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Abstract

In this paper the optimal design problem for the estimation of the individual
coefficients in a polynomial regression on an arbitrary interval [a, b](—o0 < a < b <
o0) is considered. Recently, Sahm (2000) demonstrated that the optimal design is
one of four types depending on the symmetry parameter s = (a+b)/(a —b) and the
specific coefficient which has to be estimated. In the same paper the optimal design
was identified explicitly in three cases. It is the basic purpose of the present paper
to study the remaining open fourth case. It will be proved that in this case the
support points and weights are real analytic functions of the boundary points of the
design space. This result is used to provide a Taylor expansion for the weights and
support points as functions of the parameters ¢ and b, which can easily be used for
the numerical calculation of the optimal designs in all cases, which were not treated
by Sahm (2000).
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1 Introduction

Consider the common polynomial regression model with homoscedastic error

(1) V() = Y6t = £(0)5,
VIV(H)] = o? > 0,

where the explanatory variable ¢ varies in a compact interval, say [a, b](—oco < a < b < 00),
B=(B,...,B3)T is the vector of unknown parameters, f(t) = (1,t,...,t%)7T is the vector
of regression functions and different observations are assumed to be uncorrelated. An
approximate design is a probability measure on the interval [a, b] with finite support [see
e.g. Kiefer (1974)]

where the support points ¢1,...,t, give the positions in the interval [a,b] at which ob-
servations are taken and the weights give the relative proportions of total observations
taken at the corresponding support points. An optimal design minimizes (or maximizes)
a specific convex (or convave) function of the information matrix

(1.2) M(E) = / F(0) £ (1) de (1)

and there are numerous optimality criteria proposed in the literature, which can be used
for the determination of efficient designs [see e.g. Silvey (1980) or Pukelsheim (1993)].
In this paper we are studying the optimal designs minimizing the variance of the least
squares estimator for the individual coefficients in the model (1.1), a special case of c¢-
optimality [see e.g. Pukelsheim (1993), Chapter 2]. To be precise let e, € R¥*! denote
the (k + 1)th unit vector, then a design & is called eg-optimal or optimal for estimating
the kth coefficient (3 in the polynomial regression (1.1) if 8y = el 3 is estimable by & [i.e.
er, € Range(M (€))] and € minimizes the function

(1.3) @i (§) = ex M~ (§)ex

where A~ denotes a generalized inverse of the matrix A. The problem of determining
ex-optimal designs in polynomial regression has been considered by many authors mainly
concentrating on the interval [—1, 1] [see e.g. Studden (1968), Kiefer and Wolfowitz (1959)
or Hoel and Levine (1964)]. It is well known that in contrast to the famous D-optimality
criterion the problem of minimizing the criterion (1.3) is not scale invariant and the
solution of the optimal design of the experiment for estimating the individual coefficients
in polynomial regression on arbitrary intervals was open for a long time.

Recently, Sahm (2000) made substantial progress and showed that the optimal design for
estimating an individual coefficient is essentially of one of four types. The specific type
depends on the location of the parameter

a+b

(1.4) s:s(b):a_bER
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and the optimal design can be determined explicitly in three cases. In the remaining case
an explicit solution of eg-optimal design problem seems to be intractable, even numerically
[see Sahm (2000)].

It is the purpose of the present paper to study this open problem in more detail. Section
2 gives a brief review of Sahm’s (2000) results, which is the basis for our approach. In
Section 3 we deal with the remaining open cases, which can be described by d — k intervals
for the parameter s in (1.4). We consider the weights and support points of the ex-optimal
design as functions of the boundary points of the design space. Implementing a technique
similar as in Melas (1978, 2000) we introduce a differential equation for these functions,
which is used to prove that the weights and support points are real analytic functions
of the bounds of the design space. These results are used to derive in each of the d — k
intervals a Taylor expansion for the weights and support points of the optimal design
using a specific point for which the solution is known. We derive recursion formulas for
the coefficients of this expansion which can be easily used to determine the eg-optimal
design numerically in all remaining open cases. Finally the applicability of our approach
is demonstrated by several examples in Section 4.

2 ei-optimal designs

In this section we briefly review the known results about eg-optimal designs which form the
basis for our analytic approach in the following section. Because the case k = 0 (estimation
fo the intercept) and k£ = d (estimation of the highest coefficient) are well know [see e.g.
Sahm (2000) of Studden (1980a)] we restrict ourselves to the case 1 < k < d — 1. Sahm
(2000) introduced the sets

(21) Az == (_Vd7k+17i; l/z'+1) 1= 0, ceey d k
Bl,i:_B2,i:[l/i;pi] Z:]_,,d—k
Ci = (pis —Pa—k+1—i) 1=1,...,d—k

where v, ;.1 = 0o and vy,..., Vs  are the roots of the k-th derivative of the polynomial
(2.2) (x+ 1)Uy 1 (2)

and Uj(x) = sin((j + 1) arccos )/ sin(arccos z) is the j-th Chebyshev polynomial of the
second kind. The points p; are obtained from these roots via the transformation

