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Abstract A workbench for knowledge acquisition and data analysis is pre-
sented and its use for the classification of business cycles is investigated. Induc-
tive Logic Programming (ILP) allows to model relations between intervals, e.g.
time or value intervals. Moreover, the user of the workbench is supported in
inspecting the learned rules, not only with respect to their coverage, accuracy,
and redundancy, but also regarding consistency (i.e., logical contradictions).
The application of ILP requires pre-processing in order to establish time and
value intervals. To this end, top-down induction of decision trees is used. This
paper describes the workbench MOBAL, its learning algorithm RDT, the pre-
processing of data, and the first encouraging results on business cycle data from
Germany.

1 Introduction

The observation of ups and downs of business activities has been observed
since a long time !. It is, however, hard to capture the phenomenon by a clear
definition. The National Bureau of Economic Research (NBER) defines business
cycles as “recurrent sequences of altering phases of expansion and contraction
in the levels of a large number of economic and financial time series.” This
definition points at the multi-variate nature of business cycles. It does not
specify many of the modeling decisions to be made. There is still room for a
variety of concepts.

e What are the indices that form a phase of the cycle? Production, em-
ployment, sales, personal income, and transfer payments are valuable in-
dicators for cyclic economic behavior. Are there others that should be
included?

e Which measurements of indices are to be taken? Where the classical busi-
ness cycle is expressed according to the level of indicators, the growth cycle
is measured with respect to the deviation from the trend of indicators.

e What is the appropriate number of phases in a cycle? The number of
phases in a cycle varies in economic models from two to nine. The NBER
model indicates two alternating phases. The transition from one phase
to the next is given by the turning points trough and peak. In the RWI
model, a cycle consists of a lower turning point, an upswing, an upper

! Amstad reports the first definition from Clement Juglar in 1860 [2]. She investigates
several models of the business cycle and discusses their distinctions with respect to dating
turning points of the business cycle.



turning point, and a downswing. Here, the turning points are phases that
cover several months.

e Are all cycles following the same underlying rules or has there been a
drift of the rules? What is the appropriate sample for classifying current
business data?

All modeling decisions are to be (comparatively) validated with respect
to economic theory and to business data. One approach to validation is the
formalization by macro-economic equations. A model of business cycles is cal-
culated ez post and the deviation of the results of the equations from the ob-
served values assesses the model. For instance, the business cycle model of the
Rheinisch-Westfalisches Institut fiir Wirtschaftsforschung (RWT) only deviated
1.2 per cent for the spring 2000 state of affairs in Germany [5]. The main focus
here lies on the prediction of level or growth of business activities. We do not
contribute to this approach. The other approach is an empirical one, in which
statistical methods are adjusted to business data and used for prognoses. Again,
the validity of statistical models is validated on past data. We are concerned
with the development and comparison of methods for the empirical modeling of
business cycles. Empirical methods are particularly demanded for the task of
dating turning points or phases of the business cycle. Our question is: Which
methods can support modeling and validating models of the business cycle?
More precisely: Can inductive logic programming support economists in dating
and predicting phases of the business cycle? We may re-formulate the questions
into two general problems.

Dating: Given current (and past) business measurements, in which phase is
the economy currently? In other words, the current measurements are to
be classified into the phases of a business cycle.

Prediction: Given current (and past) business measurements, what do we
expect next?

Linear discriminant analysis has been proposed as the baseline of empirical
models [?]. Univariate rules were learned that used threshhold values for sepa-
rating phases. The accuracy of the 18 learned rules was 54% in cross validation.
Using this result as the baseline means that the success of any other method
has to be shown in comparison to this accuracy. It has been investigated how
the classification can be enhanced by the use of monthly data [4]. More so-
phisticated statistical models have been developed and achieved 63% accuracy
[?]. However, even this substantial enhancement still reflects how hard it is to
classify business phases correctly.

