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Abstract

The present method allows to detect outlying observations in data

which may be described by a deterministic function plus a stochastic

component. This type of functional relationship often occurs in

experimental data, in toxicological research, for instance. The Hampel

identifier, an outlier identification method designed for location-scale

models, is modified to account for the special structure of the data.

Simulated standardisation values for the procedure are given for

sample sizes from 16 to 21.

The procedure is applied to a toxicological study with one of the basic

petrochemical compounds ethylene (ethene). This study was designed

to determine the individual and population parameters, i. e. the

parameters which describe the general behaviour of the investigated

process in the whole population, as well as the intra- and

interindividual variability of the processes of inhalation, exhalation,

and metabolic elimination of the chemical ethylene in male Sprague-

Dawley rats.

The results are discussed for various methods determining the

functional relationship and for two possible approaches of applying the

outlier identification method, one based on the simulated (exact)

standardisation values for all sample sizes, the other based on taking a

tabled value corresponding to the sample size 'nearest' to the real

sample.

KEY WORDS: Outliers, Hampel identifier, toxicokinetics, nonlinear
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1. Introduction

In many experimental situations, in toxicological research, for instance, we have the

situation of observations which differ much from the main part of the data. They seem to

be surprisingly higher or lower than one would expect from the rest of the observations and

from the 'knowledge' about the underlying processes which generate the data. Such

observations are usually called 'outliers' although there exists no formal definition. Of

course, it depends on the assumed model if an extreme observation is considered as

surprisingly large or small, i. e. to arise from some other distribution than the remaining

data.

For cases where the main mass of the data consists of independent observations, identically

distributed according to some location-scale model, we have several methods to detect

such deviating observations (see Barnett and Lewis, 1994; Gather and Becker, 1997;

Hawkins, 1980, for some overviews). Especially in the case of univariate data, there exists

a wide variety of such methods for several models. One popular procedure in this context

is the so-called Hampel identifier, which is based on two robust measures of location and

scale, the median and the median of the absolute deviations from the median (MAD for

short), respectively (see Davies and Gather, 1993; Hampel, 1985). Observations too far

from the median of the data with respect to their MAD are declared to be outliers. The

Hampel identifier is introduced in detail in chapter 2.

Frequently, the data are not assumed to come from such a relatively simple location-scale

model, but they are supposed to arise from some deterministic process plus a stochastic

component which may contain several sources of variation. The choice of outlier

identification methods is less extensive for such more complicated models like regression

models or time series (also see Rousseeuw and Leroy, 1987). Assuming that the

observations are linked to some parameter vector by a nonlinear function means in terms of
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outlier detection to compare the observations with the presumed functional relationship.

The question is then which observations may be regarded as 'too far away from the main

part of the data'. The idea of this approach is to compare the observations with a - perhaps

preliminary – model and decide on this basis which observations may be considered as not

consistent with the rest of the data. For this purpose a reference line is estimated from the

model and the deviations of the observations from that line are used for the outlier

identifying procedure.

The present method allows to detect outlying observations with respect to the model which

is supposed to describe the main part of the data adequately. The Hampel identifier is

modified to account for the special structure of the data and applied to a toxicological

study with one of the basic petrochemical compounds ethylene (ethene).

This study was designed to determine the individual and population parameters, i. e. the

parameters which describe the general behaviour of the investigated process in the whole

population, as well as the intra- and interindividual variability of the processes of

inhalation, exhalation, and metabolic elimination of the chemical ethylene in male

Sprague-Dawley rats. The animals are exposed in a closed inhalation chamber and the

decay of ethylene in the atmosphere of the exposition system is observed about 20 times

per animal. These experiments were run 5 times for each of the 20 animals with the same

concentration in group A (10 rats) and with 5 different doses in group B (10 rats) (for

details, see Selinski 2000, 2001). The observed concentrations of ethylene may be

described by a nonlinear function f which depends on the time since the application of

ethylene into the system and on the kinetic constants which determine the exchange and

metabolism of ethylene. Furthermore a stochastic component is assumed which contains

the variation of the observations across the concentration-time curve as well as the intra-

and the interindividual variation of the parameters which determine the concentration-time

curve.
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A nonlinear hierarchical model was fitted to the data and the parameters were estimated by

the use of an EM algorithm. These estimates are used to construct a reference line for the

observations and the modified Hampel identifier was applied to the absolute deviations

from the expected values. The results from the usage of different estimates, individual

mean, for instance, for the construction of the reference line are compared.

