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Abstract

The purpose of this note is to establish a link between recent results on asymp-
totics for classical orthogonal polynomials and random matrix theory. Roughly
speaking it is demonstrated that the ith eigenvalue of a Wishart matrix W (I, s) is
close to the ith zero of an appropriately scaled Laguerre polynomial, when

lim n/s=y€0,00).
7,5— 00
As a by-product we obtain an elemantary proof of the Maréenko-Pastur and the
semicircle law without relying on combinatorical arguments. Moreover, our ap-
proach also allows a simple treatment of the case y = oo, where a new semicircle
law can be established for the s largest eigenvalues of the Wishart matrix.
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1 Introduction

The study of sample covariance matrices is important in multivariate statistics and since
the pioneering work of Mar¢enko and Pastur (1967) much effort has been devoted to this
subject [see e.g. Silverstein (1985), Bai and Yin (1988a,b, 1993), Johnstone (2001) among
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many others]. In this note we present a new approach for the derivation of the asymptotic
sprectral distribution of a Wishart matrix W (I,, s), when the parameters n and s both
converge to infinity at appropriate rates. This method relies on a close connection between
the eigenvalues of the Wishart matrix and the zeros of classical orthogonal polynomials.
To be precise, let V;, € R"*® denote a random matrix with i.i.d. standard normally
distributed entries, define

1
M, = -V,V]I e R*" (1.1)
S S

as the sample covariance matrix and let Ay < Ay < ... < A, denote the ordered eigenvalues
of the matrix My, where the double index has been omitted for the sake of simplicity; i.e.
Ai = )\Z(-"). It is well known that the joint densitiy of the eigenvalues is proportional to the

function
n

[T (=LA

1<i<j<n i=1
and a typical vector of ordered eigenvalues should be close to the mode of this density. By
classical results of Stieltjes [see e.g. Szegd (1959)] the above density becomes maximal for
the zeros of the Laguerre polynomial. The asymptotic properties of these polynomials have
been recently investigated independently from the random matrix literature in the context
of approximation theory. We refer to Gawronski (1993) and Bosbach and Gawronski
(1998) for some results on strong asymptotics for Laguerre polynomials with varying
coefficients and to Faldey and Gawronski (1995), Dette and Studden (1995), Kuijlaars
and Van Assche (1999) for recent results on the asymptotic zero distribution of these
polynomials.
It is the purpose of the present paper to provide a link between the results in random
matrix theory and the theory of orthogonal polynomials. To this end we derive an almost
sure approximation of the eigenvalues of the Wishart matrix M; defined in (1.1) by the
zeros of appropriately scaled generalized Laguerre polynomials, when

nl}gnmn/s =y € [0,00]. (1.2)
This generalizes recent work of Silverstein (1985), who established almost sure convergence
of the smallest eigenvalue of the Wishart matrix W ([, s), when

lim n/s=y € (0,1).

n,5§—00

Note that our results include the case y = oo, which was not considered so far. As a by-

product we obtain a simple proof of the Marcenko-Pastur law for the empirical spectral
distribution function

Fin(r) = ~#{i |\ < ) (1.3)

[note that this function has already been appropriately standardized] by using recent
results on weak asymptotics for classical orthogonal polynomials. Additionally, we provide
a new proof of the classical semicircle law when n/s — 0 and our method allows the
derivation of a new semicircle law for the largest s eigenvalues of an approriately scaled
Wishart matrix in the case n,s — oo, n/s — 0o.



