
Application of Hidden Markov

Models for the Identification

of Short Protein Repeats

Friedhelm Bongardt1, Ingrid Vetter2, Wolfgang Urfer1

1 Fachbereich Statistik, Universität Dortmund, 44221 Dortmund, Germany

2 Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany

Abstract

In this paper, hidden Markov models (HMMs) are discussed in the context
of molecular biological sequence analysis. The statistics relevant in the HMM
approach are described in detail. An HMM based method is used to analyze two
proteins that contain short protein repeats (SPRs). As a benchmark, a state-of-
the-art program for the detection of SPRs is also used for both proteins. Finally,
an outlook for combination possibilities of HMMs with phylogenetic approaches
is given.
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1 Introduction

Molecular biologists have to deal with a rapidly increasing amount of data, as new

methods facilitate the decipherment of biological sequences. Along with the new data,

exact statistical methods must be considered which effectively differentiate between

significant relationships and random similarities in the sequences. Suitable models

must be biologically meaningful, i. e. they must account for the evolutionary origin of

the data and correctly rate mutational events. In the previous years, profile hidden

Markov models were proven to be useful tools in this field.

In Section 2, profile hidden Markov models are introduced. The features of an

HMM architecture specific to biological needs are shown. The statistical background

of HMMs, the major problems to deal with and annotations helpful in the practical

application of HMMs are given. In Section 3, two proteins are analyzed. They both

contain short repetitive units and therefore pose slightly different demands than most

other sequences on analysis tools. An HMM based approach is compared to a method
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specialized in the analysis of short protein repeats. Section 4 gives a short outlook on

promising approaches using HMMs.

2 Profile hidden Markov models

In the field of molecular biology, profile methods are excessively used for the classifica-

tion of proteins into protein families. A profile is a model that defines position-specific

residue scores and insertion or deletion penalties (Eddy, 1996). A major drawback of

these models is the lack of a probabilistic basis. The theory of (profile) hidden Markov

models forms an extension to profiles that approaches the problems of protein analy-

sis in a statistically consistent way. HMMs were originally used in speech recognition

applications. Therefore, most literature on HMMs is dedicated to this field. An out-

standing tutorial on HMMs is given in Rabiner (1989). Krogh et al. (1994) describe

the theory specialized on biological needs.

2.1 HMM architecture

The theory of hidden Markov models was first described by Baum & Petrie (1966).

A hidden Markov model combines two stochastic processes. One of these produces

no observable output and therefore inferences about it are only possible on the basis

of its influence on the second process. Formally, the situation can be described with

a sequence of hidden states Q = {Qn :n = 0, . . . , N + 1} and an emission sequence

X = {Xl : l = 1, . . . , L}. The emission probability distribution PX|Q is given by a ma-

trix P with

P =
(
P(X = x|Q = q)

)
x ∈ Σ, q ∈ Π

,

with X ∈ {X1, . . . , XL} and Q ∈ {Q0, . . . , QN+1}.
(1)

The realizations x1, . . . , xn from the random variables X1, . . . , XL come from a discrete

alphabet Σ, where |Σ| = 20 for proteins (the 20 amino acids). The realizations q from

the discrete random variables Q0, . . . , QN+1 come from a set Π of hidden states. The

states are specified later for the HMM in Figure 1.

The state sequence Q is characterized by the Markov property. A stochastic process

possesses the Markov property, if the outcome of the random variable at one position
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Figure 1: An HMM architecture for biological sequences. The model length is M = 3.

The figure is taken from Krogh et al. (1994).

only depends on the outcome at the previous position. For Q this means

P(Qn = qn|Qn−1 = qn−1, . . . , Q0 = q0) = P(Qn = qn|Qn−1 = qn−1), (2)

for every n ∈ {1, . . . , N + 1}. A stochastic process satisfying equation (2) is called a

Markov process (of order 1). Moreover, an initial probability P(Q0 = r) must be spec-

ified for every state r, because it is the first state of the process and thus depends on

no previous states. The basic properties of an HMM as outlined above have given the

model its name: a hidden Markov model consists of a sequence of hidden states pro-

duced by a Markov process. Note that the transition probabilities P(Qn = r|Qn−1 = q)

for any two states q and r do not depend on the index n, i. e. the Markov process is

stationary or homogeneous. The probability distribution PQn|Qn−1 for Q is given as

T =
(
P(Qn = r|Qn−1 = q)

)
q ∈ Π, r ∈ Π

, ∀n ∈ {0, . . . , N + 1}, (3)

where P(Q0 = r|Q−1 = q) := P(Q0 = r), thus including the initial distribution.