1 — cos(m/d)

= 1 i Sl
pi=vi+ (L m)e

Note that the union of these sets defines a partition of the real axis and Sahm (2000)
proved that the location of the parameter s defined in (1.1) determines the structure of

the optimal design as follows. If
d—k

S € UAZ

1=0



the ei-optimal design is supported at d + 1 points including the boundary points a and

b. If
d—k
S € U Bl,i
=0

the optimal design for estimating the parameter (3 is supported at d points including the
boundary point a and the case
d—k
S € U B2,i
i=1

is essentially obtained by symmetry arguments interchanging the role of @ and b. In these
cases the ex-optimal design can be described explicitly in terms of transformed Chebyshev
points t; = cos(m;/d) and we refer to Sahm (2000), Theorem 3.2 for more details. In the
remaining case

d—k

(2.3) selJa

i=1

the situation is substantially more difficult. Here the design is supported at d points
including both boundary points of the design space but an explicit representation of the
weights and support points is not available. Sahm (2000) characterized the solution for
this case by a constrained optimization problem, which is difficult to use for the numerical
construction of the optimal design. Additionally he proved the existence of points

(24) MZECZ Z:L,d—k,

for which the solution of the design problem can be found explicitly. The points pu; are
the zeros of the k-th derivative of the polynomial

(2.5) (2% — 1)Uy o(2)

and for s = p; the eg-optimal design is obtained as the optimal design for estimating
B, in a polynomial regression of degree d — 1 where the case s € Uf:_é“_lAi is applicable
[see Section 3 for more details|. In the next section we will propose an analytic approach
which allows the (numerical) determination in all cases specified by (2.3) and therefore

closes the final gap in the solution of the e, -optimal design problem on arbitrary intervals.

3 Analytical properties of e,-optimal designs

Throughout this section we restrict ourselves to the (unsolved) case (2.3), for which Sahm
(2000) showed that the optimal design is of the form

a,ty, ..., t5_.,b
(3.1) G=1 ., 7 R I
Wi W, Wi, wh
If a is fixed and we vary b such that (2.3) is satisfied the weights and support points

in (3.1) are functions of the right boundary point b, i.e. ¢; = #5(b), j = 2,...,d — 1,
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w; = wj(b), j =1,...,d. We collect the information given by the e,-optimal design & in
the vector

(3.2) ™ =7(b) = (t5(b),. .., t;_1(b),ws(D), ..., w;(b))

and note that this function is well defined due to the uniqueness of the ei-optimal design
& in (3.1) for 1 < k < d [see Sahm (2000), Lemma 2.5]. Note that formally the optimality
criterion (1.3) could be considered as a function of nontrivial weights and support points

(33) T = (t2,...,td,1,w2,...,wd),

where the points t; and w; correspond to the support points and weights of a design of the
form (3.1), and the optimal design is implicitly determined as a solution of the equations
0
5 dp, = 0.
However, a direct differentiation of the optimality criterion with respect to support points
and weights seems to be intractable due to the nonsingularity of the corresponding infor-
mation matrix of the d-point design. In order to circumvent this problem we will relate
the design problem to a dual extremal problem for polynomials. This duality is used to
derive a necessary and sufficient condition for the parameters of the design and the coef-
ficients of the extremal polynomial by differentiating an appropriate function. We begin
with a slightly different formulation of the equivalence theorem for eg-optimal designs as
it is usually stated in the literatur [see e.g. Pukelsheim (1993)].

Lemma 3.1. Let fu(t) = (1,¢,...,t*=L k1 DT denote the vector obtained from
f(t) = (1,t, ... . tDT by omitting the monomial t*. A design & is e.-optimal on the interval
[a,b] if and only if there exist a positive number hy and a vector ¢* € R? such that the
polynomial @, (t) = t* — fL(t)q* satisfies the following conditions

(1) hppi(t) <1 VYVt € a,b]
(2) supp(&r) C {t € [a,b] | hppi(t) = 1}
(3) [ or(t)fr(t)déi(t) =0 € R,

Moreover, in this case hy, = ®r(&}).

Proof. Let & denote the optimal design for estimating 3; and ¢* denote the solution of
the generalized Chebyshev problem

(3.4) inf sup |z* — f (z)q],
q€R? z€[a,b]

then we obtain

T
d

h=e M~ (&)e, = inf su _a®

MG =1 S T g
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—{ it sup/ 1dT £ () [2de( )}

d €= 1 &‘
(3.5)
= {inf sup [t" — fi (t)q[*}""
a€R? tc[q,b]
= {sup [t* = fL ()P}
te(a,b]

If & is optimal for estimating the parameter 3 we define () = t* — fI'(t)¢* which
obviously satisfies (1). The inclusion (2) follows by discussing equality in the fourth
equation of (3.5), which means that the L?-norm is equal to the sup-norm if and only
if the support of &; is contained in the set of extreme points of the optimal polynomial
¢r(t). In order to show (3) we discuss the equality in the first equation of (3.5) which is
a simple consequence of Cauchy’s inequality. For a d-dimensional vector ¢ let d, denote
a (d + 1)-dimensional vector with (k + 1)th component equal to one where the vector —q
is obtained from d, by omitting this component i.e. d] f(t) = t* — ¢ fi(t). Discussing
equality in Cauchy’s inequality yields

which implies (3). On the other hand, if & and ¢* satisfy conditions (1) - (3) of Lemma
3.1, the same calculations show that we have found a saddle point (&}, ¢*) such that there
is equality in