2 Eigenvalues of Wishart matrices and zeros of La-

guerre polynomials

Throughout this paper let for £ = 0,1,...,n L,(ca")(x) denote the kth generalized Laguerre
polynomial orthogonal with respect to the weight function 2" exp(—x)/(,00)(2). We note
that the orthogonalizing measure is varying with the degree n and that we are interested in
a comparison of the roots z; < ... < x,, of appropriately scaled versions of the polynomial
L%a")(x) with the ordered eigenvalues A\; < Ay < ... < A, of the matrix M, (or an
appropriately scaled version) defined in (1.1). The scaling of the polynomial and the
Wishart matrix depends on the limit y in (1.2) and we use the roots of the polynomial

LglsfnJrl) (S:U)
in the case y € (0, 00), the zeros of the polynomial
LY (2y/nsz + s +n)

in the case y = 0 and the roots of the polynomial

L™ (2/nsz +n)

in the case y = oo for a comparison. The scaling of the Laguerre polynomials is moti-
vated by weak asymptotic properties of their zeros [see Theorem 2.4], which were recently
obtained by Gawronski (1993), Bosbach and Gawronski (1998), Faldey and Gawronski
(1995), Dette and Studden (1995), Kuijlaars and Van Assche (1999). Throughout this
paper I, denotes the k x k identity matrix. The main result of this paper is the following.

Theorem 2.1.
a) Let \y < ... < )\, denote the ordered eigenvalues of the sample covariance matriz
M; defined in (1.1) and x1 < ... < 1z, denote the zeros of the Laguerre polynomial

L™ (sz). If n,s — oo, n/s — y € (0,00), then

1 n
lim => [\ —z;> = 0 as
n—oo 1,
j=1

b) Let My < ... <\, denote the ordered eigenvalues of the sample covariance matriz
N, =L v,vl —sI,} (2.1)
s — sVg — Sip .
24/1ns

and x1 < ... < x, denote the zeros of the Laguerre polynomial L%S)(Q(\/ns)x +s+mn). If
n,s — 0o, n/s — 0, then

n

.1 5
JLIEOEZ|)\j—xj| =0 as

J=1



c) Let Ay < ... <\, denote the ordered eigenvalues of the sample covariance matriz

1

P, = ——{V,V] —nlI, 2.2
5= VT = L) (2.2
and —%\/n/s =2 = ... =Tp_s < Tp_sr1 < ... < x, denote the zeros of the Laguerre

polynomial L%s_n)(%/nsx +n). If n,s — 00, n/s — oo, then

RS 2 . 2
nlggoﬁzp\] -z = nh—{{.loﬁ | Z A=z =0 as.
]: =

Proof:
a) For a proof of part (a) we assume at first that y € (0,1), that is s > n for sufficiently
large n. According to Silverstein (1985; p. 1366) the matrix M, is orthogonally similar

to a triangular matrix A = (a;,;);;—, with entries
iy = (12 X2 =1
(i = ;( n—i+1 + s—i—i—l) t=1,...,n,
. 1 )
Qii+1 = ;Xsfi+1Ynfi7 = 17 <oy — 17
- 1 .
Qi1 = ;Xs—i-i-lyn—ia 1=1,...,n—1,

where Y2 = 0, X? ~ x?,Y;? ~ x? are independent chi-square distributed random variables
(X; >0,Y; > 0). Therefore it is easy to see that the matrix M, has the same eigenvalues
as the matrix A = (a;;)},;_, defined by

1
_ = _ 2 2 -
Gi; = Op—j+1n—itl = g()fl + Xs—n—i—i) 1 = 1, Loy n,
~ 1 .
Qii+1 = Ap—in—itl — ngfrH»iJrlY;l L= 17 <o, — 17
~ 1 .
iyl = Opitip—i = ngfnJriJrlei 1=1,...,n—1.
Now consider the kth Laguerre polynomial
7 (s—n+1)
Ly, (z)
s—n+1

orthogonal with respect to the weight function x exp(—x)1(0,00)(®) With leading co-
efficient 1. According to Chihara (1978) we have the recursion (o, = s —n + 1)

L) (x) = (& — {2k + 1+ an )L (2) = k(k + o) L™ (@) (2.3)

with initial conditions L% (z) = 0, f/(()a”)(x) = 1. It is now straightforward to see that the

zeros of the polynomial ij(za”)(sx) are precisely the eigenvalues of the triangular matrix
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1
bm:—(an+2z—1) izl,...,n,