Standardisation values for the Hampel identifier are given for sample sizes from 16 to 21.

The identification method is applied once using the exact values from simulations and

again using an approximation by a tabled standardisation value for an average sample size.

The results are compared for all estimates of the reference line. Approximations of

standardisations or critical values are generally used if no tabled values are available for

the real sample size.
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2. The Hampel identifier

Analysing random data it often occurs that some of the observations differ much from the

main part of the data. Such observations are usually called 'outliers' although there does not

exist any general formal definition. Nevertheless, it seems to be generally accepted that

outliers are observations, which are 'surprisingly far away from the main part of the data'

and appear to be 'inconsistent with the rest of the data' (Gather, 1990; Barnett and Lewis,

1994). In the univariate data considered in this article, this means that the observations in

question seem to be surprisingly lower or higher than one would expect from the rest of the

data. Of course, it depends on the assumed model if an extreme observation is considered

as surprisingly large or small.

Potential sources of outliers are (Barnett and Lewis, 1994):

•  inherent variability: the natural variation of the observations over the population,

unexpected events during the data generating process,

•  measurement error: inadequacies in the measurement instrument, rounding of obtained

values, mistakes in recording,

•  executing error: variability due to the imperfect collection of the data, e.g. choosing a

biased sample.

Outliers may influence the analysis of the data and may even falsify the results. They can

also be interesting in themselves, since they can hint at unexpected events or unknown

relationships. In both cases it is desirable to identify such outlying observations to either

exclude them from analysis (or downweight them), or to investigate them further.
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2.1. Outlier identification based on outlier regions

A general approach in modelling the occurrence of outliers is to specify a so-called outlier-

region and suppose an unknown number k of non-regular observations to lie in this region

(Davies and Gather, 1989, 1993).

DEFINITION 2.1: Let X be a univariate random variable with density f. For any α ∈  (0,1),

the α outlier region of f is defined by

out(α, f ) := {x ∈  IR | f(x) < δ(α)}, where

( ){ }αδαδ
δ

≤<=
>

)(sup:)(
0

XfP .

A number x is called an α outlier with respect to f if x ∈  out(α, f ).

DEFINITION 2.2: Let xN = (x1, ..., xN) be a sample of size N. Suppose that the sample

contains N – k regular observations iid with density f whereas the k nonregular

observations lie in the outlier region out(αN, f ). Then xN is called a sample of size N with a

number k of αN outliers.

The value of αN can be specified e.g. by choosing αN = 1 – (1 – α)1/N. Hence, for a sample

of size N of the target distribution, an observation lies in the outlier region only with

probability α (Davies and Gather, 1993).

Neither the number k nor the parameters which specify f, like the expectation µ and the

variance σ², for instance, are supposed to be known but it is reasonable to assume that 0 ≤ k

≤ N /2. The aim is to identify those observations of xN which lie in the outlier region

out(αN, f ) or, equivalently, to estimate the αN outlier region using the sample xN which

contains an unknown number k of outliers.
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DEFINITION 2.3: Let xN = (x1, ..., xN) be a sample of size N. Let L(xN, αN) denote a lower

bound and R(xN, αN) denote an upper bound for some fixed value α ∈  (0,1). An outlier

identifier is defined by specifying a region

( ) ( )( ] ( )[ )+∞∪∞−= ,,,,:, NNN RLOR ααα NNN xxx

with all numbers x ∈  OR(xN, αN) being classified as αN outliers by the identifier.