A transition from one state q to another state r is called admissible when the

transition probability P(Qn = r|Qn−1 = q) is non-zero, and else nonadmissible. An

HMM is determined by the emission probabilities P(X = x|Q = q) in equation (1) and

the transition probabilities P(Qn = qn|Qn−1 = qn−1) in equation (2).

Figure 1 shows an architecture typical of HMMs for biological sequence analy-

sis. The states are differentiated into three kinds, namely match or model states,

insert states and delete states. They are drawn as boxes, diamonds and circles,
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respectively. The number of match states (without the first and last match state

which are only dummy states) is called the length M of the HMM and needs to

be fixed a priori. Admissible transitions are displayed by an arc between the cor-

responding states in the figure. Using this architecture, the set of hidden states is

Π = {m0, . . . , mM+1, i0, . . . , iM , d1, . . . , dM}.
The main line of the HMM can be interpreted as an abstraction of an ancestral

protein, where the actual residues are substituted by a probability distribution over

the residues in Σ to account for point mutations. It consists of the model or match

states m0, . . . , mM+1 of the HMM. While m0 and mM+1 only act as dummy begin and

end states without output, every state mk, with k ∈ {1, . . . , M}, produces one of the

20 amino acids according to P(X = x|Q = mk) of equation (1), so every match state

mk, k ∈ {1, . . . , M}, is modeled separately and has its own probability distribution

over Σ.

Apart from the main line there are states representing deletion and insertion

events. Every insert state ik, k ∈ {1, . . . , M}, emits a residue x with proba-

bility P(X = x|Q = ik) analogous to the distributions over the match states for

X ∈ {X1, . . . , XL} and Q ∈ {Q0, . . . , QN+1}. Again, every state has its individual

probability distribution over Σ. Unlike the match and insert states, the delete states

dk, k ∈ {1, . . . , M}, are silent states, i. e. they do not emit any residue as output. Ob-

viously, the length M of an HMM specifies the number of non-silent match states of

the HMM. All in all, the HMM consists of 3M + 3 states.

The arrows in Figure 1 indicate the admissible transitions between the states of

the HMM. The silent match states m0 and mM+1 play a special role in the modeling

process as dummy ’begin’ and ’end’ states. The initial probability is fixed to

P(Q0 = m0) = 1, P(Q0 = q) = 0 ∀ q ∈ Π \ {m0}. (4)

In that way, m0 is predetermined as the starting point for every path q through the

HMM, where a path q denotes a realization of the stochastic process Q generating the

output sequence X. The state mM+1 is the only state for which holds

P(Qn = q|Qn−1 = mM+1) = 0 ∀ q ∈ Π, (5)

so mM+1 is the terminal state of every path.
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Each state mk, ik and dk in Π with k ≤ M−1 can take three transitions with positive

probability. These transitions lead to the match state mk+1, the delete state dk+1 and

to the insert state ik. The states mM , iM and dM make an exception in that they

only have a transition to iM and a transition to mM+1 because no state dM+1 exists.

Thus, a transition from a state to the next match state, to the next deletion state or to

the insertion state with the same index are modeled in this HMM architecture. This

implies the possibility of a self-loop from an insert state. With this method, insertions

of any length can be modeled without disturbance of the remaining sequence.

2.2 The three basic problems of an HMM

There are three major tasks that must be solved in an HMM approach. The first one

is to determine the probability P(X = x|λ) of a given sequence x = (x1, . . . , xL) of

amino acids under model λ = (P, T ). Secondly, one has to find the ’optimal’ state

sequence when a model λ and a residue sequence x = (x1, . . . , xL) are given. This also

demands an optimality criterion. The third problem is the question how to adjust the

model parameters of λ = (P, T ) so that they maximize the likelihood P(X = x|λ).

2.2.1 The evaluation problem

The calculation of the probability of P(X = x|λ) is also called the evaluation problem.

For a fixed length M , model λ = (P, T ) is fully specified when all transition probabili-

ties P(X = x|Q = q) and all emission probabilities P(Qn = r|Qn−1 = q) are known for

all q, r ∈ Π. A sequence of L residues is generated by a path of states q0, . . . , qN+1 with

q0 = m0 and qN+1 = mM+1 as begin and end state. Obviously, N is larger or equal to

L, as no residues arise in delete states.