S

1
bi,i+1:_ Z(Z—i—Ozn) izl,...,n—l,

S

1
bi-l-l,i:g Z(Z+Oén) z:l,,n—l

This follows by factorizing (—1), ()" in the determinant equation
det(B — \) = 0,

and identifying the recursion (2.3) for the polynomial Ll (s)\)
Now the discussion following Lemma 2.3 in Bai (1999) yields for the distance between the

eigenvalues of the matrix M, and the zeros of the polynomial LY "H)(sx)
1 1 I
- Z Aj = zy]” < —tr(d - B)? = - Z(ai,j —bi)?
=1 2,j=1
1 n ) 9 n—1 )
= D (a5 = bii)* + - Y (@i = biggn)” (2.4)
i=1 i=1

where the first equality follows from the symmetry of the matrices A and B.
The two terms in (2.4) are estimated seperately. For the first term we have with some
finite constant ¢ > 0 (observing Y;2 = 0)

C.Z(ai,i—bi,i)Z < S:(Yl:—i) (_) +Z( 2 i S+n—z>

i=1 i=1

2
< 2n-M2+<E> ;
s

where the the random variable M, is defined by

M, = max{ max |— Z|, max : Z|} : (2.5)
1<i<n—1 S s—(n—1)<i<s S
From Silverstein (1985, p. 1367) it follows that M, — 0 a.s. and we obtain
1 < )
— (ai,i — bz,z) — 0 a.s. (26)
n
=1

For the remaining term in (2.4) we have

Z‘ s— n-l—z—l—lY \/ Z"i_OZn

—_

n—

S|

(ai,i+1 z z+1 -

=1



1/2 YiZ —j1/2

S

IXS - ‘XSQ ntiv1 — (5 —n+i+1)
n s

2
_i_\/i—l—s——nJrl‘Y?—i‘l/Z_i_\/Z‘st_nﬂ'ﬂ_(5_”+i+1)‘1/2}
s s s §

< (My, +2VM,)* =0 as. ,

where the random variable M,, is defined in (2.5) and we have used the inequality

|Qb_ | 2|1/2|b2_b2|1/2

< |a*

+ [blla® — a®['/% + Jal|b* — 0*|'*

for nonnegative a, b, a, b [see Silverstein (1985)]. Observing (2.4) the assertion (a) of the
Theorem 2.1 follows in the case y € (0,1).

In the case y > 1 (which means n > s for suffiently large n) the result is established
by interchanging the roles of s and n and from a representation for generalized Laguerre
polynomials with negative parameter. To be precise, we note that in this case the matrix
M is orthogonally similar to an n X n matrix A with principal s x s block containing the
(s-dimensional) rows

1
;(XTQL + Yffla )/s—an—la 07 R 0)7

(Vi X, Xy + Y2 VX 0, 0),
(i=2,...,s—1) and

%(0, e 0,1 X s, X )
where all other entries in the matrix A are 0 and the meaning of the random variables
X;,Y:, X2, Y7 is the same as in the prevoius paragraph. Observing the identitiy

QLN 27)

[see Szegd (1959), Section 5.2)] the assertion now follows by similar arguments as given
for the case y € (0,1).

The remaining case y = 1 is proved by considering two subsequences corresponding to
the cases s > n and s < n, respectively.

b) By the same argument as given in the proof of part a) the eigenvalues of the matrix
N; defined in (2.1) are obtained as the eigenvalues of the tridiagonal matrix A defined by

1
Qi3 = (Y2 + Xs n+i S)

’ 2\/sn
1
Qjjy1 = Qjp1; = —2\/ﬁXsfn+i+1Y;-



Now consider the Laguerre polynomials with leading coefficient 1 and parameter o, = s
and define polynomials

pel(z) = L (2y/nsz + s +n).

