A comparison of sequential and non-sequential designs for
discrimination between nested regression models

Holger Dette Robert Kwiecien
Ruhr-Universitat Bochum Ruhr-Universitat Bochum
Fakultat fiir Mathematik Fakultat fiir Mathematik

44780 Bochum 44780 Bochum
Germany Germany
email: holger.dette@ruhr-uni-bochum.de email: robert.kwiecien@ruhr-uni-bochum.de

FAX: +49 2 34 3214 559

July 24, 2002

Abstract

Classical regression analysis is usually performed in two steps. In a first step an appropri-
ate model is identified to describe the data generating process and in a second step statistical
inference is performed in the identified model. In this paper we investigate various design
strategies which take into account these different goals of the analysis for a class of nested
models. A detailed comparison of sequential and non-sequential designs for model discrimi-
nation in polynomial and Fourier regression models is given and the difference between the
two concepts are illustrated. It is demonstrated that non-sequential designs usually identify
the “correct” model with a higher probability than the sequential methods. Additionally,
the efficiencies of the non-sequential designs for the estimation of the parameters in the ”cor-
rect” model are at least of the same size than the corresponding efficiencies of the sequential
methods.

Keywords and Phrases: optimal design, robust design, discrimination design, sequential design,
F-test, polynomial and Fourier regression

1 Introduction

Classical design theory assumes precise knowledge of the underlying model of the data generating
process [see e.g. Silvey (1980)]. However, in many applications such knowledge is not available
and the analysis of the data is usually performed in two steps. The data is firstly used to identify
an appropriate model from a given class of competing models and the second step consists in the
statistical analysis in the identified model (parameter estimation, prediction etc.). An optimal
design for one task may be exceptionally inefficient for the other. Consider for example the



regression model
(1.1) Y = f(X)+e,

where ¢ has a centered normal distribution. The real valued function f is assumed to belong to a
given class of linear nested models, say

(12) F = {gla"'agk}a
where
¢
(1.3) giw) =) Bfilw),  i=1,....k
i=1
are the competing nested models, 1 < ¢, < ¢, < ... < {; and fy,..., fs, are given and known

regression functions.

Typically, the discrimination between these models is performed by a sequence of tests for the
hypotheses
H()j . f = gj—1 Versus Hlj . f = gy,

[see e.g. Anderson (1962)], while the inference in the identified model is usually done by classical
methods for linear regression [see e.g. Seber (1977)]. In the literature there are essentially two
proposals to determine efficient designs for the rather different objects of discrimination and
inference in the identified model. Numerous authors propose to combine all aspects of interest in
one design criterion [see e.g. Atkinson and Cox (1974), Lauter (1974), Dette (1990, 1994, 1995),
Spruill (1990), Pukelsheim and Rosenberger (1993) among many others|. The resulting optimality
criteria are called compound or composite optimality criteria and the corresponding design is
non-sequential in the sense that all observations are taken at one stage. The second approach is
based on sequential methods [see e.g. Andrews (1971), Montepiedra and Yeh (1998) or Biswas
and Chaudhuri (2002)]. While statistical analysis based on data from a non-sequential design
can essentially be carried out by standard methods, the analysis based on data from a sequential
design is usually very difficult [see Silvey (1980)]. For example, it is not obvious that estimates
in the identified model are consistent or (asymptotically) normal distributed with the appropriate
variances and consequently tests or confidence intervals may not keep the required accuracy. The
reason for these difficulties is that a sequential design procedure usually yields dependencies in the
data and classical estimation and distribution theory is not directly applicable. Therefore most
sequential designs for model discrimination and estimation are proposed on a basis of heuristic
arguments, which roughly speaking ignore the dependencies caused by the sequential sampling
[see e.g. Montepiedra and Yeh (1998, 2002)].

Recently, Biswas and Chaudhuri (2002) proposed in a remarkable paper a sequential strategy,
where the object of the design is to select the correct model from the family of nested models
as well as to efficiently estimate the parameters associated with that model. They showed that
the corresponding tests used in the discrimination step keep their preassigned levels and that the
sequential design is able to identify the correct model with a probability converging to one if the
sample size tends to infinity. Moreover, the sequential design converges to the optimal design
corresponding to the “true” model.

The purpose of the present note is to compare the sequential discrimination designs with the
non-sequential discrimination designs and model robust designs introduced by Dette (1990, 1994
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and 1995). In Section 2 we will briefly review the different concepts. Section 3 contains a detailed
comparison of the different concepts for lower order polynomial and Fourier regression models. We
investigate by a simulation study the rate of misspecifications and the efficiencies of the different
designs in the identified model. It is demonstrated that non-sequential procedures usually yield
substantially smaller rates of misspecification compared to the sequential procedures. Addition-
ally, the efficiencies of the non-sequential designs for estimating the parameters in the identified
model are not substantially worth than the corresponding efficiencies of the sequential designs (in
many cases they are even better). Finally, some conclusions and recommendations for designing
experiments with respect to the different goals of model identification and parameter estimation
are given in Section 4. Our results demonstrate that non-sequential designs should usually be
preferred in this context.

