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Abstract

The paper considers tests against for autocorrelation among the

disturbances in linear regression models that can be expressed as

ratios of quadratic forms. It shows that such tests are in general

not unbiased and that power can even drop to zero for certain

regressors and spatial weight matrices. Whether or not this can

happen is however easily diagnosed for given regressors and for

given spatial weights.
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1 The model and notation

This paper is concerned with the standard linear regression model

y = Xβ + u, (1)

where y is n× 1, X is n× k (nonstochastic of rank k < n), β is a k × 1 vector

of unknown regression coefficients, and u is an unobservable n × 1 vector of

normal zero mean disturbances.

Whenever the data in the model (1) refer to objects which are positioned in

some ”space”, one has to allow for spatial correlation among the disturbances

in (1). Such correlation may result from physical contiguity, interconnectedness

in social networks, or exposure to some common risk, as in empirical models

for capital asset prices and returns. This paper allows for correlation patterns

which are induced when the regression disturbances follow the equation

u = ρWu + ε, (2)

where ε is an n×1 normal random vector with zero mean and scalar covariance

matrix σ2

εI, and W is some known n × n matrix of nonnegative weights with

ωii = 0(1 = 1, . . . , n). The scalar ρ, which is unknown, determines the degree

of correlation among the components of u. There is no correlation when ρ = 0.

This paper considers tests of H0 : ρ = 0 against the one sided alternative

H1 : 0 < ρ < 1/λmax, where λmax is the Frobenius root of W (i.e. the unique

positive real eigenvalue such that λmax ≥ |λi| for arbitrary eigenvalues λi).

From (1), we have under the alternative

u = (I − ρW )−1ε, (3)

and cov(u) = σ2

εV , where

V = [(I − ρW ′)(I − ρW )]−1. (4)
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In many applications, W is scaled such that ω1i + . . . + ωni = 1 (i = 1, . . . , n),

and therefore λmax = 1. Since scaling has only minor effects on W in many

applications (besides multiplication by a scalar), but destroys any existing and

often very useful symmetry, we confine ourselves to symmetric weight matrices

in unscaled form, where V = (I − ρω)−2.

2 Cliff-Ord-Type tests for spatial autocorrela-

tion

We consider tests for spatial autocorrelation which reject for large values of

some statistic

d =
u′Q1u

u′Q2u
, (5)

where Q1 and Q2 are n×n-matrices which in general depend on X and W . The

prime example, and at the same time the test most often used in applications,

is due to Cliff and Ord (1975) and has Q1 = (1/s)MWM , Q2 = (1/n)M , where

M = I − X(X ′X)−1X ′ and s is the sum of all elements in the spatial weights

matrix. It is a ratio of quadratic forms in the OLS-residuals û = y − Xβ̂,

where β̂ = (X ′X)−1X ′y is the OLS-estimator for β, and extends the Moran I-

procedure to regression models. It is also equivalent fo the LM-test (Burridge

1980, Anselin 2001). Other tests along these lines include procedures where

OLS-residuals are replaced by LUS or BLUS-residuals; see Bartels and Hardijk

(1977) or Brandsma and Ketellapper (1978) for details.

The finite sample power of these tests has so far been investigated mostly by

Monte Carlo; the consensus is that tests based on OLS-residuals are best and

that power increases with increasing values of the autocorrelation coefficient

ρ. Anselin and Rey (1991) and Anselin and Florax (1995) provide convenient

surveys of this literature. As is shown in Theorem 1 below, however, power

need not be increasing throughout the whole admissible range (0, 1/λmax) of

the spatial autocorrelation coefficient. Extending Krämer and Zeisel (1990),

who investigated autocorrelation tests in the time series context, it is shown
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below that it can even drop to zero.

THEOREM 1: Let d1 be the critical value corresponding to some significance

level α, and let ω be the normalized eigenvector corresponding to λmax. If

λmax is a simple eigenvalue of W and ω′(Q1 − d1Q2)ω 6= 0, then, depending

upon X and W , the limiting power of all tests (5) as ρ → 1/λmax is either

zero or one. Given any matrix W of weights, and independently of sample

size, there is always some regressor X such that for the Cliff-Ord-test the

limiting power disappears.

PROOF: Rejection of H0 occurs if

d = u′Q1u/u′Q2u > d1

⇔ u′(Q1 − d1Q2)u > 0

⇔ η′V
1

2 (Q1 − d1Q2)V
1

2 η > 0, (6)

where η = V −
1

2 u ∼ N(0, I). Therefore,

P (rejection) = P

(

u
∑

i=1

γiξ
2

i > 0

)

= P
(

(1 − ρλmax)
2Σγiξ

2

i > 0
)

, (7)

where the γi are the eigenvalues of V
1

2 (Q1 − d1Q2)V
1

2 and therefore also of

V (Q1 − d1Q2), and the ξi are nid(0,1).

The limiting rejection probability as ρ → 1/λmax depends upon the limiting

behaviour of (1 − ρλmax)
2V . Let

W =
n
∑

i=1

λiωiω
′

i (8)

be the spectral decomposition of W , with the eigenvalues λi in increasing order

(i.e. ωn = ω). Then

V =
n
∑

i=1

1

(1 − ρλi)2
ωiω

′

i (9)
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is the spectral decomposition of V , and

limρ→1/λmax
(1 − ρλmax)

2V = ωω′, (10)

a matrix of rank 1. Therefore, all limiting eigenvalues of (1 − ρλmax)
2V (Q1 −

d1Q2) are zero except one, which is given by

tr(ωω′(Q1 − d1Q2) = ω′(Q1 − d1Q2)ω. (11)

If ω′(Q1 − d1Q2)ω is positive, the power tends to one; if ω′(Q1 − d2Q2)ω is

negative, the power disappears.