For a given path q = (q0, . . . , qN+1), a new variable l(n) is introduced with l(0) = 0

and l(n) = l(n − 1) + 1 for all insert and match states qn (including mM+1) and

l(n) = l(n−1) for all delete states qn in path q, (n ∈ {1, . . . , N +1}). This results in a

counter l(n) which, denotes the index l in the output sequence x1, . . . , xL of the residue

xl produced in state qn for match and insert states qn. For delete states qn, l(n) means

the index of the last observed residue before entering state qn. If l(n) = 0, no residue

is already emitted, i. e. the path up to qn consists of silent states only. Obviously, it

holds l(n) ∈ {0, . . . , L + 1} and n ∈ {0, . . . , N + 1}.
Using this notation, one can formulate the joint probability of the sequence x =

(x1, . . . , xL) and path q = q0, . . . , qN+1 given model λ as
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P(X = x,Q = q|λ) = P(X1 = x1, . . . , Xl(N+1) = xl(N+1),

Q0 = q0, . . . , QN+1 = qN+1|λ)

Markov
property

=
N+1∏
n=0

P(Qn = qn|Qn−1 = qn−1)P(Xl(n) = xl(n)|Qn = qn),

(6)

where P(Xl(n) = xl(n)|Qn = qn) = 1 by definition if qn is a silent state. To get the

probability of a certain output sequence x one has to sum over every possible path q

that produces that sequence:

P(X = x|λ) =
∑

path q

P(X = x,Q = q|λ). (7)

Although equation (7) gives the probability of the output sequence x, the summa-

tion over every possible path needs too many calculations. A more efficient way to

get the result is the forward algorithm, which is described in Rabiner [1989].This is a

dynamic programming procedure, which uses the probabilities

αl(n)(q) = P(X1 = x1, . . . , Xl(n) = xl(n), Qn = q|λ) (8)

of the partial sequence up to residue xl(n), assuming that xl(n) is generated in state q

(or immediately before if q is a delete state), given the model. Modifying Rabiner’s

calculations for the situation of profile HMMs leads to the following expressions.

1. Initialization

α0(m0) = 1, αl(n)(m0) = 0 ∀ l(n) ∈ {1, . . . , L},
α0(mk) = 0 ∀ k ∈ {1, . . . , M}, α0(ik) = 0 ∀ k ∈ {0, . . . , M}.

2. Recursion

αl(n)(mk) = P(Xl(n) = xl(n)|Qn = mk, λ)
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∗
∑
qk−1

P(Qn = mk|Qn−1 = qk−1, λ)αl(n−1)(qk−1)

∀ l(n) ∈ {1, . . . , L},∀ k ∈ {1, . . . , M},
qk−1 ∈ {mk−1, ik−1, dk−1} ∩ Π,

αl(n)(ik) = P(Xl(n) = xl(n)|Qn = ik, λ)
∑
qk

P(Qn = ik|Qn−1 = qk, λ)αl(n−1)(qk)

∀ l(n) ∈ {1, . . . , L},∀ k ∈ {1, . . . , M},
qk ∈ {mk, ik, dk} ∩ Π,

αl(n)(dk) =
∑
qk−1

P(Qn = dk|Qn−1 = qk−1, λ)αl(n)(qk−1)

∀ l(n) ∈ {0, . . . , L},∀ k ∈ {1, . . . , M},
qk−1 ∈ {mk−1, ik−1, dk−1} ∩ Π.

3. Termination

αl(N+1)(mM+1) = αL+1(mM+1)

=
∑
qM∈

{mM ,iM ,dM}

P(QN+1 = mM+1|Qn = qM , λ)αL(qM)

= P(X = x|λ).

The recursion terms αl(n)(qn) consist of the product of the probability of observing

residue xl(n) in state qn (which is defined as one for a delete state as in equation (6)

and can therefore be omitted), the probability of getting from any state qn−1 to qn

and the probability to arrive at the state qn−1 before the emission of xl(n), given model

λ. The termination step yields the probability of getting to the end state mM+1 after

observing the residues x1, . . . , xL under model λ.

2.2.2 Finding the ’optimal’ state sequence

The second task is to find the path through the model which best explains a given

output sequence x = (x1, . . . , xL) under model λ. Unfortunately, there is no always

valid criterion to confirm which path is ’best’. Usually, one tries to find the single

best state sequence, the path q = (q1, . . . , qN) that maximizes P(Q = q|X = x, λ).

Equivalently, the probability P(Q = q,X = x|λ) can be maximized, for the two terms
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only differ by a factor of P(X = x|λ), which is a constant for a given model λ, if the

sequence x is known. Different criteria can be useful in other contexts.