2 Different design strategies revisited

2.1 Non-sequential discrimination and model robust designs

The strategy of combining two or more aspects in one optimality criterion was firstly considered
by Lauter (1974) [see also Dette (1990), Pukelsheim and Rosenberger (1993) among many other
authors]. For computational reasons most authors use optimality criteria based on determinants
and for the sake of transparency we will restrict our investigations to this type of criteria. To be
precise let X; € R™% denote the design matrix in the model g; defined in (1.3) based on the
total sample of n observations (j = 1,...,k). Noting that the jth model contains ¢; unknown
parameters Lauter (1974) proposed to choose the design points such that the geometric mean

k
(2.1) [T IX7 ;0%

j=1

becomes maximal, where |A| denotes the determinant of the matrix A. Here the quantities ),
are nonnegative weights with sum 1 reflecting the experimenter’s prior belief about the adequacy
of the jth model. We call a design maximizing the function in (2.1) an optimal model robust
design for the models g1, ..., gr [with respect to the prior A = (A1, ..., Ax)]. In the case of Fourier
regression and univariate and multivariate polynomial models optimal model robust approximate
designs (in other words probability measures with finite support on the design space) have been
determined by Lau and Studden (1985), Dette (1990) and Dette and Rdder (1995), respectively.

For the purpose of model discrimination a different optimality criterion is appropriate. Note that
an efficient discrimination between the model g; ; and g; requires a precise estimation of the
“highest” coefficients Sj¢,_,y1,-..,Bjs corresponding to the functions fy,_,11,..., fs; in the jth
model defined by (1.3). Define

(2.2) K] =1[0]1Ip—,_,] € RI 76124,

where I; € R**® denotes the identity matrix, then it is well known [see e.g. Silvey (1980)] that
the volume of the ellipsoid of concentration for the parameters 5;,._ 11, .., 5)y, is proportional

to the determinant
KT (X X5) T KG | 2,



Consequently, a good discrimination design for the models g1, ..., gr should make these quantities
as small as possible, and following Lauter (1974) we propose to choose the design such that

k
(2.3) H |KjT(XjTXj)71Kj|Aj/(ljflj71)

J=2

becomes maximal. A design maximizing the function in (2.3) is called optimal discriminating
design for the models g1, . . ., g [with respect to the prior A = (Aq, ..., Ax)]. Optimal discriminating
designs for polynomial and Fourier regression models have been determined by Spruill (1990),
Dette (1994, 1995), Dette and Roder (1997) and Dette and Haller (1998). We finally note that
there exists a sequence of step-wise F-tests corresponding to the criterion (2.3) [see Anderson
(1962) for some optimality properties of this multiple decision procedure]. More precisely, starting
with the model g the hypotheses

Bj,éj_l-q-l
(2.4) Hy;: K] B; = : =0 j=k...,2
Bie;
with BJ-T = (Bj1s---,Bj4,)" are subsequently tested at a specified level, say o; € (0,1) and we
select the model g;, for which the first test rejects the corresponding hypothesis. The test in the
jth step is the classical F-test, which is based on the statistic
_ RSS; 1 —RSS; N -

2. F,
(2:5) J RSS; 0=t

where RS'S; denotes the residual sum of squares based on a least squares fit in the model g; from
the total sample. Note that under the null-hypothesis (2.4) the statistic F; has an F-distribution
with ¢; — {;_; and N — {; degrees of freedom, which allows a simple determination of the critical
values. It is easy to see that for any design with determinant | X[ X} [> ¢ > 0 in the model
gk, increasing sample size and levels converging to 0, this procedure identifies the “correct” model
with a probability converging to 1. This remark applies in particular if the optimal model robust
designs [maximizing the function (2.1) ] or the optimal discrimination designs [maximizing the
function (2.3) | are used in this selection procedure.

2.2 A sequential strategy

In this paragraph we briefly describe a promising sequential approach, which was recently proposed
by Biswas and Chaudhuri (2002). The method starts with a convex combination of the D-optimal
designs for the individual models and this design is updated in several steps. To be precise, let ;
denote the approximate [in the sense of Kiefer (1974)] D-optimal design for the regression model

g; (j =1,...,k) and assume that N = mo+m;+...4+m, experiments are permitted. Let a§°) = %
(¢=1,...,k) and consider as the design for the first stage
k
(2.6) (€0 :=>"a¢
i=1
the uniform mixture of the D-optimal designs for the models g, ..., g;. The first my observations

are chosen at experimental conditions sampling randomly from the design &), which defines the
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initial design. This design is sequentially updated by s > 0 steps in the following way. For
r=1,...,s the sample of mg+...+m,_; observation is used to test subsequently the hypotheses