(3.6) infel M~ (&)er, = {inf sup |t* — fF(t)q|*} !
3 QER te[aq
which establishes optimality of £ for the ex-optimal design problem and optimality of the

vector ¢* for the extremal problem (3.4).
a

Note that Lemma 3.1 (and its proof) relate the optimal design problem to an extremal
problem for polynomials [see e.g. Karlin and Studden (1966), Section 10.8, or Studden
(1980b)]. Moreover, the solution of the extremal problem (3.3) is unique, because the
optimal polynomial pi(z) = z*¥ — fI'(z)q* must attain its extremal values at the support
points of the eg-optimal design &}, which is unique, whenever 1 < k < d. In the following
we will solve both problems simultaneously. To this and let

(3.7) T = {(t2,...,td,l,wg,...,wd)T|a<t1<...<td,1<b; wi>0;2wj<1},

define for any 7 € T the design &, by

a7t27 s ;tdflab
(38) 57 = )
W1, W,y ...y Wag—1,Wq



where w; = 1 — Z;l:z wj, and recall the definition of the vector d, € R for ¢ € R?
introduced in the proof of Lemma 3.1, i.e.

(3.9) frtyd, =t* — fi(t)a (¢ €R?).

It follows from the proof of Lemma 3.1 that

—1
(3.10) Oy(6,) = {min\I’(q,T, b)}
qER?
for any 7 € T, where
(3.11) U(g,7,b) = dy M(&)d,,
and the optimal design &, satisfies
3.12 U (¢*, 7*,b) = mi gt b) = in¥ " b
(3.12) (¢, 7", b) = minmax ¥ (g, 7, b) = maxmin ¥~(g, 7, b),

where ¢* is the optimal solution of the extremal problem. Note that formally the minimum
has to be taken over the set of all vectors 7 € T such that e is estimable by the design
&, i.e. e, € Range(M(&;)). However, it is straightforward to see that in the case e, ¢
Range(M (&;)) we have

max U~ (g, 7,b) = 00

max ™ (¢, 7,0)
[see also Studden (1968)]. Consequently the optimization over the slightly bigger set T
in (3.7) will yield a solution 7*,¢* such that ey is estimable by the design &, even if
this restriction is not incorporated in the definition of the set T. This observation will be
crucial throughout the following discussion.

Lemma 3.2. The design &+ is ep-optimal and the vector ¢* corresponds to the solution
of the generalized Chebyshev problem (3.4) if and only if the point (¢*,7*) € R? x T is the
unique solution of the system

0

E\I](ana b) =0
(3.13)

0

a_q\Il(ana b) =0

in the set of all pairs (q,7) € R? x T such that ey is estimable by the design &, and such
that
dTFO? = [tF— T f(®)P < dTM(&)d,  for all t € [a,b] .

Here 8%\11 and a%\p denote the gradient of U with respect to 7 € T and g € R?, respectively.

Proof. The necessary part follows directly from the known conditions for an extremum,
the representation (3.12) and the fact that the solution of the design problem and extremal
problem are unique. In order to prove sufficiency we note that it follows by a direct
calculation from (3.13)



(i) (M(&)dg)- =0
(i) (dgf(t:))* =(dgf(a))* i=2,....d
(iti) df f(t;)-dl f'(t;) =0 i=2,...,d—1
where t; = b and for ¢ € R¥! the vector c_ € R? is obtained from ¢ by deleting the

(k+1)th component. Now let (¢*, 7*) denote a solution of the system (i) — (iii) (obtained
from (3.13)) such that e, € Range(M (&,+)) and

|dq*f(t)| < dq*M(ST*)dq
for all ¢ € [a,b]. Define § = d[. f(a). Note that by condition (ii)

6% = dl. M (&-)dy # 0,

because otherwise this would yield M (&;-)d,~ = 0 which implies by identity (i) M (& )ex =
0 contradicting to the estimability of (B by the design &, -. Observing the identity (ii) we
find that ¢(t) = dl. f(t) is a polynomial of degree d such that

lp(t)|* < 6% Y tela,b].