The problem of getting the most probable path is very similar to the evaluation

problem cited in Subsection 2.2.1 and it exists an analogous dynamic programming

algorithm which solves this task. The summations are replaced by maximization, so

the variable δl(n)(q) defines the value

δl(n)(q) = max
q0,...,qn−1

{P(Q0 = q0, . . . , Qn−1 = qn−1, X1 = x1, . . . , Xl(n) = xl(n)|λ)}. (9)

A second difference is the need of a backtracking variable ψl(n)(q), because not the

probability of a path but the path itself is searched. The corresponding algorithm

is provided in Viterbi (1967) and also named Viterbi algorithm after the author. In

Bongardt (2001), the computations modified for the current situation are given.

2.2.3 Estimation of the HMM parameters

The estimation of the transition probabilities and amino acid distributions is the most

difficult problem of the three mentioned above. No analytical solution to the problem

is known, such that the probability P(X = x|λ) of the residue sequence x is maximized

with respect to model λ. One approach is an iterative procedure called the Baum-

Welch algorithm which finds local optima without any prior knowledge (although prior

knowledge can be used to get better results). Although it only obtains local optima,

there are methods to increase performance (see Section 2.3).

The Baum-Welch algorithm needs the forward variables αl(n)(q) that have already

been introduced in Section 2.2.1. For the parameter estimation a second set of variables

βl(n)(q) is defined which computes the probability of observing the residues of sequence

x from position xl(n+1) till the end, given that the underlying path Q is in state q and

given model λ. Formally, the β’s satisfy the equation

βl(n)(q) = P(Xl(n+1) = xl(n+1), . . . , XL = xL|Qn = q, λ), ∀ q ∈ Π, l(n) ∈ {0, . . . , L}.
(10)

Consequently, the values are called backward variables. They are defined by:

1. Initialization

βl(n+1)(mM+1) = βL+1(mM+1) = 1,

βL+1(q) = 0 q ∈ Π \ {mM+1}.
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2. Recursion

βl(n)(qk) = P(Xl(n+1) = xl(n+1)|Qn+1 = mk+1)P(Qn+1 = mk+1|Qn = qk)βl(n+1)(mk+1)

+ P(Xl+1 = xl+1|Qn+1 = ik)P(Qn+1 = ik|Qn = qk)βl(n+1)(ik)

+ P(Qn+1 = dk+1|Qn = qk)βl(n)(dk+1),

qk ∈ {mk, ik, dk} ∩ Π, ∀ l(n) ∈ {0, . . . , N}.

3. Termination

β0(m0) = P(X = x|λ).

With the aid of the forward variables αl(n)(q) and the backward variables βl(n)(q),

it is possible to obtain estimations P̂ and T̂ for the emission probability matrix P
and the transition probability matrix T . Details are given in Rabiner (1989) and in

Bongardt (2001).

The complete set of probabilities results in the estimation matrix T̂ . The following

Baum-Welch algorithm is an iterative procedure to obtain locally optimal estimates T̂
and P̂ .

The Baum-Welch algorithm

1. Create an initial model λ(0) = (P̂(0), T̂ (0)) by assigning values to the transition

probabilities in T and the emission probabilities in P for each residue x ∈ Σ and

each state q ∈ Π. The current model λ(t) = (P̂(t), T̂ (t)) is set to the initial model

λ(0).

2. Calculate new estimates P̂(t+1) and T̂ (t+1) of P and T . Therefore, the estimates

for T and P have to be calculated for each residue x and all states q of the HMM

using the old estimates P̂(t) and T̂ (t) for the emission and transition probabilities

P and T .

3. Replace (P̂(t), T̂ (t)) by (P̂(t+1), T̂ (t+1)) in the current model.

4. Repeat steps 2 and 3 until a previously determined convergence criterion is ful-

filled. For example, the procedure can be iterated a fixed number of times

(e. g. ten times), or until the model parameters only change insignificantly (Krogh

et al., 1994).
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The Baum-Welch algorithm can be interpreted as a variant of the expectation-

maximization algorithm (EM algorithm), which is widely used in statistical applica-

tions (Selinski et al., 2001). The EM algorithm is a procedure for maximum likelihood

estimation with missing data. In profile HMMs the missing data are the unobservable

state paths that generate biological sequences.