(2.7) Hy; : K]-TBJ- =0 versus Hy;: K]-Tﬁj #0

(j = k,...,2) where the matrix Kj; is defined in (2.2) and §; = (B;1,...,B;e,)" is the vector of
parameters in the model g;. Note that the hypothesis Hy; is valid if and only if the parameters
Bjgi_i+15 - -+ Bje; in the model g; vanish simultaneously, which means that the model g;_; should
be preferred instead of g;. The hypothesis Hy; will be rejected with some specified level o] if
T7 > ¢!, where the statistic 77 is defined by

ZZ:&{RSSJQI - RSSJ('Z)} i (mi— )

(2.8) T! = . :
Sy RSSY r(l = 4j-1)

r

and RS 5](-” denotes the residual sum of squares based on a least squares fit in the model g; from
the m; observations in the ith step (i = 0,...,r — 1). Note that in contrast to the classical F-
statistic defined in (2.5) these sums are calculated seperately for each sample of m; observations
(4 =0,...,7 —1). It was shown by Biswas and Chaudhuri (2002) that the critical values ¢/ can
be obtained as the o/ quantiles of an F-distribution with r(¢; — ¢;_1) and Y ;_,(m; — {;) degrees
of freedom.

The design for the next m, observations is then defined as follows. Let j, denote the first index
for which the null-hypotheses Hyy, ... Hyj,+1 are accepted and the null-hypothesis Hyj, is rejected
(if all tests accept the corresponding null-hypothesis we put jo = 1), then the model g;, is selected
and the design is updated by

k
(2.9) £ =3 "als,
i=1

where the new weights o) are defined by

(r—l) . .
No (ai +(k+7i,1))/2 if i = jo
al" VY if @ # jo

" — 1. The next m, design

and Y is a normalizing constant defined by the condition Zle ag
points are then generated from the design £(").

This procedure is repeated to obtain mgy + ... + ms; = N observations, where the observations
at the rth stage are taken by sampling randomly from the design £). Finally, the sequence of
tests for the hypotheses Hyy, Hop_1, ..., Hys based on the statistics TfH, ... ,TSQJrl is performed
for the total sample and the model g;, is chosen for which the corresponding test rejects the
null-hypothesis for the first time (in other words: 70, < ¢ ;i = k,...,j0 + LTS, > ).
It was shown by Biswas and Chaudhuri (2002) that under appropriate (asymptotic) assumptions
on N,s,mg,...,ms and ol (r =0,...,5,j = 2,...,k) this procedure identifies the “correct”
model with probability converging to one. Moreover, the information matrix of the design £() in
the identified model , say g;,, converges to the information matrix of the D-optimal design for
this model, say M, and the corresponding parameter estimate in the identified model has an
asymptotic normal distribution with asymptotic mean f;, € Rf% and covariance matrix %MJGI

[see Biswas and Chaudhuri (2002) for more details].
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2.3 A two stage procedure

Recently, Montepiedra and Yeh (2002) proposed a two stage procedure for the construction of
efficient designs for model discrimination and estimation of the parameters in the identified model.
The total sample of N observations is splitted into two parts, say ng +n; = N. In a first step
no observations are taken according to a design, which maximizes the criterion (2.3) in order to
apply an efficient design for model discrimination. The data obtained from this design is used
to select the appropriate model among g1, ..., gy, say g;,- Here the sequence of F-tests defined
in (2.5) is used for the discrimination step. For the second step let X;,(ng) € R™*% denote the
design matrix of the design from the first step in the model g;,, then the next n; observations are
taken such that the determinant

(2.10) [f+ X (n0) X (n0) + (1 = f) - X (1) X (m1)]

becomes maximal, where X, (n;) is the design matrix in the model g;, obtained from these new
observations and f € (0,1) is a weight to be determined by the experimenter. After all N =
ng + ny observations have been collected from the two stage design, the model selection step will
be repeated using the total sample and the parameters in the identified model are estimated.
Although this procedure is intuitively appealing, it has not been shown so far that this will yield a
consistent procedure in a strong statistical sense. For example, the (F')-tests in the final step will
usually not keep the preassigned level [see Section 3 for more details| and it is not obvious that
for an increasing sample size (in both steps) the “correct” model is identified with a probability
converging to 1. We finally note that the construction of the design maximizing the criterion (2.10)
in the two stage procedure is closely related to the Bayesian design problem for linear regression
models and for this reason not an easy problem [see e.g. Chaloner (1984) and Pukelsheim (1993),
p. 275].