Defining h = 1/§ we have identified a triple (h,q¢*, ¢) such that the condition (1) of
Lemma 3.1 is satisfied. Condition (2) of this Lemma is obvious from the construction of
the polynomial ¢ and the third condition follows from (i) which implies

o= o <2wz ).

z/f (1)de (1 /fk (t)de. (1)

Therefore Lemma 3.1 and its proof show that the design &, is the e, -optimal design and
that the vector ¢* corresponds to a solution of the generalized Chebyshev problem.
O

Note that Lemma 3.2 generates a vector differential equation, which implicitly determines
7, q* as vector valued function of the boundary point b such that (2.3) is satisfied (where
the left boundary of the design space has been fixed). In the following discussion we
will show that the Jacobian matrix of the equation (3.13) is nonsingular, which allows
the application of the implicit function theorem to study the functions 7*(b) and ¢*(b) as
analytic functions of the right boundary b such that (2.3) is satisfied. To this end define

O = (01,...054 1) = (¢",77),
(3.14)
o' (b) = (¢ (0), (%))

as the vector containing the parameters of the ei-optimal design and the coefficients of
the solution of the corresponding Chebyshev problem and

U(0,b) = V(q,T,b),



then the basic equation (3.13) can be rewritten as

0 -
1 —U(O,b) =0 € R,
(3.15) 56 (0,b)=0¢

Finally, if U denotes an open set in R", we call a function f : U — R real analytic if
for any point ug € U there exists a neighbourhood Uy C U of ug such that f|y, can be
expanded in a convergent Taylor series.

Theorem 3.3. For any fized a € R define s(b) = (a +b)/(a —b) and B; = s *(C;) the
components of the function

@* Uil;lk Bz - R?,(dfl)
' b — O%(b)

are real analytic functions. Moreover, the vector function ©* is a solution of the system
(3.16) G(O(b),b) - ©'(b) = Q(O(b), b)

with initial conditions

(3.17) O (by) = " (by),

where by is any arbitrary point such that (2.3) is satisfied for sy = s(by) and the functions
G and Q) are defined by

o? _ 3(d—1)
(3.18) G(O,b) = (a@ﬁx%q“9’®>m_1

0% - 3(d—1)
(3.19) QO.) = (575 1)

Proof. We will prove that the Jacobi matrix
(3.20) J(b) = G(©*(b),b) € R¥dDx3(d-D)

is nonsingular. The assertion of Theorem 3.1 then follows by a straightforward application
of the implicit function theorem [see e.g. Gunning and Rossi (1965)]. For this Jacobi
matrix we obtain the representation

D BT BT
(3.21) J=Jb)=2| B E 0
B, 0 0

where A_ denotes the 3(d — 1) x 3(d — 1) matrix obtained from A € RG4=2)x(3d=2) }y
deleting the (k + 1)th row and (k + 1)th column. The matrices D, By, By and F in (3.21)

9



are defined as follows (¢} = a,t; = b)

D = M(g'r*) c Rd+1><d+1

BIT = (w;‘f'(tg) . dzlf(t’é), cwy o f () dglf(tzfl))

= ADT2(g,.) - (w;f(tS), —wif(t5), ..., (=) g, '(t2_1)> c Ré+H1xd-2
(3.22)

BY = (d03) - {£() = DY, AR F (1) - (1) = F))

= A2 g) - (1) = SO, (CDLF() = FEDM - (CDHF() - FE)}) € RA

B = ding (wdl F(15) - a2 1(6). ... widy (1) - (1))
= diag (Wi (80 (85), wie" (5)p(83), ., wi @ () plty ) ) € RE 2442

where A € {—1,1} is a fixed constant and the polynomials ¢ is defined by ¢(t) = d[. f(t)
(all other entries in the matrix J are 0). The Jacobi matrix J in (3.21) is essentially
obtained by direct differentiation and the properties of the extremal polynomial ¢(t) =
dl. f(t). For example, consider the calculation of Bf and let I_ € R*'*? denote the
identity matrix with deleted (k + 1)th column. We obtain by straightforward calculation

0*W 9,

9t9q ot (f'r) q
d—2

=217 (wjﬂdgfl(tjﬂ) [ i) +wjidy ft) - f,(tj+1))j1 € R™4-2,
Now for ¢ = ¢* we have o(t}) = dLf(t5) = A(=1)1® %(&) (j = 2,...,d) for some
A € {—1,1}. This follows from Lemma 3.1 which shows that ¢ is equioscillating which
implies ¢'(t5) = d[. f'(t;) = 0. Consequently we obtain
2-A ,
B = o () ()
(&) AR

which proves the representation of the block BY in (3.21). The other cases are treated
similary and left to the reader.
On the basis of the representation (3.21) the proof of the nonsingularity of the Jacobi
matrix J(b) is straightforward. Note that the matrix D_ is nonnegative definite, because
it is obtained from the nonnegative definite matrix M (&,«) by deleting the (k + 1)th
row and column. Similary, the matrix E defined in (3.22) is negative definite, which
follows, because it essentially contains the second derivatives ¢"(¢;) (i = 2,...,d — 1) of
the extremal polynomial ¢(t) = t* — fI'(t)q* specified in Lemma 3.1. To be precise we
note that the results of Theorem 4.3 in Sahm (2000) show that for the case b = p; this
polynomial is of degree d — 1 while in the case b € C;\{p;} the polynomial is of degree d
with one extremum outside the interval [a,b]. A careful counting of the multiplicities of
the zeros of the polynomial ¢?(#) — 1 shows

(3.23) o'(t;) =di f"(t) #0 i=2,...,d—1.

d—2

J=1

10



Moreover, by the oscillating property of the extremal polynomial the second derivative
must alternate in sign yielding " (¢;)p(t;) < 0 (i = 2,...,d — 1) and the definition of
the matrix £ in (3.22) shows that this matrix has negative diagonal elements.