2.3 Modifications and enhancements

Section 2.2 gives an introduction to the theory of hidden Markov models in the context

of biological sequence analysis. For a more complex consideration of HMMs in biology

some problems need to be addressed, e. g. the evasion of numerical problems or the

avoidance of bad local maxima. This sort of problems is addressed in this section.

An HMM of fixed length and given model architecture is fully specified when all

emission and transition probabilities are given, i. e. when T and P are known. The

Baum-Welch algorithm as introduced in Subsection 2.2.3 searches the model λ = (P, T )

that maximizes the likelihood P(X = x|λ) of the sequence x = (x1, . . . , xn). Con-

sequently, this variant of Baum-Welch is also called the maximum likelihood (ML)

approach.

However, in most cases the Baum-Welch algorithm is used in a somewhat altered

version, a Bayesian approach called maximum a posteriori (MAP). The idea behind

the MAP approach is that the real value of interest is the probability P(λ|X = x) of a

model given the observed sequence which shall be maximized. With Bayes’ rule, this

probability can be obtained with the expression

P(λ|X = x) =
P(X = x|λ) · P(λ)

P(X = x)
. (11)

The denominator P(X = x) is just a normalizing constant and can therefore be ignored

in a maximization problem. The term to be optimized then reduces to

P(X = x|λ) · P(λ). (12)

The MAP approach is basically similar to the ML approach. The only difference is the

incorporation of an a priori probability P(λ) that must be obtained by prior knowledge

about the data. Assuming an appropriate prior over the space of all models helps pun-

ishing models that are known to be bad and rewarding good models. The procedure
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to estimate the model parameters is the same as outlined in Subsection 2.2.3, except

that in step 3 the new estimators T̂ (t+1) and P̂(t+1) are modified with the prior prob-

ability of the model. Often used priors for model estimation are simple pseudocounts,

where a constant is added to all observed counts, or Dirichlet distributions (For more

information see Durbin et al. (1998)). Especially for small datasets using priors can

be helpful to prevent over-fitting of the model to the training data.

All calculations considered so far are based on one sequence x only. Usually, a set of

training sequences x1, . . . ,xm is given, from which a model shall be estimated. In that

case, the above likelihood of a single sequence is substituted with the joint likelihood

of the training sequences. For the sake of computation, the sequences are commonly

assumed to be independent of each other. Then the probability of x1, . . . ,xm is simply

the product of the joint probabilities of the single sequences:

P(X1 = x1, . . . ,Xm = xm|λ) =
m∏

j=1

P(Xj = xj|λ). (13)

To maximize this quantity, small changes in the estimation of P and T are necessary,

namely the sequences have to be weighted according to their probability under the

current model λ. For a more detailed description see Bongardt (2001).

An important assumption of hidden Markov models is the independence of the se-

quences. Obviously, this does not hold in reality, because all biological sequences have

developed in an evolutionary process from a single ancestor and are therefore phylo-

genetically related to each other (Durbin et al., 1998). This is made worse by biases

in sampling, as not all proteins are of the same interest for researchers. Thus, some

precautions must be taken to account for the violation of the independence assumption.

Normally, such over-fitting is circumvented by down-weighting related sequences in the

training set or by eliminating sequences from the set by hand (Durbin et al., 1998).

One problem of the variables defined by now is that they tend to get very small when

the sequences are long. For instance, the probability of the most probable path, which

is given by the Viterbi variable δl(n+1)(mM+1), is a product of about 2L terms lesser

than one, namely the emission and transition probabilities at each position. If even

whole databases of proteins are analyzed, computers run into numerical problems. This

can lead to an underflow error in the course of a program. The errors can be escaped

by working in log-space or by scaling of the variables (Durbin et al., 1998).
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The MAP approach shows one possibility to use prior information in the estimation

process. Another way is to use prior knowledge in the choice of a starting model λ(0)

in the Baum-Welch algorithm. The algorithm is guaranteed to find a local optimum,

but there is no way of knowing how near it is to the global optimum. Finding a good

starting point is known to be a powerful heuristic.

Even when no information is available before, there are ways to avoid bad local

maxima. The simplest possibility is starting the procedure many times from different

random models and keeping the best scoring one, i. e. the one with the highest likeli-

hood. Another approach is to bump the Baum-Welch algorithm of minor local optima

by adding noise to the model before each re-estimation step and decreasing the noise

gradually to zero. The idea to use a stochastic process for the evasion of local extrema

is burrowed from physics, where it is used in a procedure called simulated annealing. It

is common to combine both methods, so that several runs of the Baum-Welch algorithm

with simulated annealing are performed and the best scoring model is kept.