The zeros of the polynomial p,(z) are given by the eigenvalues of the matrix B defined
by

1
b = ——(ap+2i—1—n—s)=

’ 2y/ns
1 —
bijit1 = biv1i = 5—7—=Vi(i t ) =

where «;,, = s. The assertion now follows by similar arguments as given in the proof of
part a).

¢) The asymptotic properties in the case y = oo follow from a combination of the argu-
ments given in the proof of part a) for the case y > 1 and the proof of part b). The matrix
P; defined in (2.2) is orthogonally similar to an n x n matrix A with principal s x s block
containing the (s-dimensional) rows

1
2—\/%()(2 + Y?fl -n, szlenfla 07 R 0)7
1
2¢y/ns
(i=2,...,s—1) and

(Yeoiz1Xn_it1, XEH'H +Y2, —n,Y, X, ;0,...,0),

1
2\/ns

where all other entries in the matrix A are 0 and the meaning of the random variables
X;,Y;, X2, Y72 is the same as in the proof of part a). From (2.7) we have for some constant

075()
D(aviEe ) = e (v +n)' LY @y )

where the s positive zeros of the polynomial on the right hand side are obtained as the
eigenvalues of the tridiagonal matrix B with elements

(07 SR 07 leXn*S+17 X7375+1 o TL) ’

by = ——2i—1-—3s), i=1,...,s

’ 2\/
1
Si+1 +1, 2\/%

The assertion now follows by similar arguments as given in the proof of part a). O

i(fi+n—s), i=1,...,s—1.

The following results is an immediate consequence of Theorem 2.1 and recent results on
the location of the zeros of classical orthogonal polynomials.



Corollary 2.2.

a) Let Ay < ... < )\, denote the

My defined in (1.1) and x; < ...
L™ (s2). Ifdy < dp < ... < dy

n/s —y € (0,00), then

lim

n,8— 00

ordered eigenvalues of the sample covariance matrix
< x, denote the zeros of the Laguerre polynomial

denote the ordered differences |\; — x;| and n, s — oo,

d[nt] =0 a.s.

n/s—y€(0,00)

for all t € (0,1). In particular we obtain for the smallest and largest eigenvalue of the

matriz My and for the smallest and largest zero of the polynomial L%sinﬂ)(sx)

lim =
n,8—00
n/s—y€(0,1]

X

T
n,s— 00 n
n/s—y€(0,00)

and in the case y > 1

lim
n,8—00
n/s—y€[l,00)

Tn—s+1

b) Let \y < ... < A, denote the

N, defined in (2.1) and x; < ...
L%s)(2\/nsx +s+mn). Ifd <dy <

n,s — 0o, n/s — 0, then

dim dipy = 0

dim A = (1—-yy)?  as
n/s;)ye(o,l]
lim A\, = (1+%)° as.

n,s—00
n/s—y€(0,00)

lim
n,8— 00
n/s—y€[l,00)

a.s.

)\nfs+1 - (1 - \/§)2

ordered eigenvalues of the sample covariance matrix
< x, denote the zeros of the Laguerre polynomial

... < d, denote the ordered differences |\; — x;| and

a.s.

n/s—0

for all t € (0,1). In particular we obtain for the largest and smallest eigenvalue of the
matrix Ny and for the smallest and largest zero of the polynomial L%S)(Qx/nsx +s+n)

lim x;
n,8— 00
n/s—0

lim z, =

n,s—00
n/s—0

c) Let \y < ... < A\, denote the

Py defined in (2.2) and z, < ...