The performance of an identifier depends much on how L and R are chosen. Often, we

determine these bounds by taking a location statistic m and a scale statistic s and setting

L = m – const s, R = m + const s. In this case, the robustness of the used location and scale

statistics against outliers is essential for the performance of the identifier. In general, it can

be stated that using estimators of location and scale with high breakdown point in such

identifiers yields procedures with good performance properties like high masking and

swamping breakdown points, for example. For details see Becker and Gather, 1999;

Davies and Gather, 1993; Gather and Becker, 1997.

The so-called Hampel identifier depends on the robust location and scale statistics median

and median absolute deviation (see Hampel, 1985; Davies and Gather, 1993; Gather and

Becker, 1997).

DEFINITION 2.4: (Hampel identifier)

Let xN = (x1, ..., xN) be a sample of size N and let x(1), ..., x(N) be the respective order

statistics. The Hampel identifier is defined by identifying all

( )( ] ( )[ )+∞∪∞−∈ ,,,, NN RLx αα NN xx  as αN outliers, where

L(xN, αN) := med(xN) – MAD(xN) g(N, αN) and

R(xN, αN) := med(xN) + MAD(xN) g(N, αN), with
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denoting the median and

( ) ( ) ( )( )( )NNN xxx medxmedx N −−= ,,medMAD 1 �

denoting the median absolute deviation.

The values of g(N, αN) may be obtained by requiring

( ) ( )( )f,out,ORP NNN α⊂αx  = 1 – α     (2.1)

or by requiring

P(no outliers identified in xN) = 1 – α .     (2.2)

For the case of normal distributions Davies and Gather (1993) provide values of g(N, αN)

for α = 0.05 and N = 20, 50, and 100 as well as formulas obtained by simulations for α =

0.05 and α = 0.01 and N > 10. Otherwise values of g(N, αN) have to be simulated.

The Hampel identifier performs well with respect to several criteria like the average

proportion of correctly identified outliers, the asymptotic bias, resistance against masking

and swamping (Davies and Gather, 1993; Gather and Becker, 1997).

2.2. Outlier identification using a reference line

Trying to identify outliers in data sets as presented here, the time-series structure of the

observations has to be taken into account. The observations can be supposed to vary across

a theoretical concentration-time curve, which depends on the assumptions on the

processes, and circumstances, which generate the data. Moreover, it often occurs that part

of the data are systematically over- or underestimated. Hence, the Hampel identifier has to
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be modified.

DEFINITION 2.5: (Hampel identifier in case of models with deterministic component)

Let yN = (y1, ..., yN) be a set of observations, which may be described by some model M.

The expectations of the observations are given by E(yn) = h(θ, tn), n = 1, ..., N, according to

model M, where h is some linear or nonlinear function, θ is a parameter vector and tn is the

time point on which yn is observed. Let ( )NN yyy ~,,~~
1 �=  be the reference line, i.e. the

estimated set of observations generated according to model M, and let nnn yyx ~−=  denote

the absolute residuals of the observations with respect to the reference line. The modified

Hampel identifier is given by the rule of identifying all

( )( ] ( )[ )+∞∪∞−∈−= ,,,,~
NN RLyyx αα NN xx  as αN outliers, where

L(xN, αN) := med(xN) – MAD(xN) g(N, αN) and

R(xN, αN) := med(xN) + MAD(xN) g(N, αN).

The performance of the Hampel identifier depends much on the fit of the model to the

main part of the data. In cases where the fit of a model or the estimation procedure are

supposed to be improved by the elimination of outliers, a first estimation may be used as a

reference line for detecting outlying observations. After elimination of the αN outliers the

estimation may be repeated and the fit of the model is compared with the result of the first

estimation step. In case of many outliers or a repeated non-convergence of a set of

observations the procedure could be repeated again using the new estimates to decide if an

observation of the complete data set is considered as an outlier or not. This is the same

proceeding as in consecutive outlier testing with inward procedures (cf. Barnett and Lewis,