From these auxiliary results it follows that the matrix

D —-BT'E'B

is positive definite where BT denotes the matrix obtained from B by deleting the (k+1)th
row. Similary, let B obtained from B1 by deleting the (k + 1)th row, then it follows by
the Frobenius formula and the representation (3.21)

D_ BT BY
det J(b) = det | By E 0
B, 0 0

D BT D BT BT
:—det(Bl E) det{(Bg|0)(Bl E) (0 )}

= —det E-det(D_ — BTE 'B))-det{By(D_ — BTE'B,) 'BI}.

(3.24)

Now the matrix Bg is of rank d — 1 (because of the Chebyshev property of the polyno-
mials 1,z,...,2%) and the matrix D_ — BT E~'B, is positive definite by the preceding
discussion. Consequently all determinants in (3.24) are different from zero which proves
the nonsingularity of the Jacobi matrix J(b).

O

Theorem 3.4. Let by € B; = s7'(C;) for some i =1,...,d — k, and ©* be the function
defined in Theorem 3.3, then the coefficients in the Taylor expansion

6" (b) = ©(bo) + > ©"(j bo) (b — bo)’

in a neighbourhood of the point by can be obtained recursively by the formulas

d

(3:25)  ©'(s+1,b0) = —J " (b0) ()" 9(67, (), ) s=0,1,2,...

‘bbg

where the polynomial @z‘s) of degree s is defined by

O}, (b) = ©"(bo) + Z@*],bo (b= bo)?

and the function g is given by

(3.26) 9(0,0) = %\P(@ b) lo-

11



Proof. By Theorem 3.3 the function ©* : U%=FB; — R*?~1) has real analytic components
and its Taylor expansion exists locally for any by € U;-i:_lkBi. Note that

00" (0),5) = 7-9(6,1)

!

0
-0 (b) + = b
0" (5) + = 9(0,1)]

‘@:@ww =0*(b)

and a repeated application of this formula gives

s () @m0 = g5e@n]| e+ h(E 1)),

where ©*0) denotes the jth derivative of the function ©* and the function h, contains
higher order derivatives of g with respect to © and derivatives of the function ©*(b) up
to the order s. If

o0

(3.28) 0% (b) = (4, bo) (b — bo)’

=0
denotes the Taylor expansion of © at the point by we obtain from (3.27) for b — by
LANESOR. 9 (0. 1)16%(s + 1,b
(%) 9(07(0); )‘bbo N %g( +bo) @:@*(o,bo)'(s—i_ J!O7(s +1,b0)

(3.29) + hy(©%(0,by), . ..,0%(s, b)),

where the function h, depends only on the first s 4+ 1 coefficients ©*(0,by), ..., ©*(s, by)
of the Taylor expansion (3.28). If we use the polynomials

@?k)(b) = @*(bﬂ) + Z @*(]7 bo)(b - bo)j

i=1

for k = s+ 1 and s in (3.29) we obtain

() e ®n), = ()" 9Om®).8)

0
pu— ' * [ —
(5 +1)16"(s + 1.bo) - 559

b=bo

(C"), b) |®:®*(0,b0) +}~L5(C‘)*(O, b[)), Ceey @*(S, bg))

(if k =s+1) and

d st * 7 * *
() 9©L®.b] , = (O 0.b).....0"(s. b))
(if k£ = s), which gives
DN @), b 1)10%(s +1,bo) - - g(O, b
(%) 9(0°(b), )‘bbg = s+ 1O+ 1, 0)'%“ ’ )@:@*(o,bg)
(3.30)
d s *
+ () 19(0(,)(6),)) lo=bo -

12



By Theorem 3.3 the solution b — ©*(b) is real analytic and satisfies
9(©"(b),b) = 0,

in a neighbourhood of by € B; which follows from (3.15) and the definition of ¢ in (3.26).
Consequently the left hand side of (3.30) vanishes and we obtain

IN g 0r, (b), b 110 (s + 1, o) - —=g(0, b
() 9©L0.B] = +DO 1 0) g5e©)|

= (s+1)10"(s + 1,by) - J(by)

where the last identity follows from the definition of J and g by (3.20) and (3.26), respec-
tively. But this equation is equivalent to (3.25) which proves the assertion of Theorem
3.4.