The difficulty of the problem lies in its multi-variate nature, which follows
from the definition of business cycles. Moreover, the business cycle cannot be
observed directly and main factors of influence may well be hidden. Hence,
we may want to incorporate economic knowledge (theory) into business cycle
data analysis. In fact, the advanced Markov Switching model as it was used by
Sondhauss and Weihs expresses knowledge about the past phase and the tran-
sition probability to the next phase [?]. Also the approach which we describe



in this paper, exploits domain knowledge. Here, economic knowledge is used
to restrict the space of possible rules in order to exclude those that would not
make sense or are trivially true.

In this paper, we investigate the applicability of inductive logic programming
to the problem of dating phases of a business cycle. We were given quarterly
data for 13 indicators concerning the German business cycle from 1955 to 1994,
where each quarter had been classified as being a member of one of four phases
[3]. The indicators are:

IE real investment in equipment (growth rate)

C real private consumption (growth rate)

Y real gross national product (growth rate)

PC consumer price index (growth rate)

PYD real gross national product deflator (growth rate)
IC real investment in construction (growth rate)

LC unit labour cost (growth rate)

L wage and salary earners (growth rate)

Monl money supply M1
RLD  real long term interest rate

RS nominal short term interest rate
GD government deficit
X net exports

We experimented with different discretizations of the indicator values. The
discretization into ranges (levels) of values was also used in order to form time
intervals. A sequence of measurements within the same range is summarized
into a time interval. For instance, the money supply being high for quarters 8
to 18 is summarized by the fact mon1(il,high), where il corresponds to the
time intervall from 8 to 18. Hence, the time intervals differ from indicator to
indicator. Relations between the different time intervals express precedence or
domination of one indicator’s level to another ones level. We also compared the
two phase with the four phase business cycle. In summary, the following three
models were inspected:

e business cycle with four phases, without time intervals,
e business cycle with four phases, time intervals,
e business cycle with two phases, without time intervals.

Particular attention was directed towards the appropriate sample size for the
dating problem. The homogenity of the data set of business cycles with two
phases was investigated. The hypothesis being that at the end of cycle 3 (i.e.,
third quarter of 1971) the rules for dating phases could change.

2 Inductive Logic Programming

Inductive Logic Programming (ILP) establishes the intersection of logic pro-
gramming and machine learning. A logic program is learned from observations
by inductive reasoning. The logic program expresses a theory in the form of



facts and rules in a restricted first-order logic. The theory describes diverse
concepts together with the relations among them. This contrasts with proposi-
tional logic, where only one concepts and its sub-concepts can be modeled. A
simple example illustrates this.

Given the observations

mother (ann, brigid). | mother (alice, bonnie)
mother (brigid, cecilie). | mother (bonnie, christie)
old (ann). old (alice).
grandmother (ann, cecilie). | grandmother (alice, christie).

ILP may learn the rule

mother(X, Z), mother(Z,Y) — grandmother(X,Y)

Whereas a propositional learner cannot exploit the relations but can only
learn the heuristic:

old(X) — grandmother(X,Y)

A logic program is directly executable. The learned rules derive the conclu-
sion from new facts. For instance, the learned grandmother rule derives

grandmother(agatha, carol).

as soon as the facts are stated:

mother(agatha, beth). mother(beth, carol).

The expressive power of first-order logic proves especially successful in rela-
tions between intervals. Explicitly the starting and end point of an interval can
be stated together with the relations between intervals. For instance, direct
precedence can easily be expressed between time intervals, here between the
time intervals from T'1 to T2, from T2 to T3, and from T3 to T'4:

cooking(C,T1,T2), serving(S,T2,T3), eating(E,T3,T4) (direct precedence)

Similarly, inclusion and overlap of intervals is written.

cooking(C,T1,T4), serving(S,T2,T3),T1 <T2,T3 < T4 (inclusion)

cooking(C,T1,T3), serving(S,T2,T4),T1 <T2,T3 < T4 (overlap)

It has been shown that the time relations of Allen’s calculus [1] can be
expressed in the form of a logic program [12, 13].