1994, p. 127ff; Hawkins, 1980, p. 63ff). The performance of such procedures depends on

the performance of the estimators used to fit the model (see Gather and Becker, 1997, for a
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discussion). Here, we fit the reference line essentially by means of maximum likelihood

(ML) estimates because of their availability in most cases. From location-scale models it is

well known that the use of ML estimates within these methods involves the danger of

masking, meaning that outliers are not detected because they “mask” each other. For this

reason, the use of robust estimators is recommended. The development of an according

procedure for the models considered here and the comparison with the currently proposed

method is the next step and will be done in future research.
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3. Example: Ethylene study

The outlier identifying method presented in the previous chapter was motivated by an

inhalation study with one of the basic petrochemical compounds, ethylene (ethene). The

study was performed at the Institute of Occupational Physiology at the University of

Dortmund (IfADo) as part of the risk assessment of chemical carcinogens. It aims to

determine the population mean kinetic parameters of uptake, elimination, and metabolism

of ethylene and to quantify the variability due to interindividual and interoccasion

differences.

The following section gives an outline to the data and the modelling approach. For details

see Schirm and Selinski (2000), Selinski (2001), and Selinski et al. (2000).

3.1 Project

The substance of interest of the present inhalation study is the volatile chemical ethylene

(ethene) (H2C=CH2). Ethylene is an important industrial bulk chemical, which is also

present in the environment. In mammalian organisms ethylene is partly transformed, by

hepatic metabolising enzymes (cytochrome P-450) to ethylene oxide (Filser and Bolt,

1983). Ethylene oxide, also a physiological body constituent (Bolt, 1996, 1998; Bolt et al.,

1997), is biologically reactive and thereby genotoxic (Kirkovski et al., 1998; Filser and

Bolt, 1984; Bolt and Filser, 1987; Bolt et al., 1984). As previous inhalation experiments

with ethylene have indicated the metabolism may be well approximated by first order

kinetics at concentrations below 800 ppm (parts per million). This approximation is used

in the present study where the maximum concentrations were about 500 ppm ethylene. At

higher concentrations the metabolism of ethylene becomes more and more saturated (Bolt

and Filser, 1987).
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The present inhalation study with ethylene consists of two groups of experiments (group A

and B) investigating the inter- and intraindividual behaviour of the processes of uptake,

exhalation, and metabolism under equal and under different experimental conditions,

respectively.

The experiments were carried out using the 'closed chamber technique' as reviewed by

Filser (1992), which allows investigations of kinetics of volatile chemicals in vivo. This

technique is based on a closed inhalation chamber where during the exposure period the

declining atmospheric concentrations of the substance (ethylene) are analytically

determined.

In the inhalation chamber, the experimental animals are exposed to the gas or vapour of

interest (ethylene) (see figure 1). The exhaled CO2 is absorbed by soda lime, and its

volume is replaced by pure oxygen. At the beginning of each experiment, the test material

(ethylene) is injected into the chamber. During the experiment the atmospheric

concentration within the chamber is measured by gas chromatography (Bolt et al., 1984).

Due to the way of application, the actual concentration in the inhalation chamber at the

beginning of each experiment, i. e. at zero time, is not exactly known and must be treated

as an additional parameter.
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Figure 1: Experimental design for investigating the kinetics of volatile compounds in

vivo according to Filser (1992).

In the first group of experiments (group A) ten animals were exposed five times each to an

initial concentration of about 100 ppm ethylene for a time period of about eight hours.

Thus we finally obtained five short time series per animal observed under identical

conditions.

The experimental design of the second group (group B) was similar to the first, except for

the application of different initial concentrations in the inhalation chamber. Observing

another ten rats, we obtained five concentration-time curves per animal at five different

initial concentrations of 20 ppm, 50 ppm, 100 ppm, 200 ppm, and 500 ppm ethylene (see

Quinke et al., 2000, for further details).