(I

Example 3.5. The recursion of Theorem 3.4 can be easily explained for a function
g : R? — R (although this case does not appear in the solution of the design problem).
Consider for example the problem

g(0(b),b) =sinb — log O(b),

where we illustrate the application of the recurrence relation deriving the Taylor expansion
of the solution O(b) = e5"’. Note that J(0) = —1/0(0) = —1, because ¢(©(0),0) = 0
yields ©(0) = 1. For s = 0 we obtain from (3.25)

O(1,0) = %g(l,b)‘bzo =cos0=1
while the recursion for s =1, 2, 3,4, 5 yields
02,0) = o (5) s +nn| =1
0(3,0) = %(%)39(1 b+ g,b)‘b —0
R N
5 2 4
06.0) = () Wi o 5 =Tl =5 =5

for the first six coefficients of the Taylor expansion

eSinb Z o(j, O)bj.
j=0

In general Theorem 3.3 and 3.4 show that for any by, such that (2.3) is satisfied the
functions

b ti(b) j=2,...,d—1

wr b —wi(b) j=2,...,d

G :b—=qib) j=1,....d

13



(here ¢; denotes the jth component of the vector of coefficients ¢* of the extremal poly-
nomial) can be expanded into Taylor series in a neighbourhood of the point by. The
coefficients of these expansions can be directly computed from the recurrence formulas
(3.25) and therefore the remaining case in the optimal design problem for estimating the
individual coefficients in a polynomial regression on an arbitrary interval can be easily
solved numerically, if we are able to find a point by such that (2.3) is satisfied and for
which the solution of the ei-optimal design problem is known. But such a point has been
identified by Sahm (2000) who showed that there exist d — & points
a+b;

/,LZ:S(bZ):a_bZECZ Z:]_,,d—k

such that the optimal design for estimating the parameter 3 is supported at the points
at the d Chebyshev points

(3.31) £(bi) = 2 {cos(d_lw)—m} j=1,...,d

with weights

: izl — £ = Dygcos (U m G ()
(3.32) wi(b;) = 27, ==2 dkl“ kot . j=1,....d

J
(i)

where vo = v4-1 = 1/2(d—1);v;, =1/(d—1) j=1,...,d—2and ) (x) denotes the nth
ultraspherical polynomial [see e.g. Szegd (1959)]. Moreover, the points p; (or equivalently
b;) are determined as the zeros of the polynomial in (2.5). For this reason we are able
to find in each interval s~1(C;) a Taylor expansion for the weights and support points
of the eg-optimal design, which is based on the location b; = s *(y;) (i = 1,...,d — k).
This technique provides a numerical solution for the open design problem and will be
illustrated for the case d — k in the following section.

4 A numerical example

Consider the case d = 4. We are interested in the estimation of the coefficient of (3, 32
and f3 in the case which cannot be treated by the results of Sahm (2000). We concentrate
ourselves on the case a = —1 and vary the parameter b, which corresponds to the situation
considered in Section 3. The general case can be reduced to this case by an appropriate
scaling of the symmetry parameter s = s(b) = (a + b)/(a — b).

(a) If £ = 3, we have one critical interval for the symmetry parameter s given by
Ci = (p1, —p1) = (—0.1213,0.1213),
and 1 = 0, which corresponds in the b scale to the interval
(4.1) B, = s1(Cy) = (0.7836,1.2761)

and b, = s7'(0) = 1. The first six coefficients in the Taylor expansion for the
coefficients of the extremal polynomial, interior support poins and weights are listed

14



in Table 4.1 and are calculated by the procedure described at the end of Section
3 using the recursive relation (3.25). For example, if b = 1.2 we obtain for the
es-optimal design on the interval [—1,1.2]

e — —1 —0.595 0.395 1.2
3710.239 0.412 0.261 0.088

and the extremal polynomial is given by

@3(t) = t* — 0.654t* + 0.685t* — 0.808t — 0.134.

3

Similary, the optimal design for estimating the coefficient of z° on the interval

[—1,0.9] is given by

e — ~1 —0.406 0.506 0.9
5700121 0.290 0.379 0.210

and the extremal polynomial is

©3(t) = 13 + 0.426t* — 0.333t? — 0.650t + 0.052.
—insert Table 4.1 here —

Figure 4.1 shows the interior support points (left figure) and weights in dependence
of the parameter b € B, which are obtained by the same reasoning. Note that the
figure for the weights contains three lines, where two lines represent the weights
w3 (b) and wj(b) corresponding to the interior support points ¢5(b) and ¢5(b) and the
third line corresponds to the weight wj(b) at the point b.

—insert Figure 4.1a here —

If £ = 2 we have two critical intervals for the symmetry parameter s given by
Cy = (—0.5687,—0.1213); Cy = (0.1213,0.5687)

and the specific points (where the solution is known) are p; = —0.4564; 15 = 0.4564.
This corresponds to the intervals

(4.2) B =s"'(Cy) = (1.9677,3.6374); By = s~ (Cy) = (0.2749, 0.5082)

and the points by = s7'(u1) = 2.6794,b, = s7'(up) = 0.3732 for the parameter
b, which can be used for the Taylor expansion in the respective intervals. The
corresponding support points and weights are depicted in Figure 4.2a and 4.2b.
For example, if b = 2.2 the optimal design for estimating the parameter 35 on the
interval [—1,2.2] is (approximately) obtained from Figure 4.2a as

e —1 0.12 1.56 2.2
271 0.03 0.43 0.37 0.17
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while the e;-optimal design on the interval [—1,0.5] is approximately given by
£~ -1 —0.72 0.31 0.5
271 0.09 031 041 0.19

and obtained from Figure 4.2b (note that for b = 1.5 we have s = 1/3 which
corresponds to the case b € Bs).