The length M of an HMM must be chosen a priori. This is normally done using

biological knowledge of the sequences or by taking the average number of residues per

sequence. However, sometimes better models can be found by changing the model

length. With a heuristic procedure called model surgery, match states can be added

to or removed from an HMM. After Baum-Welch training, the path of the training

sequences are analyzed. If more than a predefined fraction γdel of the sequences uses

the delete state dk, position k is removed from the model. On the other hand, if more

than a fraction γins makes use of the insert state ik, position k is split into a number

of new positions according to the average number of insertions made there.

The HMM architecture of Figure 1 is only capable of modeling whole proteins. To

deal with protein subunits (domains), the architecture must be modified as in Figure

2. Central to the new model is the old model from Figure 1 being responsible for the

domain itself. The surrounding regions of the main model consist of new dummy begin

and end states B and E of the whole protein. Before and after the main model, new

insert states IB and IE take care of the regions outside the domain. The new transitions

are usually specified with only one new parameter p. The transition probabilities are

then given as p for B to IB, from IB to IB, from mM+1 to IE and from IE to IE, and

as 1 − p for B to m0, from IB to m0, from mM+1 to E and from IE to E. The usage

of the same parameter p before and after the main model inhibits biases to put the

domain towards the beginning or the end of the protein. Figure 2 also incorporates the
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Figure 2: An HMM architecture for modeling multiple domains.

possibility to model several domains in a protein. This is enabled through transitions

from state mM+1 to a new state IC , a self-loop over IC and from IC to m0.

New technologies increase the speed of biosequence decipherment so that huge

amounts of data are available. Therefore, reliable methods are needed which discrim-

inate between related proteins and random matches in database searches in a statis-

tically meaningful way. Using the scores mentioned in the sections above, expectation

values (E-values) can be calculated for a sequence with respect to a protein family.

The E-value of a sequence x then specifies the number of sequences in the database

that yield a score at least as good as x expected per chance alone for the family of

interest. Therefore, a low E-value suggests that the resemblance between sequence x

and the protein family is not based purely on chance but results from a biological re-

lationship instead. The statistics involved in the calculation of the E-value rely on the

extreme value distribution (EVD) and can be looked up in Dembo et al.(1994a) and

Dembo et al.(1994b) for ungapped comparisons. Altschul & Gish (1996) performed

computational experiments which suggested that the theory remains valid for gapped

comparisons.
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3 Results

In this paper, the HMM-based program HMMER 2 (Eddy, 2001) was used to analyze

two proteins, namely the human variant of the importin β-1 subunit and the subunit

A of the human variant of serine/threonine protein phosphatase 2A in the α isoform.

Their entry names in the protein database SWISS-PROT are used here, which are

IMB1 HUMAN for the importin β and 2AAA HUMAN for the protein phosphatase.

As a benchmark for the performance of HMMER 2, a second program REP (Andrade

et al., 2000) is run with the same proteins. The program REP is especially designed

for the analysis of short protein repeats.

Both proteins are known to contain short protein repeats from the repeat family

HEAT (an acronym of proteins and domains containing this sort of repeats, namely

human Huntingtin, elongation factor III (EF3), subunit A of PP2A and the lipid

kinase TOR1 (Andrade et al., 2001)). These usually comprise 37 to 43 amino acids.

They occur in blocks of three to 22 tandem repeats consisting of two anti-parallel

helices. Neighboring repeats stack together into a single domain with a hydrophobic

core, forming an elongated super-helical (solenoid) structure which plays a crucial role

in protein-protein interactions (Andrade et al., 2001). The protein 2AAA HUMAN

contains 15 and IMB1 HUMAN 19 HEAT repeats (Groves et al. (1999) and Andrade

et al. (2001)). Vetter et al. (1999) describe the structure of HEAT repeats in Importin

β.

Closely related to the HEAT motif is a repeat motif called ARM repeats. Its

name is deduced from the armadillo protein found in Drosophila melanogaster. Kobe

et al.(1999) introduce it as an acronym of another repetitive motif. The ARM mo-

tif strongly resembles HEAT in its structure. The most striking difference between

HEAT and ARM repeats is a third helix present in ARM. Due to their relatedness, the

differentiation between HEAT and ARM repeats is a difficult task.