The applied ethylene doses were below the concentration of saturation of ethylene

metabolism of about 800 ppm. Hence the data can be analysed approximating the real

kinetic processes by first order kinetics using a two-compartment model.

septum

propeller

soda lime

air supply

stirring machine

inhalation chamber

Sprague-Dawley
rat
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3.2 Two-compartment model

The two-compartment model used by Filser (1992) for the characterisation of exposure to

volatile xenobiotics describes uptake, endogenous production, excretion, and the metabolic

elimination of the substance. The model is depicted as follows: a xenobiotic gas, in this

case ethylene, enters the body and is exhaled. This process is described by introducing two

compartments, the first, C1, representing the environment outside the body, here the

inhalation chamber of the exposition system, and the second compartment, C2, the body

itself. The volatile xenobiotic migrates from one compartment to the other through a

theoretical interface. During this process, some portion of the xenobiotic within the

organism, at any stage, is eliminated by metabolic processes, and another portion is again

exhaled (see figure 2).

com partm ent C 1 com partm ent C 2

a tm osphere

volum e V 1

 organism

vo lum e  V2

k1 2
[R ]

k2 1
[R ]

kel
[R ]

Figure 2. Two-compartment block model in the case of metabolic turnover

In case of the present ethylene study the inhalation chamber and its atmosphere form the

first compartment where the decay of ethylene is observed. The second compartment is

represented by the animal assuming that ethylene is distributed within the whole organism.

Ethylene is inhaled, exhaled and metabolised to its reactive metabolite ethylene oxide.
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Let yl(t), l = 1, 2, denote the concentration of a xenobiotic in compartment l at time t and

let Vl describe the volume of the compartment. A preliminary assumption is that the

compound, in this case ethylene, is metabolised within the body, and that there is no

metabolism back to the parent ethylene, the latter being very likely on toxicological

grounds.

In the case of overall first order kinetics, each partial process can be characterised by

one rate or velocity constant k, that is ][
12

Rk  for the uptake, ][
21

Rk  for the exhalation, and ][R
elk

for the metabolic elimination (see figure 2). Thus the concentration of ethylene in the two

compartments is given by (Becka et al., 1993; Urfer and Becka, 1996):
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1λ , y(0) is the initial

concentration in compartment 1, V1 and V2 are the volumes of distribution of

compartment 1 (inhalation chamber) and compartment 2 (organism), respectively.

In the practical application we have to take into account, that the individual organisms

have different volumes which are also varying between repeated experimental occasions.

In general, the kinetic parameters of the individuals are estimated first and then

standardised to eliminate the effect of the volume (i.e., slightly different body weights of

the rats). As we use the estimated parameters of the individuals for further calculations, we

estimate the standardised kinetic parameters directly (Selinski et al., 2000).
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According to Filser (1992) the individual rates of uptake ][
12

Rk , exhalation ][
21

Rk  and

metabolic elimination ][R
elk are related to the respective rates k12, k21 and kel for a standard

rat of 1000 ml by

3/2
212

][
12 vkk R ⋅= ,

3/1
221

][
21 vkk R ⋅= , and (3.3)

2
][ vkk el

R
el ⋅= , where
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2
2

1000

V
v  depends on the actual volume of the organism V2 and the standard volume

1000 ml.

Substituting the real kinetic parameters in (3.1) and (3.2) yields
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 and β = (k12, k21, kel, y(0))T is the vector of the standardised kinetic parameters and the

initial concentration in the first compartment y(0).

3.3 Population models

Population models find a broad application in toxicokinetics or – more general – in

pharmacology, where individual experimental outcomes should be pooled together to
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obtain a set of parameters describing 'in general' the individual behaviour. The individuals

are assumed to be a random sample of a population so that their individual sets of

parameters and characteristics form a representative data base for the estimation of the

parameters and characteristics of the whole population: population (mean) parameters.

The relationship between observations and parameters is usually nonlinear.