Note, that the first-order logic rules are inherently multi-variate. Distinct
events can be expressed with their properties. For instance, the activities cook-
ing (C), serving (S), and eating (E) can be described independently from
another, naming the involved places (Y'1,Y2), persons X1 to X5, and their
properties (salary) and relations (mother, father).

cook (X1, O). guest (X3, E).
salary (X1, W1). | guest (X4, E).
kitchen Y1, Q). guest (X5, E).
recipe (Z, C). | mother (X3, X5).
waiter (X2, 9). father (X4, XB5).
salary (X2, W2).

diningRoom (Y2, S).

Of course, this representation can be compiled down to propositional logic, if
the number of objects is finite [9]. However, the ease of understanding is lost in
the compilation. The understandibility of first-order logic eases the formulation
of hypotheses that the learning algorithm should test on the data. We shall see,



how user-specified sets of hypotheses are represented and tested by the Rule
Discovery Tool.

A last advantage of ILP to be mentioned is the explicit statement of back-
ground knowledge, commonly in terms of facts. In the grandmother example,
the facts stating the grandmother role are the examples and the facts stating
the mother role are the background knowledge.

We may now state the task of concept learning within ILP formally.

Concept learning or learning classifications

Given positive and negative examples £ = ETUE™ in a representation language
Lg and background knowledge B in a representation language Lp,

find a hypothesis H in a representation language L3, which is a (restricted)
first-order logic, such that

(1) B,H,ET [~ O (consistency)
(2) B,H = &' (completeness of H)
(8) Ve~ € & : B,H [ e~ (accuracy of H)

2.1 MOBAL

MOBAL is a workbench which allows users to easily enter facts and rules,
detects inconsistencies in the knowledge base, and proposes minimal changes to
facts and rules in order to make it consistent [10]. In addition to the support
of users in building up a knowledge base, the rule discovery tool automatically
learns rules from facts and adds the learned rules to the knowledge base.

2.1.1 The Rule Discovery Tool RDT

For learning rules from facts, the Rule Discovery Tool RDT forms all possible
rules according to a user given hypothesis space [6]. The user specifies rule
schemata. A rule schema has predicate variables that can be instantiated by
predicates of the domain. An instantiated rule schema is a rule. Rule schemata
are partially ordered according to their generality. For our learning task of
dating business data according to the business cycle, we first used the following
rule schemata:

m1l (Indexl, Value, Phase):
Index1(T,V),Value(V) — Phase(T)

m2 (Indexl1,Value,Index2, Phase):
Index1(T,V),Value(V), Index2(T,V) — Phase(T)

m3 (Indexl1, Valuel,Index2,Value2,Phase):
Index1(T,V1),Valuel(V1), Index2(T,V?2),Value2(V2),opposite(V1,V2) —
Phase(T)



Here, m1 is more general than m1 and m2. The predicates that fit to instan-
tiate the predicate variable Index are the 13 indicators of the economy (see
above), e.g., le(Time, Value) for unit labour cost. The predicates that fit to
instantiate the predicate variable Value are low, medium, high and express the
discretization of the real values of the indicators. The phase variable can be
instantiated by down, ltp, up, utp for four phases or by down, up for two phases
of the business cycle. The opposite predicates is used to write which qualitative
value intervals are excluding each other. The background knowledge consists
of such facts:

opposite(low, medium).

opposite(high, medium,).

opposite(high, low).

Hence, the hypothesis space consists of all indicators or combinations of
two indicators that allow to predict the phase of the business cycle. Uni-variate
rules with just one indicator are excluded, because they are not considered to
be sensible. Where m2 states that two indicators have to have values within
the same range (e.g., both are low), m2 states that two indicators must have
opposite value ranges. The three rule schemata here enforce the selection of the
most informative indicators. By giving more complex rule schemata, the user
enables RDT to learn more complex rules. The rule schemata are the means
by which the set of interesting rules is specified.