3 A comparison of sequential and non-sequential designs

Usually efficiencies [see Pukelsheim (1993), p. 132] are used to compare different designs, but
due to the randomness of the sequential procedures these efficiencies cannot be calculated. In
this section we apply a different approach to evaluate the performance of the different designs,
which is based on a detailed simulation study of the sequential and non-sequential procedures and
takes into account the two different goals of the design of experiment. To be precise we simulated
10.000 times a specific scenario for the designs described in Section 2. In each simulation we
investigate the performance of the different designs and discrimination strategies, where the level
of the corresponding F-tests was always taken as 5%. These simulations are used for two purposes:

e The calculation of the rate of a correct identification of the underlying model (we simply
count how often the “correct” model is chosen in the 10.000 trials).
e The determination of the D-efficiency
|X£XJO|I/Ej

in the identified model. This calculation is no problem for a non-sequential design. For the
sequential designs we used the 10.000 trials to define an “averaged” sequential design and
this design is used for the efficiency calculations (for more details see Section 3.1 and 3.2).
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We considered two cases of regression models, the cubic polynomial model and the Fourier-
regression model of degree 2, for which the D-optimal designs in the nested submodels (which
are needed in the sequential procedures) and the optimal model robust and optimal discrimina-
tion designs are known from the literature. For the sake of simplicity we restrict ourselves to
the approximate design case and in our simulation study the experimental conditions are chosen
randomly from the corresponding approximate designs.

3.1 Discrimination designs for the cubic regression model

Consider the cubic regression model

(3.1) g3(x) = B + P17 + P2z + Baox® + Baza’;

on the interval [—1,1]. The corresponding nested models are the linear and quadratic regression
model, i.e.

(3.2) 91(z) = Pro + Buiz;  ga(x) = Poo + Bz + P’

In this case we have k = 3,(; = 2,{, = 3,3 = 4 and the matrix K in (2.3) reduces to the (j+1)th
unit vector in R+ (5 = 2, 3).

The D-optimal designs are known to have equal masses at the point —1, 1 (for the linear regression
model ¢,), —1,0, 1 (for the quadratic regression function g,) and —1, —1/+/5,1/v/5,1 (for the cubic
model g3), respectively [see Pukelsheim (1993), p. 217-218)]. Our first simulations serve for a
comparison of different partitions in the sequential scheme of Biswas and Chaudhuri (2002) (see
Section 2.2). For the sake of brevity we only report the results for the sample size N = 100,
simulations for different sample sizes (N = 50 and N = 200) showed a very similar picture. We
considered the partitions

mo = Mg = 10 (A)

= =20 B

(3.3) o i (B)
myg = 1Mm; = My = 30, ms3 = 0 (C)

mo = my = o0 (D)

for the 100 observations. Figures 3.1a and 3.1b show the rate of correct specification if the cubic
or quadratic model is ”correct”, respectively. The model under consideration was

g3(x) =1+ 2+ 2% +bszz®  (bsz #0)

in the cubic case and
g2(z) = 1+ 2 + byy?

for the quadratic case. If the linear model g;(x) = 1 4 byyx is the “correct” one, all designs in
(3.3) behave similary and for this reason the results are not depicted. Note that the rate of correct
specification is a function of the parameter of the absolute value of the highest coefficient, similar
to the power function of the corresponding F-test. For example if the “correct” model is quadratic
but the coefficient of 22 is small in absolute value the model can hardly be distinguished from the
linear model. From Figure 3.1a and 3.1b we observe that the rate of correct specification of the
sequential procedure of Biswas and Chaudhuri (2002) is improved, if large sample sizes are chosen
in the first steps of the sequential procedure. In other words: the allocation scheme (D) yields
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Figure 3.1: Simulated probabilities of correct specification for the sequential designs (3.3) proposed
by Biswas and Chaudhuri (2002) in the polynomial regression model (3.1). Figure 3.1a (upper
panel): cubic model is "correct”; Figure 3.1b (lower panel): quadratic model is "correct”.

the uniformly best rates of “correct” model specification, independently of the “correct” model.
This performance can even be improved by choosing all 100 observations in the first step which
does not yield a sequential procedure. This at a first glance strange behaviour can be explained
by the definition of the statistic (2.8) which is used in the different F-tests of the sequential
discrimination procedure. The residual sums of squares RS SJ@ are calculated separately for each
subsample and then added, which yields to a substantial loss of power, if the sample sizes for the
initial sequential stages are too small.