L™ (@ynsz +n). If0 = dy

lim A =1 a.s.
n,8— 00

n/s—0

lim A, = —1 a.s.
n,8— 00

n/s—0

ordered eigenvalues of the sample covariance matric
< x, denote the zeros of the Laguerre polynomial

coe = dpy < dp_gi1 < dy < ... < d, denote the

ordered differences |\; — x;| and n,s — 0o, n/s — oo, then

dim dipy = 0

a.s.

n/s—oo

for all t € (0,1). In particular we obtain for the largest and (n — s + 1)th smallest
eigenvalue of the matriz P; and for the (n — s + 1)th smallest and largest zero of the

polynomial L™ (2y/nsz + n)

n,lslgnoo Ln—s+1
n/s—oo

Az
n/s—oo

= n,lslgnoo Ansi1 = —1 a.s
n/s—oo

= lim A\, =1 a.s.
n,s— 0o
n/s—oo



Proof: The first part is an immediate consequence of Theorem 2.1. The assertion regard-
ing the largest and smallest eigenvalue follows similary to the proof of Theorem 2.1 by an
application of the Theorem of Gersgorin (1931) [see Silverstein (1985)]. The results for
the largest and smallest zero of the Laguerre polynomial can be obtained from Theorem
4.4 in Dette and Studden (1985) and formula (2.7). O

The asymptotic properties of the largest and smallest eigenvalue in part a) of Corollary
2.2 were already observed by Silverstein (1985), but we did not find the result for sample
covariance matrices for the case n/s — 0 or n/s — oo in the literature [for a proof of
the analogue for n/s — 0 in the case of Wigner matrices see Bai and Yin (1988b)]. The
following example illustrates the quality of approximation in Corollary 2.2.

n 10 15 20
Aj T Aj T Aj T
-0.74099 | -0.72672 | -0.76857 | -0.76658 | -0.78275 | -0.78866
-0.57733 | -0.57065 | -0.64970 | -0.65404 | -0.68759 | -0.69867
-0.43048 | -0.42409 | -0.54791 | -0.55201 | -0.60781 | -0.61862
-0.28494 | -0.27741 | -0.45075 | -0.45334 | -0.53318 | -0.54254
-0.13478 | -0.12609 | -0.35486 | -0.35519 | -0.46089 | -0.46816
0.02480 | 0.03340 | -0.25757 | -0.25592 | -0.38926 | -0.39427
0.19766 | 0.20499 | -0.15823 | -0.15433 | -0.31717 | -0.32007
0.39190 | 0.39425 | -0.05522 | -0.04934 | -0.24446 | -0.24499
0.62150 | 0.61121 | 0.05261 | 0.06015 | -0.17025 | -0.16852
0.93142 | 0.88111 | 0.16661 | 0.17546 | -0.09418 | -0.09021

Table 2.1. The 10 smallest zeros of the scaled Laguerre polynomials p,(x) defined in
(2.8) and the n smallest eigenvalues of the standardized Wishart matriz Ny, defined in
(2.9) for various values of n.

Example 2.3. Consider the case s = 10n and note that for finite samples the limits
n/s =y € (0,00) and n/s — 0 cannot be distinguished. Therefore both approximations
of part a) and b) in Theorem 2.1 could be used in prinicple. For the sake of brevity we
use only case b). Table 2.1 shows the zeros x1, ..., z, of the Laguerre polynomial

pn(z) = LU (20102 + 11n) (2.8)
and the eigenvalues \q,..., A, of the standardized matrix



for n = 10, 15, 20. These eigenvalues have been obtained by simulations based on 100.000
runs. For the sake of brevity only the ten smallest eigenvalues and zeros are displayed.

We will use Theorem 2.1 for an alternative proof of the famous Marcenko-Pastur and
semicircle law in the normal case using recent results for the asymptotic zero distribution
of classical orthogonal polynomials. Additionally we provide a semicircle law for the s
largest eigenvalues of the appropriately scaled Wishart matrix, when n, s — oo n/s — oo,
which seems to be unknown in the literature. Conversely the arguments given in this
paper show that the Marcenko-Pastur and semicircle law could also be used to provide an
alternative proof for the asymptotic zero distribution of the Laguerre polynomials with
varying integer valued parameters. For the sake of completeness we recall a result on
the asymptotic zero distribution for the zeros of the Laguerre polynomials with varying
(not necessarily integer valued) parameters. A proof can be found in Dette and Studden
(1995) [see also Faldey and Gawronski (1995), Dette and Wong (1995) or Kuijlaars and
Van Assche (1999)]. For a real sequence (o, )nen with elements > —1 let

NO(E) o= #{ o | L) (2) =0, z <&} (2.10)

denote the number of zeros of the generalized Laguerre polynomial L,(za”)(x) less or equal

than &, then we have the following result.