RDT’s learning procedure consists of two steps: hypothesis generation and
testing. In a top-down, breadth-first manner, all possible instantiations of the
rule schemata are generated and tested according to an acceptance criterion on
the basis of all facts. For instance, the following rules which instantiate m1 and
were learned in one of our experiments:

mon1(T, V), medium(V') — up(T)

Ie(T, V), low(V) — up(T)

The following instantiation of m2 has been learned in another experiment:

ic(T, V), medium(V'), pe(T, V') = down(T)

A illustration for m3 is the following learned rule:

rs(T,V1),medium(V1),z(T,V2)low(V2) = down(T)

If a rule has enough support but too many non supporting examples, it is
considered too general. Later on, it becomes a partial instantiation of a more
specific rule schema if this exists. If a rule does not have enough support, it is
considered too specific. In this case, the rule need not be specialized further,
since this cannot increase the number of supporting examples. RDT safely
prunes the search in this case. RDT learns all valid rules that fit the rule
schemata. Hence, a rule which is not learned, definitely does not hold given the
facts.

2.1.2 Rule Inspection

For both, user given and learned rules, we might be interested in their coverage
of examples and in their redundancy. The coverage can be measured by the
percentage of the positive examples for a concept, that is covered by the rule.
For instance, if there are 58 time points classified as down, we are interested



in how many of them are covered by a certain rule predicting a downswing.
We are also interested in the number of examples that are covered by all the
rules together. The rule inspection of MOBAL indicates for each rule, how
many of the input fatcs (in our experiments, time points that are classified into
a certain phase of the business cycle) are correctly classified by the rule. For
a set of rules;, MOBAL indicates how many examples are covered by all the
rules, or, in other words, how many examples cannot be explained by the rules.
Redundancy of rule sets can be determined intensionally or extensionally. The
intensional redundancy refers to the logical models that form the semantics of
the rule set. The extensional redundancy of a rule set refers to the examples
that are covered by the rules: if the same examples are covered by several rules,
these rules are extensionally redundant [14]. Rules that are 100 % extensionally
redundant are not necessarily intensionally redundant. They might cover new
examples not yet seen which would not be explained by another rule. It is up to
the domain expert to assess which of the extensionally redundant rules should
be kept within the knowledge base.

2.1.3 Knowledge Revision

A set of rules can easily become contradictive. Most user-given rule sets first
show contradictions because the user is not aware of all implications of all
rules. Also learned rule sets can become contradictive. The most frequent
contradiction occurs when applying the rules learned from a set of data (i.e.
the training set) to another set of data (i.e. the test set): the predicted phase
differs from the one given by the expert. In general, the detection and revision of
inconsistencies is a hard problem. Due to the well-defined semantics of MOBAL
and its restrictions of first-order logic, the problem could be solved [15, 16]. The
system determines the facts and rules that are involved in the contradiction.
It calculates all minimal changes to the knowledge base that would make it
consistent again. The user chooses among the proposed changes and the system
revises the knowledge base accordingly. Hence, the user is supported in building
up a knowledge base about a domain by integrating rule sets, either learned or
input. In particular, the user may input domain (causal) knowledge and the
system watches that no learned rule contradicts the theoretical insight.

3 Experiments on German Business Cycle Data

Our leading question was whether ILP can support economists in developing
models for dating phases of the business cycle. Given the quartely data for
13 indicators concerning the German business cycles from 1955 to 1994 where
each quarter is classified as member of one of four phases, we used all but one
cycle for learning rules and tested the rules on the left-out cycle. The leave-one-
cycle-out test assesses the accuracy (how many of the predicted classifications of
quarters corresponded to the given classification) and the coverage (how many
of the quarters received a classification by the learned rules).

We now come back to the questions raised in the introduction. The learned
rules automatically select pairs of relevant indicators. Hence, all learning ex-



periments contribute to the question, which indicators actually influence the
classification into one phase of the business cycle. Since the data we have are
measuring the growth, the learning results refer to the growth cycle. However,
we experimented with automatically finding ranges or levels of values of the
indicators in order to base the learning results on a view of the business cycle
which favours the level of indicator values (see Section 3.1). In order to tackle
the question about the number of phases in business cycles, we have modeled
four phases (see Sections 3.2 and 3.3) and two phases (see Section 3.4). An
additional modeling decision needs to be made according to the handling of the
time aspect in the data. In two experiments (Section 3.2 and Section 3.4), we
just used the quarters as time points. No time intervals were formed. The rule
schemata are the ones shown in Section 2.1.1. Hence, the rules only classify
a quarter based on the measurements of this quarter. In a third experiment,
we formed time intervals for the indicators and learned rules between them
(Section 3.3).