The results for the corresponding efficiencies of the “averaged” designs are presented in Figure
3.2a and 3.2b. From Figure 3.2a we observe the opposite behaviour for the efficiencies in the
cubic case. Here the sequential design (A) yields the best efficiency (in the average) and the
performance is usually improved by using finer partitions. On the other hand, if the quadratic
model is correct, the sequential design with the finest partition has only a better performance if
the parameter (5 is relatively small, for moderate values of 359, the design (C) is preferrable, while
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Figure 3.2: Simulated D-efficiencies of the sequential designs (3.3) proposed by Biswas and Chaud-
huri (2002) in the identified polynomial regression model (3.1). Figure 3.2a (upper panel): cubic
model is "correct”; Figure 3.2b (lower panel): quadratic model is ”correct”.

for large values of the parameter [y, the design (B) yields the best efficiencies [see Figure 3.2b].
Finally, in the linear case we observe a slight loss in (averaged) efficiency if the finest partition is
used. More precisely, the efficiencies do not vary substantially with the parameter (31, the design
(A) in (3.3) has D-efficiency 0.82 and the designs (B), (C), (D) have D-efficiency 0.86. However,
it should be remarked that the differences between the efficiencies of the different designs are
relatively small compared to the differences between the probabilities of correct specification. The
relative D-efficiencies of the different designs in the cubic, quadratic and linear models differ by
at most 7%, 2%, 6%, respectively. On the other hand, we observe more substantial differences
between the probabilities of correct specification in the cubic and quadratic model (provided that
the parameter (33 of the highest coefficient is not too large or too small). For example, in the
cubic model the probabilities of correct specification between the best and worst sequential design
can differ between 63% and 32% if the parameter (33 varies in the interval [1,2]. Similary, in
the quadratic case we observe a relative difference between 76% and 25% if the parameter (g



varies in the interval [0.3, 1] (see Figure 3.1b). In general the probabilities of correct specification
are substantially more sensitive with respect to the sample sizes in the different stages of the
procedure of Biswas and Chandhuri (2002) than the efficiencies. Consequently, the sequential
design proposed by Biswas and Chaudhuri (2002) should be constructed such that the sample
sizes my, m for the initial steps are not too small.

In a second step of our study we performed a similar simulation study for the two stage designs
proposed by Montepiedra and Yeh (2002). As design for the first stage these authors proposed
the design maximizing the function in (2.3) for the weights Ay = A3 = 1/2, which can be obtained
from the results in Dette (1994) and is given by

—1 —0.40825 0.40825 1
3.4 isc —
(3-4) & (0.2 0.3 0.3 0.2)

(note that we do not test the coefficient in the linear model). We considered three possible
allocations of the N = 100 = ny + n; observations, namely

Ng =Ny, = o0 (E)
(3.5) ny =75, ny =25 (F)

Ng = 25, ny = 75 (G)
where the design for the second stage is obtained by maximizing the function defined by (2.10)
in the corresponding approximate setup with weight f = ng/(no + n;) [see Montediedra and Yeh
(2002) for more details]. In the case of polynomial models these results can be calculated by an

application of the theory of canonical moments [see Dette and Studden (1997)]. These calculations
are omitted for the sake of brevity. For example in the situation (E) we obtain the designs

€y — —1 —0.4645 04645 1
P37\ 0.2083  0.2017 0.2017 0.2983

S S N e 11
B2 =1 0395 0210 0.395 | *P' 7\ 1 1

2 2

for the second stage if the cubic, quadratic or linear model has been chosen in the first stage,
respectively. Similary, in the case (F) and (G) these designs are given by

Epy = —1 —0.4784 0.4784 1
737\ 0.3925 0.1075 0.1075 0.3925

-11
§F,2:§F,1:( 1 1)
2 2

( —1 —0.4544 04544 1 )

and

So = 0.2663 0.2337 0.2337 0.2663

N
N [#—= |
—_
N—= =
N——

e — —1 0 1 -
“2 7\ 0.3540 0.2920 0.3540 | > "9t T
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Figure 3.3: Simulated probabilities of correct specification for the two stage designs (3.5) proposed
by Montepiedra and Yeh (2002) in the polynomial regression model (3.1). Figure 3.3a (upper
panel): cubic model is "correct”; Figure 3.3b (lower panel): quadratic model is "correct”.

respectively. Figure 3.3a and 3.3b show the rates of ”correct” specification of the underlying model
for the three two stage designs specified by (3.5), if the cubic or quadratic model are ”correct”,
respectively. The probabilities in the linear case are not depicted because the differences between
the two stage designs are negligible. The corresponding efficiencies in the “correct” model are
depicted in Figure 3.4a and 3.4b. We observe that the probabilities of correct specification for
the quadratic model are increasing with the sample size for the first step, which corresponds to
intuition [see Figure 3.3a and 3.3b]. In the cubic model we observe relative differences between
76% and 58% if the parameter (33 varies in the interval [0.5,1.5]. The design (F) which allocates
a larger sample size to the first case is the best, while the design (G) is the worst. A comparison
of the efficiencies also yields substantial differences between the two stage designs in the cubic
model [see Figure 3.4a]. The efficiencies differ by not more than 12% if 33 < 1. In the quadratic
model we observe only relative differences of approximately 6% [see Figure 3.4b]. Note that the
design (F) yields the best efficiencies in the cubic model, provided that the parameter of the cubic
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Figure 3.4: Simulated D-efficiencies for the two stage designs (3.5) proposed by Montepiedra and
Yeh (2002) in the identified polynomial regression model (3.1). Figure 3.4a (upper panel): cubic
model is "correct”; Figure 3.4b (lower panel): quadratic model is ”correct”.