—insert Figure 4.2a and 4.2b here —

Of course a better precision can be obtained by using a table of coefficients for the
Taylor expansion of the weights and support points as a function of the parameter
b as explained in the case k£ = 1. For the sake of completeness the first coefficients
of the corresponding expansions are listed in Table 4.2a and 4.2b.

—insert Table 4.2 a and 4.2b here —

(c) If k = 3 the critical intervals for the symmetry parameter are given by
Cy = (—0.8504, —0.6925); Cy = (—0.2060,0.2060); C3 = (0.6925,0.8504)

and the specific points (for which the solution is known) are pu; = 0.7906, s = 0
and p3 = 0.7906, respectively. This gives in the b-scale the intervals

By = s71(Cy) = (5.5041,12.369); B, = s~'(Cy) = (0.6583, 1.5190);
B; = s~!(Bs) = (0.0808,0.1817)

and by = s7'(u1) = 8.5511,by = s71(0) = 1 and by = 57" (u3) = 0.1169, respectively.
The corresponding support points and weights as functions of the parameter b are
depicted in Figure 4.3a, 4.3b and 4.3c for the different three cases and the coefficients
in the corresponding Taylor expansions are listed in Table 4.3a, 4.3b and 4.3c. The
interpretation of these graphs and tables is exactly the same as in the previous
examples and therefore omitted.

—insert Table 4.3 a-c and Figure 4.3 a-c here —
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0 1 2 3 4 5

g; | 0.0000 | -0.6250 | -0.6250 | 5.4688 0.0000 | -87.2500
g5 | -0.7500 | -0.7500 | 2.5625 | 0.0000 | -8.0000 8.0000
g5 | 0.0000 | 3.5000 | 0.0000 | -18.0000 | 18.0000 | 314.5000
g; | 0.0000 | -4.0000 | 4.0000 | 13.0000 | -30.0000 | -217.2500
t5 | -0.5000 | -0.7500 | 2.0000 | -1.0000 | -15.5000 | 23.7500
t5 | 0.5000 | -0.2500 | -2.0000 | 1.0000 | 15.5000 | -23.7500
wsy | 0.3333 | 0.4444 | -0.0741 | -2.2099 | 1.4053 26.1485
ws | 0.3333 | -0.4444 | 0.3704 | 1.9136 | -5.0021 | -18.6588
wy | 0.1667 | -0.4444 | 0.0741 | 2.2099 | -1.4053 | -26.1485

Table 4.1: First six coefficients of the Taylor expansions of the coefficients of the extremal
polynomial #3 + ¢it* + ¢it? + ¢4t + ¢} and the interior support points t5, t5 and weights
wy, wy, wy of the ez-optimal design in a polynomial regession of degree 4 on the interval
[—1,b], where b € (0.8836,1.2761). The center of the expansion is b; = 1.

0 1 2 3 4 3

g; | -0.6111 | -0.0837 | 0.2284 | -0.2006 | -0.0144 | 0.1035
g | 0.1679 | 0.6556 | -0.3245 | -0.1527 | -0.0306 | 0.5245
g5 | -0.3970 | -0.6202 | 0.4635 | -0.0246 | -0.0262 | -0.3029
g | 0.0000 | 0.2550 | -0.2492 | 0.0956 | -0.0232 | 0.0922
t5 | -0.0801 | -0.2936 | 0.2332 | 0.0121 | -0.1175 | -0.0640
t3 | 1.7596 | 0.2064 | -0.4092 | -0.0212 | 0.3126 | 0.0944
wy | 0.4550 | 0.0679 | -0.0338 | -0.0097 | -0.0004 | 0.0283
wy | 0.2116 | -0.1159 | 0.0804 | 0.0117 | -0.0308 | -0.0320
wy | 0.0450 | -0.0679 | 0.0338 | 0.0097 | 0.0004 | -0.0283

Table 4.2a: First six coefficients of the Taylor expansions of the coefficients of the
extremal polynomial t? + ¢jt* + ¢it® + ¢it + ¢} and the interior support points ¢3, t5 and
weights w3, w3, wj of the es-optimal design in a polynomial regession of degree 4 on the
interval [—1,b], where b € (1.9677,3.6374). The center of the expansion is by & 2.6794.
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0 1 2 3 4 5

gy |-0.0851 | -0.3725 | 1.2528 | 10.3417 | -33.0375 -172.2301
g | -0.0627 | 1.5888 | 6.2421 | -37.8069 | 188.1016 2915.9334
q; | 1.0636 | -14.7798 | 7.5615 | 212.6852 | -1336.5488 | -10635.3851
g; | 0.0000 | -13.1439 | 13.4439 | 168.2561 | -1132.4771 | -7551.2227
t5 | -0.6567 | -1.2064 | 7.8709 | -24.0211 | -237.7108 | 2949.0192
t5 | 0.0299 | -0.7064 | -4.4867 | 13.6928 75.3346 -1269.9645
wy | 0.2116 | 0.8321 | 1.9158 | -20.5706 | 26.1568 1026.1537
ws | 0.4550 | -0.4878 | -0.4334 | 9.4172 -07.9234 -266.3371
wy | 0.2884 | -0.8321 | -1.9158 | 20.5706 | -26.1568 | -1026.1537