The REP program is specialized on the detection of short protein repeats. It adopts

a special scoring scheme in which a repeat motif is only significant in connection with

further motifs to account for the fact that such repeats are usually propagated in

several copies. To this end, REP uses two values. The first value nmin is simply the

number of significant motifs REP finds in a given protein. The second value is an E-

value threshold Pθ common to all repeats that the motifs must reach to be considered

significant. A heuristic approach is taken to increase the sensitivity of the program

which is described in Andrade et al. (2000). Therefore, a motif in a protein does
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Repeat Pθ nmin

ARM 10−8 3
HEAT 10−6 4

HEAT AAA 10−5 5
HEAT ADB 10−8 4
HEAT IMB 10−6 5

Table 1: Thresholds used in the REP program. The three lower repeats are the sub-
families of the HEAT repeat.

not have to reach the threshold exactly, if more high-scoring motifs of the same kind

are present. A more detailed description of the application of the threshold values is

available in Andrade et al. (2000).

The program HMMER 2 is based on the theory of HMMs. However, it uses a

slight deviation of the HMM-architecture of Figure 1 called the plan 7 architecture.

The effect on scores is negligible and the theory stays basically the same. The exact

differences are described in Eddy (2001). For the analysis of the two sequences, only

the E-values computed by the programs are used, not the raw scores that cannot be

interpreted statistically like the E-values.

Both programs need family alignments for protein analysis. In this application, 14

alignments for 14 repeat families are used. These are available via internet under the

address http://www.embl-heidelberg.de/˜andrade/papers/rep/search.html. Information

about the repeat families are available in Andrade et al. (2000). The quality of the

alignments is crucial for the correct identification of repeat motifs as shown in Bongardt

(2001). Among the 14 families under investigation are the formerly mentioned ARM

repeat family and the HEAT family, and additionally three sub-families of the more

divergent HEAT family, namely HEAT IMB, HEAT AAA and HEAT ADB. The protein

IMB1 HUMAN belongs to the HEAT IMB sub-family, the protein 2AAA HUMAN

belongs to HEAT AAA. For the HEAT sub-families, REP must specify new thresholds

nmin and Pθ. All thresholds are given in Table 1. The thresholds for ARM, HEAT and

its sub-families are extremely low to prevent misclassifications.

The package HMMER 2 gives overall scores for families, which are calculated as the

sum of the scores of all domains found. Table 2 shows the results for the two proteins.

Only families with an E-value lesser than 10−4 are displayed. With this restraint, the

best E-value is obtained with the model of the correct HEAT sub-family, HEAT IMB for

IMB1 HUMAN (E-value: 6.6 × 10−72) and HEAT AAA for 2AAA HUMAN (E-value:

8.6 × 10−90). For both proteins, the second best scoring model is the common HEAT
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model, which makes sense because the HEAT family contains both sub-families. Rela-

tions to further HEAT sub-families and even to the ARM family are also detectable.

IMB1 HUMAN
Model E-value Domains

HEAT IMB 6.6 × 10−72 13
HEAT 4.9 × 10−37 11
HEAT AAA 1.8 × 10−31 10
ARM 2.2 × 10−16 6

2AAA HUMAN
Model E-value Domains

HEAT AAA 8.6 × 10−90 14
HEAT 5.8 × 10−62 14
HEAT IMB 3.0 × 10−30 12
ARM 3.0 × 10−7 6
HEAT ADB 1.5 × 10−6 4

Table 2: The HMMER 2 family scores for the proteins IMB1 HUMAN (left) and
2AAA HUMAN (right).

Besides the family scores, HMMER 2 also gives E-values for every single domain

found. Table 3 shows the best E-values computed by HMMER 2 below 10−4 for every

domain, i. e. the value for the HEAT model, for instance, is not shown even if it is less

than 10−4 if the value for HEAT IMB is lower. Under these conditions, HMMER 2 finds

6 occurrences of the HEAT IMB sub-family in the protein IMB1 HUMAN (Table 3,

left), and 10 occurrences of the HEAT AAA sub-family in the protein 2AAA HUMAN

(Table 3, right).