term is not too large. In the quadratic model the design (E) is the best but the design (F) is only
5% worse. If the linear model is ”correct”, the D-efficiencies of the designs (E), (F) and (G) are
approximately 0.85, 0.78 and 0.91, respectively. Thus taking 3/4 of the total observations in the
first stage and only 1/4 of the observations in the second stage seems to be a good strategy for the
two stage design of Montepiedra and Yeh (2002). Finally, we remark that the corresponding F-
tests do not keep the preassigned levels, if the designs are constructed by the two stage procedure
of Montepiedra and Yeh (2002). For example, in the cubic and quadratic model the simulated
level varies between 7% and 9%, while the preassigned level is 5%.

We now compare the sequential designs with the non-sequential discrimination and model robust
designs proposed in Section 2. For the sake of brevity and transparency we compare from each
sequential approach only one design (which is in our opinion the best) and take one optimal model
robust and one optimal discrimination design. For the sequential design proposed by Biswas and
Chaudhuri (2002) we used the design (D) defined in (3.3) with only two stages, because the
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impact of these designs on the probability of correct specification is more severe than on the
efficiencies with respect to estimation in the identified model. For the two stage design proposed
by Montepiedra and Yeh (2002) we used the design (F) in (3.5) which uses 75 % of the observations
in the first step. Moreover, in order to obtain a fair comparison the nominal level of the F-test was

"7 "7~ Robust

F e (D) — —— — Disc - ~—— Robust

e e e L B e e e e e T A B e e e e L e e T R e e e e e T e B A e e
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Figure 3.5: Stmulated probabilities of correct specification for sequential and non-sequential designs
in the polynomial regression model (3.1). The sequential design (D) of Biswas and Chaudhuri
(2002) is defined in (3.3), the two stage design (F) proposed by Montepiedra and Yeh (2002) is
given in (8.5). The optimal model robust design and optimal discrimination design are defined
by (3.6) and (3.4), respectively. Figure 3.5a (upper panel): cubic model is "correct”; Figure 3.5b
(lower panel): quadratic model is "correct”.

adjusted such that the effective level of the resulting tests obtained from the design of Montepiedra
and Yeh (2002) is precisely 5% (see the discussion in the previous paragraph). As model robust
design we chosed the design

(3.6) e -1 —0amnodon 1
' fobust = | 13194 0.1806 0.1806 0.3194 |
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which maximizes the criterion (2.1) for the uniform prior 51 = fy = 3 = % [see Dette and Studden
(1997), p. 192]. The discrimination design is the design {pis. defined in (3.4).

If the linear model is the “correct” one the differences between the four designs are negligible
and therefore not depicted. Figure 3.5a and 3.5b show the probabilities of correct specification
in the cubic and quadratic model, respectively. We observe that the optimal discrimination,
model robust and the two stage design of Montepiedra and Yeh (2002) have a substantially better
performance than the sequential procedure of Biswas and Chaudhuri (2002). Note that we chosed
the best design (D) in (3.3) with respect to the criterion of correct specification [see Figure 3.1a]
and all other designs in (3.3) have a worse performance. Comparing the remaining three designs
we observe that the optimal discrimination design &p;sc ist the best, while the two stage design of
Montepiedra and Yeh (2002) is better than the model robust design &gropuss- The picture in the
quadratic model is similar. There is only a minor difference between the optimal discrimination
design &pisc and the model robust design Egropust- The two stage design of Montepiedra and Yeh
(2002) has a slightly worse performance but it has a substantial better rate of correct specification
then the sequential design of Biswas and Chaudhuri (2002) [see Figure 3.5b]. We mention again
that - in contrast to the model robust design, the optimal discrimination design and the sequential
design of Biswas and Chaudhuri (2002) - the two stage design of Montepiedra and Yeh (2002) does
not keep its preassigned level oo = 5%, because it uses dependent observations in the sequence of
classical F-tests. In our simulation study the nominal level was chosen substantially smaller than
5% such that the effective (simulated) level is precisely 5%.

A comparison of the efficiencies of the four designs can be found in Figure 3.6a and 3.6b for
the cubic and quadratic model, respectively. In the cubic polynomial the design of Biswas and
Chaudhuri (2002) is about 10 % less efficient than the discrimination, model robust and two
stage design, while the relative efficiencies of the lastnamed designs differ only about 3%. In the
quadratic model [see Figure 3.6b] the model robust design and the sequential design of Biswas
and Chaudhuri (2002) yield the best efficiencies, while the two stage design of Montepiedra and
Yeh (2002) is 4% — 5 % worse and the discrimination design &pis. has the worst performance with
a loss of efficiency of approximately 11% compared to the best case.