3.1 Discretization

Before ILP can be applied, the originally real-valued time series of indicator
values have to be transferred into discrete-valued temporal facts about this in-
dicator. The goal of discretization is to provide the learning algorithm with data
from which it can generalize maximally. This means, the discretization must be
general enough such that rules learned from one situation can be transferred to
another situation but specific enough such that non-trivial rules can be found.
An example for a too specific discretization is to assign different values to every
observation, an example for a too general discretization is to assign the same
value to every observation. We use the number of generated facts to judge the
quality of a discretization.
Actually, the task of discretization consists of two different subtasks:

Discretization of Values: split the continuous range of possible values into
finitely many discrete values, e.g. by using equidistant thresholds or cal-
culating suitable quantiles. For example, a gross national product of 4.93
in the fifth quarter could be expressed as the fact y(5,4.93).

Interval segmentation: for a given time series, find a segmentation of the
time points into maximal sub-intervals, such that the values of the series in
this interval share a common pattern, e.g. by approximating the time se-
ries by piecewise constant or piecewise linear functions. For example, the
time series of gross national products Y = (10.53,10.10,9.21,5.17,4.93)
could be described as the temporal facts y(1,3, high),y(4,5, medium),
but can also be described as y(1, 5, decreasing).

Interval segmentation can be viewed as discretization of the temporal values,
therefore in this chapter we will use the name discretization as a generic term
for both discretization of values and interval segmentation.

These two subtasks are closely intertwined: Discretized data can be very
easily segmented by joining consecutive time points with identical discretization.



Y<1,67 ? Y<1,67 ?

Y<-0,24 Y<4,22 ? mulp Y <—0,24 Y<4,22?

utp Itp down vall val2 val3 val4

Figure 1: Decision tree and its induced discretization into vall ... val4.

Also, segmented data can be discretized by building a discretization based on
the patterns that lead to the segmentation. In this work, we chose the first
approach to discretize the data, first because it is simpler and secondly because
the indicators are already given free of trends (growth rates etc.), so it can
assumed the relevant information lies in the value of the indicator.

To improve the quality of the discretization, we can also use the information
that is given by the class of the examples [17]. In this case, we used C4.5 [11],
a decision tree learner, to induce decision trees about the cycle phase based on
only one indicator. The resulting trees were cut off at a given level and the
decisions in this resulting tree were used as discretization thresholds. Decision
trees of depth 2, i.e. using 4 discrete values, proved to build a suitable number
of facts.

A closer look at the resulting discretization showed that in certain cases,
the indicators had a very high variation, which lead to many intervalls that
contained only one time point. In this case, the relevant observation may not be
the value of the indicator, but the fact that this indicator was highly variating,
i.e. no definite value can be assigned to it. This can be expressed by a new
fact indicator(T1,T2,unsteady), which replaces the facts indicator(T1,T1 +
1,valuey),indicator(T1 + 1,T1 4 2,values), . . . ,indicator(T2 — 1, T2, valuey,).

3.2 Modeling Four Phases Without Time Intervals

The data correspond to six complete businss cycles, made of four phases each.
For the upper and lower turning point phases, no rule could be learned. Only
for the upswing, each learning run delivered rules. Here are some examples of
learned rules:
gd(T, V), pc(T,V),low(V) — up(T)
stating that a low government deficit and a low consumer price index determine
the phase as an upswing.
(T, V), (T, V), medium (V') — up(T)
stating that a medium private consumption and a medium number of wage and
salary earners classify a quarter as belonging to an upswing.
rld(T,V),monl(T,V),low(V) — down(T)
stating that a low long term interest rate and a low money supply can be used
to date a downswing.



rs(T,V),ic(T,V), medium (V) — down(T)
stating that a medium nominal short term interest rate together with a medium
investment in construction point at being in the downswing.

