw and van Zomeren (1990) (see Figure 2). This behavior of T3

coincides with the properties of the sensitivity curves and empirical influence curves

given in section 3.
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Table 1: Bias for several estimators of Cronbach’s α, p = 2. True value under
classical normality assumption is 0. All values are multiplied by 103.

ρ n model S MCD RMCD Sbw T3
0 40 N −61 −273 −122 −67 −66

t3 −159 −249 −177 −66 −58
5% M1 −48 −322 −127 −57 −58
5% M2 −16 −260 −115 −60 −42
5% M3 602 −261 −112 −45 226

10% M1 −64 −288 −143 −83 −78
10% M2 −32 −187 −115 −51 −39
10% M3 741 −185 −111 29 463
20% M1 −75 −312 −137 −78 −79
20% M2 −24 −145 −90 −31 −29
20% M3 836 −127 −85 806 765

0 100 N −16 −119 −40 −17 −17
t3 −132 −69 −32 −17 −14

5% M1 −25 −117 −49 −26 −27
5% M2 −18 −94 −46 −31 −26
5% M3 598 −93 −45 −11 252

10% M1 −23 −90 −37 −31 −29
10% M2 −16 −94 −42 −26 −22
10% M3 739 −92 40 87 480
20% M1 −37 −113 −49 −38 −37
20% M2 −20 −64 −53 −23 −24
20% M3 834 −54 −34 806 766

0 500 N −6 −26 −12 −9 −9
t3 −45 −3 −1 1 −3

5% M1 −7 −32 −12 −9 −8
5% M2 −7 −27 −13 −8 −8
5% M3 602 −27 −11 8 266

10% M1 3 −16 0 4 3
10% M2 0 −8 1 0 0
10% M3 743 −7 4 121 495
20% M1 −4 −26 −4 −3 −4
20% M2 −1 −6 −2 −2 −1
20% M3 837 −3 8 809 771
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Table 2: Square root of mean squared error for several estimators of Cronbach’s α,
p = 2. All values are multiplied by 103.

ρ n model S MCD RMCD Sbw T3
0 40 N 367 1064 611 397 397

t3 845 976 723 476 429
5% M1 347 1085 628 393 391
5% M2 305 941 590 377 344
5% M3 612 936 586 394 357

10% M1 361 1074 663 415 414
10% M2 308 810 576 367 324
10% M3 745 798 565 429 501
20% M1 377 1079 653 405 404
20% M2 277 637 500 302 298
20% M3 837 563 495 808 768

0 100 N 204 545 293 221 218
t3 688 424 323 261 236

5% M1 214 556 310 233 234
5% M2 208 492 295 238 224
5% M3 603 491 293 237 303

10% M1 210 560 302 234 233
10% M2 188 459 275 217 200
10% M3 741 447 274 268 492
20% M1 224 531 289 235 233
20% M2 180 363 288 192 189
20% M3 835 334 279 807 768

0 500 N 8 51 14 10 10
t3 302 189 144 119 108

5% M1 91 236 121 102 100
5% M2 89 214 119 98 93
5% M3 603 214 117 102 276

10% M1 87 219 111 93 94
10% M2 82 180 109 89 83
10% M3 744 179 106 161 497
20% M1 92 230 118 99 99
20% M2 74 146 109 78 76
20% M3 837 136 108 810 771

18



Table 3: Bias for several estimators of Cronbach’s α, p = 2. True value under
classical normality assumption is 0.667. All values are multiplied by 103.

ρ n model S MCD RMCD Sbw T3
0.5 40 N −14 −79 −36 −18 −17

t3 −59 −67 −52 −23 −23
5% M1 −62 −110 −59 −52 −53
5% M2 −201 −64 −28 −16 −62
5% M3 163 −65 −27 6 73

10% M1 −114 −138 −93 −88 −94
10% M2 −309 −39 −9 −30 −113
10% M3 220 −38 −6 72 147
20% M1 −222 −245 −191 −187 −193
20% M2 −465 −28 −19 −272 −285
20% M3 258 −24 4 247 237

0.5 100 N −5 −42 −10 −5 −6
t3 −38 −30 −21 −10 −8

5% M1 −53 −74 −41 −39 −44
5% M2 −184 −33 −5 −6 −52
5% M3 166 −33 −5 18 80

10% M1 −102 −113 −81 −80 −86
10% M2 −302 −26 −2 −28 −112
10% M3 218 −25 2 90 150
20% M1 −216 −206 −176 −181 −191
20% M2 −446 −6 2 −254 −267
20% M3 257 −9 23 247 237

0.5 500 N 1 −7 0 0 1
t3 −9 −7 −5 −2 −2

5% M1 −44 −38 −30 −32 −35
5% M2 −173 −5 3 0 −44
5% M3 168 −5 3 25 85

10% M1 −93 −75 −66 −70 −76
10% M2 −287 −1 7 −21 −103
10% M3 220 −2 9 102 153
20% M1 −202 −163 −155 −165 −175
20% M2 −434 9 16 −241 −254
20% M3 258 4 36 249 239
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Table 4: Square root of mean squared error for several estimators of Cronbach’s α,
p = 2. All values are multiplied by 103.