In summary we found an obvious ranking with respect to the criterion of correct model identifica-
tion, but there seems to be no clear winner with respect to the efficiency criterion. The sequential
designs of Biswas and Chaudhuri (2002) have the lowest probabilities of correct identification of
the underlying model. This difference can be substantial. For example, if 833 = 0.5 or B2 = 0.5
the probability of correct specification is about 166% or 33% larger for the discrimination design
in cubic or quadratic model, respectively. The two stage design of Montepiedra and Yeh (2002)
has a similar performance as the optimal discrimination and the optimal robust design but a
better rate of correct identification than the sequential design of Biswas and Chaudhuri (2002).
A comparison of the efficiencies in the identified model shows a loss of about 12 % for the design
of Biswas and Chaudhuri (2002) if the cubic model is "correct” and a loss of about 11 % for the
discrimination design if the quadratic model is "correct”. The efficiencies of the remaining three
designs do not differ essentially in both cases. From these results we recommend the optimal model
robust design &ronusy for statistical inference in the cubic model, because it presents a reasonable
compromise between the two different goals of model identification and precise estimation in the
identified model. Additionally, the corresponding F-tests keep the preassigned level in contrast
to the two stage procedure of Montepiedra and Yeh (2002), which is in this sense not reliable. If
model identification is considered as the more important goal, the optimal discrimination design
épisc could be used alternatively. This design yields slightly better rates of correct specification, a
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more efficient inference in the identified model if the cubic model is ”correct”, but a less efficient
inference in the identified model if the quadratic regression is the “correct” polynomial.

0.98 7

0.96 -

0.94

0.92

13 I (D) ———— Disc =~ T~ Robust

0.87 7

0.85 7

o83 {— — — ——  — -

0.81 7

0.79

Figure 3.6: Simulated D-efficiencies for sequential and non-sequential designs in the identified
polynomial regression model (3.1). The sequential design (D) of Biswas and Chaudhuri (2002)
is defined in (3.3), the two stage design (F) proposed by Montepiedra and Yeh (2002) is given in
(3.5). The optimal model robust design and optimal discrimination design are defined by (5.6)
and (3.4), respectively. Figure 3.6a (upper panel): cubic model is ”correct”; Figure 3.6b (lower
panel): quadratic model is "correct”.

3.2 Discrimination designs for Fourier regression models

In order to investigate if the results of the previous section are representative we investigate
a second example, for which the model robust, discrimination and D-optimal designs are also
known. The model under consideration is the quadratic trigonometric regression model

(3.7) 94(x) = @40 + a41 SIN T + a49 cOS T + ayg38in(22) + ayq cos(2x); x € [—7, 7]
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and the nested models are given by

(3.8) g3(x) = asp + az sinz + agy cosx + azs sin(2x)
(3.9 g2(x) = agp + ag Sin + agg cosx
(3.10) g1(z) = ap + ayp sinz.

The D-optimal designs can be found in Pukelsheim (1993) for the models g and g4 and are
obtained by similar methods for the models g; and g3. These designs have equal masses at the
points

mwT
(91) D)

2 2
(92) - gﬂ-aoagﬂ-
(g5) 3 1 1 3
g3 471', 47‘—7 471_7471—
(02) 4 2 02 4
g4 571', 57‘—7 ,571',571'.

The model robust designs corresponding to the criterion (2.1) have been found by Lau and Studden
(1985) and for the uniform prior an model robust design is given by

—2.4294 —1.2530 0 1.2530 2.4294
(3.11) ERobust = ( > .

0.1965 0.2252 0.1566 0.2252 0.1965

Optimal discrimination designs corresponding to the criterion (2.3) have been determined by Dette
and Haller (1998) and for the uniform prior an optimal discrimination design is given by

e 3 113
(3 12) 6 o T 5 577' 57T 577' Vi
. Disc 1 1 1 1 .
10 5 5

We did not include the two stage designs of Montepiedra and Yeh (2002) in our comparison for
two reasons. On the one hand it was shown in Section 3.1 that the F'-tests obtained from these
designs do not keep the preassigned levels, on the other hand the determination of the designs
for the second stage maximizing (2.10) is a non-trivial optimization problem, except in the case
of low order univariate polynomial models (this actually restricts the general application of this
method in practice). For the sequential method of Biswas and Chaudhuri (2002) we considered
two cases