IMB1 HUMAN
Family Domain from to E-value

HEAT IMB 4/6 404 441 2.8 × 10−10

HEAT IMB 3/6 362 399 1.1 × 10−9

HEAT IMB 5/6 447 483 3.4 × 10−8

HEAT IMB 1/6 124 163 8.6 × 10−7

HEAT IMB 6/6 687 726 4.2 × 10−6

HEAT IMB 2/6 213 250 1.5 × 10−5

2AAA HUMAN
Family Domain from to E-value

HEAT AAA 5/10 276 314 4.9 × 10−9

HEAT AAA 3/10 198 236 2.3 × 10−8

HEAT AAA 4/10 237 275 3.0 × 10−8

HEAT AAA 7/10 358 396 3.3 × 10−8

HEAT AAA 10/10 514 552 3.9 × 10−8

HEAT AAA 6/10 319 357 5.1 × 10−8

HEAT AAA 8/10 397 435 9.0 × 10−7

HEAT AAA 2/10 159 197 2.0 × 10−6

HEAT AAA 1/10 82 120 9.7 × 10−6

HEAT AAA 9/10 475 513 1.4 × 10−5

Table 3: Repeat motifs found by HMMER 2 in the proteins IMB1 HUMAN (left) and
2AAA HUMAN (right).

With the scoring system described in Andrade et al. (2001), the REP program

finds 9 repeats of the HEAT IMB sub-family in the protein IMB1 HUMAN and 13

repeats of the HEAT AAA sub-family (Table 4). In both cases, REP finds more

repeats than HMMER 2, and their E-values tend to be better, too. The REP values

for 2AAA HUMAN are especially good in comparison to the HMMER 2 scores. For

a more elaborate analysis of the results of both programs for IMB1 HUMAN and

2AAA HUMAN see also Bongardt (2001).

16



IMB1 HUMAN
Family Domain from to E-value

HEAT IMB 5/9 361 399 1.0 × 10−9

HEAT IMB 7/9 446 483 3.2 × 10−9

HEAT IMB 9/9 686 726 5.9 × 10−9

HEAT IMB 3/9 212 250 7.3 × 10−8

HEAT IMB 1/9 123 163 7.4 × 10−8

HEAT IMB 4/9 316 361 8.2 × 10−8

HEAT IMB 2/9 167 207 1.2 × 10−7

HEAT IMB 8/9 601 641 1.6 × 10−7

HEAT IMB 6/9 403 441 3.4 × 10−7

2AAA HUMAN
Family Domain from to E-value

HEAT AAA 5/13 198 236 2.5 × 10−14

HEAT AAA 10/13 398 435 6.7 × 10−14

HEAT AAA 7/13 276 314 8.2 × 10−14

HEAT AAA 12/13 514 552 8.9 × 10−14

HEAT AAA 9/13 359 396 1.3 × 10−13

HEAT AAA 6/13 238 275 9.3 × 10−13

HEAT AAA 2/13 45 81 3.0 × 10−11

HEAT AAA 1/13 5 43 4.8 × 10−11

HEAT AAA 3/13 83 120 2.0 × 10−10

HEAT AAA 13/13 554 588 1.5 × 10−9

HEAT AAA 4/13 159 197 1.0 × 10−7

HEAT AAA 8/13 319 357 1.5 × 10−7

HEAT AAA 11/13 475 513 3.7 × 10−6

Table 4: Repeats found by the REP program in both proteins IMB1 HUMAN (left)
and 2AAA HUMAN (right).

4 Outlook

Although the results of HMMER 2 are worse than these of REP, its approach is a

promising alternative in the detection of short protein repeats. The theory of hidden

Markov models is highly developed and well understood in the context of protein

analysis. It is founded on a proper statistical model, whereas the REP approach is

more heuristic in its nature. For the future, modifications of the HMM architecture

to account for the special situation of short protein repeats could lead to an increased

performance of HMM-based methods. In particular, HMMs for HEAT repeats have

to consider their tendency to occur tandemly, to be propagated partially and similar

features that can be modeled by using a different HMM architecture with additional

transitions.

The program REP has no feature allowing it to find repeats in unaligned data.

In contrast, the Baum-Welch procedure of Section 2.2.3 offers the possibility to work

with unaligned sequences. Attempts to incorporate the procedure into the HMMER 2

package have already started (Eddy, S. R., 2001). In general, HMM methods that use

the Baum-Welch algorithm are more appropriate than REP if no reliable alignment is

at hand.

As mentioned in Section 2.3, the assumption underlying an HMM that the se-

quences have developed along independent lines is not quite appropriate. In Section

2.3 measures to minimize the effect of the faulty assumption have been proposed. An-

other promising approach is the linkage of HMMs to methods that operate on the basis

of phylogenetic trees. Rehmsmeier & Vingron (2001) propose a procedure that is able

to build an alignment and a phylogenetic tree simultaneously. In their paper, they
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hold an optimistic view that phylogenetic and hidden Markov methods can be con-

joined to exploit the advantages of each method, namely, the evolutionary perspective

of phylogenetic trees and the machine learning view of HMMs.
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