ρ n model S MCD RMCD Sbw T3
0.5 40 N 119 313 192 134 132

t3 282 268 230 151 134
5% M1 152 349 209 157 155
5% M2 277 285 178 130 152
5% M3 172 284 179 132 120

10% M1 206 371 250 190 193
10% M2 378 244 164 139 189
10% M3 222 240 167 148 162
20% M1 301 488 334 274 273
20% M2 523 199 176 355 349
20% M3 258 194 178 249 239

0.5 100 N 67 193 96 73 74
t3 263 168 129 93 86

5% M1 97 210 111 89 92
5% M2 218 168 90 73 94
5% M3 169 168 91 77 96

10% M1 138 248 146 123 126
10% M2 328 142 88 86 143
10% M3 219 142 90 116 154
20% M1 248 326 226 214 222
20% M2 467 105 81 283 289
20% M3 257 107 97 248 238

0.5 500 N 31 75 39 33 33
t3 103 61 46 39 36

5% M1 58 91 54 50 52
5% M2 180 72 38 33 57
5% M3 169 72 39 43 89

10% M1 103 118 83 81 87
10% M2 292 65 39 43 110
10% M3 220 65 40 107 154
20% M1 209 200 168 174 183
20% M2 438 50 39 247 259
20% M3 258 50 54 249 239

20



  N

  t3

 5% M1

 5% M2

 5% M3

20% M1

20% M2

20% M3

MCD

-0.2 0.0 0.2

RMCD S

-0.2 0.0 0.2

  N

  t3

 5% M1

 5% M2

 5% M3

20% M1

20% M2

20% M3

S_bw T3
-0.2 0.0 0.2

Figure 6. Bias for several estimators of Cronbach’s α for p = 10, ρ = 0.2, and

n = 100. The true value of CRα under classical normality assumptions is 0.714.
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Figure 7. Square root of the mean squared error for several estimators of

Cronbach’s α for p = 10, ρ = 0.2, and n = 100. The true value of CRα under

classical normality assumptions is 0.714.
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5 Example

To illustrate the usefulness of a robust Cronbach’s alpha coefficient for a real data

set, let us consider a subset of a larger data set collected by A. Nolle from the

University of Dortmund. The data set listed in Table 5 gives the answers of 23

bavarian teachers for the following three items.

• Item 1: ”I possess knowledge of the basic principles of education.”

• Item 2 ”I can define education and knowledge and can distinguish them from

each other.”

• Item 3 ”I can list basic theories of socialization.”

The items were measured on an ordinal scale with 5 values (1=good knowledge, . . . ,

5=unknown). Hence, the classical assumption of normality is surely not fulfilled

here. The Cronbach’s alpha coefficients based on S, RMCD, Sbw, and T3 are 0.55,

0.70, 0.62, and 0.65 for this data set, respectively. From a data analytic point of

view, simple sensitivity measures are often useful, as they describe the impact of a

single observation onto the quantity one is studying.

An indexplot of the sensitivities for Cronbach’s alpha coefficient defined by

αn(y1, . . . , yi−1, yi+1, . . . , n) − αn−1(y1, . . . , yn)

based on the classical approach (S) and Tukey’s S-estimator (Sbw) is given in Fig-

ure 8. It is obvious, that the answers for teacher 16 − who has not much knowledge

with respect to item 1, but reasonable knowledge w.r.t. to items 2 and 3 − have

much higher impact on the estimation of Cronbach’s alpha coefficient than on its

robust alternative. In contrast to that, the other sensitivity values were very similar

for both approaches. Just for comparison reasons, the Cronbach’s alpha coefficients

based on S, RMCD, Sbw, and T3 are 0.67, 0.74, 0.67, and 0.70 for the data set with-

out observation 16. As 0.70 is often used as a cut-off value for Cronbach’s alpha this

data set illustrates that even a single observation may have a high impact on the

estimation of Cronbach’s alpha but only a much smaller impact if the estimation

is based on a robust method. Of course, we do not propose to bluntly drop out

any outliers, but a robust method is helpful to identify observations which are far

away from the bulk of the data and it also allows to assess their impact on the data

analysis.
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Table 5: Data set: bavarian teachers.

ID No. Item 1 Item 2 Item3
1 1 2 2
2 2 3 2
3 3 3 4
4 2 2 3
5 1 2 1
6 3 3 4
7 2 2 4
8 3 2 4
9 3 2 4

10 2 2 3
11 3 3 3
12 2 2 4
13 2 2 4
14 2 3 5
15 3 4 4
16 4 2 2
17 3 3 4
18 1 1 3
19 1 2 4
20 2 2 3
21 1 3 3
22 2 3 4
23 2 2 3
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Figure 8. Indexplot of sensitivities for the data set of bavarian teachers.
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6 Discussion

The reliability measure Cronbach’s alpha is non-robust and even a single observation

can have a high impact on this coefficient. Therefore, we proposed robust alterna-

tives, which have good robustness properties, e.g. a bounded influence function,

perform well in a simulation study with respect to bias and mean squared error, and

are easy to compute with common statistical software packages as SAS, S-PLUS or

R.
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