[llustrating the rule inspection, we show the result for the first rule, called
rl71 in the leave-fifth-cycle-out learning run. The difference between the total
number of facts about up(t) and the input occurences of up(t) is explained by
the forward inferences of the (learned) rules. They derive further facts not given
in the input.

*kkkkk Statistics on rule ri171 skkkkx
Number of rules with same conclusion -- up(t): 10

Coverage

Total:
Number of occurences of up(t): 77
Number of occurences covered by ri171: 43
r171s coverage of all occurences: 55.8442
Number of occurences covered by all rules: 59
Total coverage of all occurences: 76.6234

0f inputs:
Number of input occurences of up(t): 59

Number of inputs covered by ri71: 35
r171s coverage of inputs: 59.322 7

Number of inputs covered by all rules: 41
Total coverage of inputs: 69.4915
Redundancy

Total:
Number of occurences also covered by other rules: 28
r171s internal redundancy (redundant/covered): 65.1163

On inputs:
Number of inputs also covered by other rules: 27
r171s internal redundancy (redundant/covered) on inputs: 77.1429

3k %k 3k 5k >k 3k %k %k %k %k %k k

If no rule states that the classification is exclusive, then no contradiction will
be detected between the input fact utp(31) and up or utp(30) and down(30).
Hence, for testing, we entered rules of the form:

utp(t) — not(up(t))

Then, we also find a misclassification.

Contradictory instances covered by rule ri71:
auf (31) - [1000,1000]

In fact, time point 31 (corresponding to the second quarter of 1963) starts the
upswing and time point 30 (first quarter of 1963) finalizes the downswing. The

10



Cycle Accuracy | Coverage | No.of learned rules

LOO1 0.125 0.25 13 upswing

LOO2 0.5 1.0 12 upswing

LOO3 0.462 0.462 10 upswing, 2 downswing
LOO4 0.375 1.0 11 upswing

LOO5 0.696 0.696 10 uspwsing, 1 downswing
LOO6 1.0 0.36 1 upswing

Average | 0.526 0.628 total: 60

Figure 2: Results in the four phase model using time points

first two quarters of 1963 are classified as the lower turning point. Misclassifi-
cations at the turning points are strikingly more frequent than in other phases.

For the downswing, only two learning runs, namely leaving out cycle 3 and
leaving out cycle 5, delivered rules. Figure 3.2 shows the results.

The results miss even the baseline of 54% in the average. Leaving out the
fifth cycle (from 1974 until 1982) delivers the best result where both, accuracy
and coverage, happen to approach 70%. This might be due to its length (32
quarters), since also in the other experiment dealing with four phases the pre-
diction of upper turning point and upswing is best, when leaving out the fifth
cycle. Since the sixth cycle is even longer (45 quarters), we would expect best
results in LOOG6 which is true only for the accuracy this experiment. In the
other experiment with four phases, the accuracy is best for upswing in LOO6
and second best for it in LOOS5.

3.3 Modeling Four Phases With Time Intervals

Let us now see, whether time intervals can improve the learning results. We have
used the discretization of the indicator values for the construction of time inter-
vals. As long as the indicator value stays within the predefined level, the time
interval is continued. As soon as the indicator value exhibits a level change, the
current time interval is closed and the next one is started. We end up with facts
of the form Index(I,Range), and for each time point within the time interval
I a fact stating that this time point 7' (i.e. quarter) lies in the time interval:T
covers(I, T). The chosen relations between time intervals were iduring and
overlaps. The inverse of the regular during relation denotes a larger interval
I1 in which somewhere the interval I2 starts and ends. iduring(I1l, I2) is
true for each time point within the larger interval I1. overlaps(Il, I2) is
true for each time point of the interval Il which starts before 12 is starting.
More specific relations were not included in our model, because it is not very
likely that the starting point of one interval is identical to the end point of an-
other interval. The time intervals were calculation before the training started.
The rule schemata were defined such that they link two indicators with there
corresponding time intervals.