Table 4.2b: First six coefficients of the Taylor expansions of the coefficients of the
extremal polynomial t2 + ¢jt* + ¢5t3 + ¢35t + ¢; and the interior support points #5, 5 and
weights w3, w3, wj of the es-optimal design in a polynomial regession of degree 4 on the
interval [—1, ], where b € (0.2749,0.5082). The center of the expansion is by & 0.3732.

0 1 2 3 4 3

g | 0.4194 | 0.0500 | -0.0170 | 0.0043 | -0.0010 | 0.0002
g5 | -0.4415 | -0.0418 | 0.0141 | -0.0035 | 0.0008 | -0.0002
g5 | 0.0390 | 0.0191 | -0.0072 | 0.0019 | -0.0004 | 0.0000
g; | 0.0000 | -0.0020 | 0.0009 | -0.0002 | 0.0000 | 0.0000
t5 | 1.3874 | -0.0492 | 0.0098 | -0.0012 | 0.0002 | -0.0000
t5 | 6.1623 | 0.4508 | -0.0652 | -0.0073 | 0.0004 | 0.0003
wy | 0.4935 | 0.0036 | -0.0011 | 0.0002 | -0.0001 | 0.0000
ws | 0.0250 | -0.0094 | 0.0028 | -0.0006 | 0.0001 | -0.0000
wy | 0.0065 | -0.0036 | 0.0011 | -0.0002 | 0.0001 | -0.0000

Table 4.3a: First six coefficients of the Taylor expansions of the coefficients of the
extremal polynomial ¢ + ¢jt* + ¢5t* + ¢5t? + ¢} and the interior support points t3, t5 and
weights w3, w3, wj of the e;-optimal design in a polynomial regession of degree 4 on the
interval [—1,b], where b € (5.5034,12.371). The center of the expansion is b; & 8.5511.
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0 1 2 3 4 5
g; | 0.0000 | 0.3333 | 0.0000 | -1.9861 | 1.9861 | 13.8105
g> | 0.0000 | -2.1667 | 2.1667 | 6.3472 | -14.8611 | -39.4690
g5 | -1.3333 | 1.3333 | -4.1389 | 6.9444 | -5.2697 | -0.8854
g; | 0.0000 | 3.3333 | -6.6667 | 2.7639 | 8.3750 | 23.5284
t5 | -0.5000 | -0.3750 | 0.7813 | -0.0234 | -3.5313 | 3.2778
t5 | 0.5000 | 0.1250 | -0.7813 | 0.7578 | 2.7969 | -6.6050
wsy | 0.4444 | 0.1481 | -0.0247 | -0.6039 | 0.5056 3.8814
wy | 0.4444 | -0.1481 | 0.1235 | 0.5051 | -1.2320 | -2.3298
wy | 0.0556 | -0.1481 | 0.0247 | 0.6039 | -0.5056 | -3.8814

Table 4.3b: First six coefficients of the Taylor expansions of the coefficients of the
extremal polynomial ¢ + ¢;t* + ¢5t® + ¢35t + ¢f and the interior support points #5, 5 and
weights w3, w3, wj of the e;-optimal design in a polynomial regession of degree 4 on the
interval [—1, b, where b € (0.6583,1.5190). The center of the expansion is by = 1.

0 1 2 3 4 3

qi |-0.0491 | 0.0082 10.6119 | 105.9225 739.2750 4342.6757
g5 | 3.7749 | -58.4185 | 77.2667 | -3304.2811 | 10400.7601 | -156116.3023
g5 | 2.8499 | -150.9503 | 420.0437 | -9168.6057 | 80190.6009 | -1124228.3000
g; | 0.0000 | -93.4900 | 335.4455 | -5936.4356 | 69157.4923 | -972322.2982
t5 | -0.7208 | -2.3080 | 40.7391 | -679.9934 | 7305.5833 2431.3342
t5 | -0.1623 | -1.8080 -6.1247 -3.8733 -109.1540 -1255.3129
wy | 0.0250 0.6896 8.8546 27.5008 226.0771 -824.2231
ws | 0.4935 | -0.2604 -3.3989 -15.8341 -113.9147 653.8339
wy | 0.4750 | -0.6896 -8.8546 -27.5008 -226.0771 824.2231

Table 4.3c First six coefficients of the Taylor expansions of the coefficients of the extremal
polynomial ¢ + ¢;t* + ¢5t® + ¢512 + ¢} and the interior support points t5, t5 and weights
wy, wy, wy of the e;-optimal design in a polynomial regession of degree 4 on the interval
[—1,b], where b € (0.0808,0.1817). The center of the expansion is b3 ~ 0.1169.
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