(3.13)
(F2) me = 50, m; = 50

Figure 3.7a — 3.7c show the corresponding probabilities of correct specification if the model g4, g3
or g, is the underlying model. We observe again substantially larger probabilities of correct
identification for the non-sequential designs. For example, if the model g, is " correct”, aqy = 0.3 or
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Figure 3.7: Simulated probabilities of correct specification for sequential and non-sequential designs
in the trigonometric regression model (3.7). The sequential designs (F1) and (F2) of Biswas and
Chaudhuri (2002) are defined in (3.13), the optimal model robust design is given by (3.11) and
the optimal discrimination design is defined in (3.12). Figure 3.7a (upper upper panel): the model
(3.7) is “correct”; Figure 3.7b (middle panel): the model (3.8) model is "correct”; Figure 3.7c
(lower panel): the model (3.9) is "correct”.
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Figure 3.8: Simulated D-efficiencies for sequential and non-sequential designs in the identified
trigonometric regression model (3.7). The sequential designs (F1) and (F2) of Biswas and Chaud-
huri (2002) are defined in (3.13), the optimal model robust design is given by (3.11) and the
optimal discrimination design is defined in (3.12). Figure 3.8a (upper left panel): the model (3.7)
is "correct”; Figure 3.8b (right panel): the model (3.8) model is "correct”; Figure 3.8c (lower
panel): the model (3.9) is "correct”.
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0.5 the best non-sequential design yields a rate of correct specification, which is 70% or 27% larger
than the rate obtained from the best sequential design. It is interesting to note that this difference
is smaller (but still substantial) in the model g3 (38% if az3 = 0.3 or 11% if az3 = 0.5) and of
larger size in the model gy (155% if age = 0.3 or 64% if agy = 0.5). However, in all considered cases
the non-sequential designs performed substantially more reliable than the sequential procedure
of Biswas and Chaudhuri (2002) with respect to the criterion of correct model identification. A
comparison of the efficiencies for the four designs is presented in Figure 3.8a — 3.8c corresponding
to the cases where the model g4, g3 and g5 is the “correct” regression model, respectively. Here we
observe much smaller differences between the sequential and non-sequential designs. For example,
in the model g, the discrimination design {pis. defined in (3.12) is the best [because it is in fact also
D-optimal for the quadratic trigonometric regression, see Pukelsheim (1993)] but the sequential
designs are at most 6% less efficient [see Figure 3.8a]. In the model g3 the performance of the
different designs depends on the parameter azs but the efficiencies differ by at most 4% [see Figure
3.8b]. Similary, in the model g, the discrimination design &p;sc is again D-optimal, but the other
designs are at most 3.5% less efficient [see Figure 3.8¢]. In summary, our simulation results show
that for the trigonometric regression model the optimal discrimination and model robust (non-
sequential) designs have a substantially better performance than the sequential designs proposed
by Biswas and Chaudhuri (2002). The differences between the efficiencies are negligible, while the
non-sequential designs are substantially more reliable with respect to a correct identification of
the underlying model.

4 Conclusions

In this paper we presented a numerical comparison of different design strategies for two different
goals in regression models

e identification of an appropriate model
e cfficient estimation of the parameters in the identified model

Sequential and non-sequential design strategies are investigated in a polynomial and trigonometric
regression model. The two stage designs proposed by Montepiedra and Yeh (2002) provide reason-
able probabilities of correct identification of the underlying model and reasonable efficiencies for
the estimation of the parameters in the identified model. However, due to the dependencies of the
observations obtained from sequential sampling, the corresponding F-tests for the identification
of the model do not keep the preassigned level and the statistical properties of the estimator in
the underlying model are not clear in general. Additionally, the determination of the design for
the second step seems to be difficult, because it is equivalent to an optimal design problem in a
Bayesian linear regression model.

The sequential strategy proposed by Biswas and Chaudhuri (2002) yields to a sequence of (mod-
ified) F-tests which keep the preassigned level. Moreover, for large sample sizes the ”correct”
model is identified with high probability, the sequential design is close to the D-optimal design for
the ”correct” model and the estimates obtained from this design are consistent and asymptotically
normal. Although these properties are interesting from a theoretical (asymptotic) point of view,
our numerical results show that for finite sample sizes these designs cannot be recommended for
applications because of their low rate of correct identification of the underlying model. The two
stage designs of Montepiedra and Yeh (2002) and the non-sequential discrimination and model
robust designs of Dette (1990, 1994) yield substantially higher rates of correct identification of the
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underlying model and have (at least) comparable efficiencies for the estimation of the parameters
in the underlying “correct” model (in many cases they are even more efficient). The poor perfor-
mance of the sequential designs proposed by Biswas and Chaudhuri (2002) can be explained by
the fact that a modified version of the classical F-test is used in the identification steps. This mod-
ification is required to keep the preassigned level of the corresponding tests from the dependent
data, and usually causes a substantial loss of power. The non-sequential discrimination and model
robust designs yield better rates of identification of the “correct” model than the two stage designs
introduced by Montepiedra and Yeh (2002) and comparable efficiencies in the identified model.
Moreover the non-sequential designs yield a sequence of F-tests for the identification step, which
keep the preassigned levels and the calculation is usually simpler because it can be performed by
standard algorithms [see e.g. Lauter (1974) or Atkinson and Donev (1992)]. For these reasons
the application of optimal discrimination or optimal model robust designs is recommended for the
statistical inference in (nested) regression models.
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