ml (Indexl, Valuel, Value2, Phase):
Index1(I1,V1),Valuel(V1),covers(I1,T),
Index2(12,V2), Value2(V2), covers(I12,T) — Phase(T)

11



Cycle Accuracy | Coverage | No. learned rules

LOO1 0.166 0.166 73 upswing, 1 downswing, 2 ltp
LOO2 - 0 103 upswing, 3 downswing, 2 ltp
LOO3 0.375 0.352 87 upswing, 2 downswing, 2 ltp, 2 utp
LOO4 0 0 59 upswing, 7 downswing, 4 ltp
LOO5 0.355 0.344 88 upswing, 3 downswing, 4 ltp
LOO6 0.486 0.354 6 upswing, 2 downswing

Average | 0.276 0.203 total: 450

Figure 3: Results in the four phase model using time intervals

m2 (Indexl, Valuel,Index2,Value2,Rel, Phase):
Index1(T,V1),Valuel(V1),covers(I1,T),
Index2(T,V2),Value2(V2), Rel(12,11) — Phase(T')

m1 substantially not differs from m3 in the preceeding model (time point
model). It finds two indicators which determine the phase on the basis of a
quarter which is shared by both time intervals.

m?2 is more special in that it requires the time intervals of the two indicators
to either overlap or include each other. Instantiations of m2 express rules where
the behavior of one indicator must preceed or embrace the other indicator’s
behavior. These more specific rule schemata were intended to find rules for
the turning phases, where no rules were learned in the previous experiment. In
fact, rules for the upper turning point, upswing, and downswing were learned,
but no rules could be learned for the upper turning point.

This rule states, that a period with high consumer price index growth, that
is overlapped by a period of high growth rate in the private consumption, is
indicatice of an upswing;:

pe(I1,V 1), high(V'1), covers(I1,T),

c(12,V2), high(V 2), overlaps(12,11) — up(T)

The next rule states, that a downswing happens, if during a period with medium
growth in the number of wage and salary earners, the short term interest rate
is high:

I(I1,V1), medium(V'1), covers(I1,T),

rs(12,V2), high(V2),iduring(12,11) — down(T)

Another intention behind the time interval modeling was to increase the
accuracy of the learned rules. Indeed, rules for the upper turning point could
be learned with the average accuracy of 75% in the leave-one-cycle-out runs.
However, the accuracy for upswing decreased to 34% in the average. Hence,
overall the time interval model did not enhance the results of the time point
model in as much as we expected (see Table 3.3).

3.4 Modeling Two Phases

In our third experiment we mapped all time points classified as upper turning
point to upswing and all quarters of a year classified as lower turning point to
downswing. We then applied the rule schemata of the first experiment. An
example of the learned rules is:

12



Cycle Accuracy | Coverage | No. learned rules
LOO1 0,8125 0,795 9 up, 69 down

LOO2 0,588 1,0 17 aup, 35 down
LOO3 0,823 0,571 2 up, 15 down

LOO4 0,8 0,35 6 up, 8 down

LOO5 0,869 0,8 10 up, 39 down
LOO6 1,0 0,701 6 up, 41 down
Average | 0,815 0,703 total 50 up, 207 down

Figure 4: Results in the two phase model using time points

ie(T,V1),low(V1),e(T,V2),high(V2) — down(T)
stating that a low investment into equipment together with high private con-
sumption indicates a downswing.

Again, leaving out the fifth or the sixth cycle gives the best results in the
leave-one-cycle-out test. Accuracy and coverage are quite well balanced (see
Table 3.4).