Theorem 2.4. (Dette and Studden (1995))
a) If lim 2= =a >0, then

n—oo
1 1 [f — —
lim =N (ng) = —/ Vi - o) rl)dx for all & € [ry,ma]
n—o00 M, 2T r T
where 1o =2+ a+2y/14+a
b) If lim % = oo, then
n—o00
i L N@n) L [f
lim — N ({/na,€ + ap) = Py 4 — 22dx forall |€] <2 .
n—o00 7, T ) o

Theorem 2.5. (Marcenko-Pastur and extended semicircle law)

a) If n - oo,n/s — y € (0,00) and Fy;, denotes the empirical spectral distribution
function of the matriz M, defined in (1.1), then for all £ € R

Fu, (&) = Fu(&)  as. (2.11)

where the distribution function Fy; has densitiy

1 \/(b—x)(x—a)j_

21y x

fM(a:) =

[a,b] (x) )
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the quantities a and b are given by a = (1 — /y)?,b = (14 \/y)?, respectively, and there
is an additional jump of size 1 — 1/y in the case y > 1.

b) If n/s — 0 and Fy, denotes the empirical spectral distribution function of the matriz
(2.1), then we have for any x € [—1,1]

Fr (z) = Fy(s) = %/ VIZEd s (2.12)

(Fn,(x) > 1ifx >1,Fy,(x) = 0 ifz < 1).

c) If n,s — oo, n/s — oo and Fp, denotes the empirical distribution function of the s
largest eigenvalues of the matriz Ps defined (2.2), then we have for any x € [—1,1]

Fo(2) = Fy(z) = % / CVITEd as (2.13)

(Fp,(z) = 1ifx>1,Fp(x) =0 if x < 1).

Proof.
a) Consider at first the case (a) with y € (0,1]. From Bai (1999) and Theorem 2.1 it
follows for the Levy distance L between the distribution functions F};, and Fp that

1 n
L3(FM37FB) S EZ|)\J—x]|2_>O a.s. ,
=1
where ,
Fp(e) = le | L) (om) = 0,2 <€)
(an)

denotes the empirical distribution function of the zeros of the Laguerre polynomial Ly, "’ (sx)
with parameter a,, = s —n + 1. From the first part of Theorem 2.4 we therefore have for

any £ € [ry, 7]

Fal€) = —#{e | L(nle) = 0,2 < €}

(2.14)
£/ _ _
Lyl L [ VEEE,,
n nol e 2m T

where 75 = (1 + ﬁ)Q Substitution and differentiation yields for the density of the
limiting distribution

I \/(b—x)(x—a)j_

21y T

ab](T)

where



The argument for the case y > 1 follows exactly in the same way using at first the identity
(2.7).

b) Again we obtain from Theorem 2.1
L*(Fy,,Fg) =0 as.

where Fp denotes the empirical distribution function of the roots of the polynomial
L™ (2. /ncmx + s + n) with oy, = s, that is

Fo€) = (x| ™) (2yams +5-+7) = 0,0 <)
= lN(an)@Mf +s+mn).

n

Observing 2= = V% = o(1) and Example 2.7 in Dette and Studden (1995) the second
part of Theorem 2.4 now gives

1
lim Fg(&) = lim —N©@)(2/nant + ay)

n—o0 n—oo N,
1 2¢ 2 3
= — \/4—x2da::—/ V1 —t2dt
2 ) o i

whenever |£] < 1, which proves the assertion of Theorem 2.5 b).

c) This is proved in the same way using the identity (2.7). O
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