For the Cliff-Ord-test, where Q1 = MWM and Q2 = M , take k = 1 and

X = ω, except that the last component of X is set to zero. Then MW is

zero except for the last component, so W ′MW > 0. On the other hand, from

ωuu = 0, ω′Mω = 0, so

ω′(Q1 − d1Q2)ω = −d1ω
′Mω < 0, (12)

since d1 is strictly positive for all sample sizes and for all X and W . This

shows that irrespective of W and sample size, one can always find examples

such that the power disappears. •

Since ω′(Q1 − d1Q2)ω is known, the theorem also provides a means to avoid

the zero-power trap: compute ω′(Q1 − d1Q2)ω and do not apply the test if

ω′(Q1 − d1Q2)ω < 0.

Theorem 1 does not apply when ω′(Q1 − d1Q2)ω = 0. In the case of the

Cliff-Ord-test, this occurs whenever ω is in the regression space of X. This

seems to be a rather unusual situation, except when ω is a vector of constants

and the regression has an intercept.

THEOREM 2: If ω′(Q1 − d1Q2)ω = 0, then the limiting power of all tests

(5) as ρ → 1/λmax is in general strictly in between 0 and 1.

5



PROOF: Let V (ρ) := (1−ρλmax)
2V , and limρ→1/λmax

V (ρ) = ωω′ =: V . Then

V (Q2 − d1Q2) = 0 and (13)

limρ→1/λmax
(1 − ρλmax)

−2V (ρ)(Q1 − d1Q2)

= limρ→1/λmax
(1 − ρλmax)

−2
(

V (ρ) − V
)

(Q1 − d1Q2)

= V ∗(Q1 − d1Q2), . . . (14)

where, by l’Hopital’s rule,

V ∗ := limρ→1/λmax
(1 − ρλmax)

−2
(

V (ρ) − V
)

(15)

=
n−1
∑

i=1

λmax − λi

λmax

(

1 − λmax

λi

)

3
ωiω

′

i (16)

is a matrix of rank (n − 1). Therefore

V ∗(Q2 − d1Q2) 6= 0, (17)

and the nonzero eigenvalues of this matrix uniquely determine the limiting

power of the test. For most cases encountered in practice, some of these

eigenvalues will be positive and some will be negative, so the limiting power

will be strictly in between 0 and 1. •

Theorem 1 has also implications for efficient estimation. It is shown in Krämer

and Donninger (1987, Theorem 2) that, for the X-matrix constructed in The-

orem 1 to induce a limiting power of zero for the Cliff-Ord-test, the OLS-

estimator has a limiting efficiency relative to the Generalized Least Squares

estimator of zero as well, so in a sense, the autocorrelation test fares worst

when it is needed most.
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3 An empirical illustration

Here are some empirical examples. For ease of comparison with previous work,

in particular Anselin and Rey (1991), the weight matrices are chosen for data

which are arranged in regular square lattices of various sizes, with weights of

0 and 1 according to either the rook or the queen criterion: the rook criterion

assigns a weight of 1 to all cells above, below, to the right and to the left of a

given cell (except for cells along the border of the lattice), and the queen crite-

rion assigns a weight of one to all cells immediately surrounding a given cell. A

third class of weight matrices was obtained by a mechanism which with prob-

ability 1/3 assigns a value of 1 to all ωij(j > i), ωji := ωij and zero otherwise.

Such weight matrices are much more densely packed than those obtained via

the rook and queen criteria, with the proportion of nonzero weights remaining

constant as sample size increases. Exact critical values d1 and exact rejection

probabilities, given X and W , were computed with the Imhof algorithm.

Figure 1 shows the exact rejection probabilities for a 4 × 4 lattice (i.e. n =

16), with W given by the queen criterion, and two X-matrices: a column of

ones (k = 1) and the column of ones plus a column (1, 2, . . . , 16)′. This is

just for ease of replication. As is seen in the figure, the power of the test is

initially higher when X is only a column of ones (this is not surprising, as the

performance of the test depends upon the quality of the OLS-residuals, which

suffers when additional regressors are added), but drops to zero as ρ approaches

the boundary of the parameter space (which is scaled to the (0,1)-interval).

With an additional regressor, however, power tends to one.

This dropping to zero of the power is not a fluke. Table 1 gives the number of

cases (out of 1000 runs) where one obtains a limiting power of zero, with X

(n × 2) given by a column of ones plus a column of nid (0, 25) variables.

Not surprisingly, this number of zero limits decreases as the significance level

α of the test increases. It is very large for small samples and decreases as

sample size increases. For weight matrices like rook or queen which are sparsely

packed, a limiting power of zero for the Cliff-Ord-test does not seem to be an

empirically relevant phenomenon for sample sizes beyond 25. This was also
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confirmed for other types of X-matrices (not shown in Table 1). However, if

nonzero weights are dense, a disappearing power remains a distinct possibility

also for larger samples.
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Table 1: Number of zero power limits out of 1000 independent runs

α

n 1% 5% 10%

a) rook

16 999 956 236

25 8 2 0

36 1 0 0

b) queen

16 999 954 293

25 7 0 0

36 1 0 0

c) random weights

16 497 295 163

25 388 185 114

36 309 139 97
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