These learning results are promising. They support the hypothesis that a
two phase model is of advantage for the dating task. Concerning the selection of
indicators, the learning results show that all indicators contribute to the dating
of the phase. However, the short term interest rate does not occur in three of the
rule sets. Consumption (both the real value and the index), net exports, money
supply, government deficit, and long term interest rate are missing in at least
one of the learned rule sets. For the last four cycles, i.e. leaving out cycle 1 or
cycle 2, some indicators predict the upswing without further conditions: high or
medium number of salary earners (/), high or mediuminvestment in equipment
(ie), high or medium investment in construction (ic), medium consumption (c),
and the real gross national product (y). It is interesting to note, that a medium
or high real gross national product alone classifies data into the upswing phase
only when leaving out cycle 1,2, or 4. Since RDT performs a complete search,
we can conclude, that in the data of cycle 1 to cycle 4, the gross national product
alone does not determine the upswing phase. Further indicators are necessary
there, namely money supply (monl) or comsumer price index (pc).

3.5 Concept shift

Starting from the two-phase model, we analysed the homogenity of the business
cycle data. We want to know whether there are rules that are learned in all
training sets, or, at least, whether there are rules that are more frequently
learned than others. There is no rule which was learned in all training sets.
Eight rules were learned from three training sets. There is one rule, which was
learned in four training sets, namely leaving out cycle 1, cycle 4, cycle 5, or
cycle 6:

rld(T, V), (T, V), low(V) — down(T)

We now turn around the question and ask: which training sets share rules?
Eighteen rules were shared in the training sets leaving out cycle 5 and leaving
out cycle 6. Four of the rules predict an upswing, fourteen rules predict a
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downswing. This means, that cycles 1 to 4 have the most rules in common.
The data from the last quarter of 1958 until the third quarter of 1974 are more
homogenious than all the data from 1958 until 1994. When leaving out cycle 1
or cycle 2, eleven rules occur in both learning results. This means, that cycles
3 to 6 have second most rules in common. The data from the second quarter
of 1967 until the end of 1994 are more homogenious than all data together.
This raises the question of the sample size for the dating problem [5]:page 16.
Klinkenberg has investigated methods for handling concept drift by adaptively
selecting the sample size for prediction and classification [7, 8]. Concept drift
means that a concept changes over time. Concept shift is more specific and
means that a concept changes at a certain point in time. Here, we investigate
whether a concept shift has occured in business cycles.

We perform the same learning task on two disjoint data sets. We split
the overall data set into two parts, cycles 1 to 3 and cycles 4 to 6. We apply
training and leave-one-cycle-out testing to each part. The we check whether the
increased accuracy is due to the smaller size or actually given by the homogenity
of the data sets by putting together cycles from the two parts and see whether
this also increases accuracy.

4 Conclusion and Further Work

Coming back to the questions asked in the introduction, our research has de-
livered some answers and some new questions. Let us start with the answers.

e ILP offers opportunities for the analysis of business cycle data. It is easy
to interpret the results and the learned rules can be inspected with respect
to redundancy and contradictions. The multi-variate nature of ILP and
the automatic selection of most relevant indicators fits the needs of dating
problem. However, numerical processes are not captured by ILP but a
discretization must preceed ILP processing.

e Although some indicators are more dominant than others, no subset of the
given indicators could be formed. All the thirteen indicators contribute
to the dating of the phase.

e The two-phase model of the business cycle clearly outperformed the four-
phase model. Where the best average accuracy in the four-phase model
was 0,53%, the average accuracy of the two-phase model was 0,82%.

e There is a (?777no) clear concept shift between cycle 3 and cycle 4 (around
mid of 1971).

Indicators: what are the indices that form a phase of the cycle? more than
two indicators in rule schema — not yet done

Which measurements of indices are to be taken? growth versus classical
level cycle verschiedene Konjunkturmodelle hat [2] mit HMM untersucht.

discretization according to piecewise linear regression? — not yet tried, lack
of interpretation
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Background knowledge: Can ILP support economists in analysing cycles?
causal knowledge (for knowledge revision etc. in MOBAL) needs be elicited
from experts — not yet done

Influence of particular events can be inspected in ILP — not yet done

What is the appropriate number of phases in a cycle? Two phase partition:
better partition into two phases according to the errors — not yet done

Concept drift vs. concept shift: concept drift or concept shift: drift cycle 3
and cycle 4 (1967,25 - 1974,50) or shift at end of 3, begin of 4 (1971,5) — further
investigation needed (drift)
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