The present approach is referred to as hierarchical Bayes models introduced by Lindley

and Smith (1972) for linear and Racine-Poon (1985), Racine-Poon and Smith (1990) for

nonlinear hierarchical models. The idea is the following: The observations of each

individual are characterised by an individual parameter vector βi. These parameter vectors

βi vary across a population mean β in the manner of a random sample. The population

mean may be known, unknown or there may be some information available. So, the prior

information about the parameter vectors is decomposed into several conditional levels of

distributions. Estimates are obtained as posterior means of the individual and population

parameter vectors.

Four-stage nonlinear hierarchical models are an extension of the classical hierarchical

models as proposed by Racine-Poon and Smith (1990) to the situation of repeated

measurements where the intraindividual variability has to be considered as in the present

inhalation study. Repetition of experiments under equal or different conditions arises in

areas such as biomedical and agricultural growth studies, assay development and

calibration, pharmacodynamic and pharmacokinetic studies.

This section introduces four-stage models for both experimental situations of the ethylene

study: repeated measurements under equal and under different experimental conditions.

The estimation is performed using an EM algorithm, which is introduced in section 3.4.

Finally the outlier identifying procedure presented in chapter 2 is applied.
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Four-stage hierarchical models

We distinguish two cases: first the classical repeated measurement design, corresponding

to group A of the ethylene study, secondly two or more sets of observations per individual

evaluated under different experimental conditions, group B in case of the ethylene study.

The relationship between the observations and the parameters is the following:

yijk = f(βik, tj) + εijk,  (3.6)

where i = 1, . . ., I denotes the individual,

j = 1, . . ., Jik is the index of the time point t at which y was observed,

k = 1, . . ., K denotes the occasion, and

βik = ( T
ikϕ , yik(0))T is a vector of dimension p = 4 with yik(0) being the initial

concentration of the ith individual at exposure k and ϕ ik = (k12ik, k21ik, kelik)
T being the vector

of the standardised kinetic parameters (see previous section 3.2).

In case of the inhalation study with ethylene we have I = 10 individuals in each group and

K = 5 exposure occasions for all animals but one in group A which died at the end of the

fourth exposure due to reasons not related to the experiment. The number of observations J

differs from individual to individual and from occasion to occasion. Indices i and k are

omitted here just for simplification. The time points tj are usually the same for all animals

and occasions with few exceptions, which were completely recorded.

Our main interest are not the individual responses to the experimental conditions but is

focused on a population mean process, which underlies the different individual processes.

The individual kinetic parameter vectors ϕ ik may be regarded as to vary at random across

an individual mean parameter vector ϕ i, which describes the general behaviour of the
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respective processes for that individual. Furthermore the individual mean processes are

supposed to vary across a population mean process with parameter vector ϕ in the manner

of a random sample. Additionally, we suppose that the variances of the observed

concentration-time curves differ from individual to individual and from occasion to

occasion.

Estimation of inter- and intra-individual variability in repeated
measurement data (group A)

Regarding the experiments of group A of the inhalation study, where each of the ten

Sprague-Dawley rats was exposed five times to a concentration of about 100 ppm ethylene,

we propose a four-stage nonlinear hierarchical model.

We assume that the observations yijk of the concentration of ethylene in the atmosphere of

the exposition system are independent and have the following distribution:

given βik, 
2
ikτ : yijk ~ N( f(βik ,tj), 

2
ikτ ), i = 1, . . ., I, j = 1, . . ., J and k = 1, . . ., K,

with βik = ( T
ikϕ , yik(0))T, and ϕ ik = (k12ik, k21ik, kelik)

T,

given βi , Ωi: βik ~ N(βi , Ωi), i = 1, . . ., I and k = 1, . . ., K,

with βi = ( T
iϕ , yi(0) )T, and ϕ i = (k12i, k21i, keli)

T,

given β, Σ: βi ~ N(β , Σ), i = 1, . . ., I,

with β = (ϕT, y(0) )T, and ϕ = (k12, k21, kel)
T,

p(β) ∝  1 ∀  β ∈  IR 4.
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To obtain Bayes estimates for the population mean and individual parameter vectors β, βi,

and βik the nonlinear hierarchical model is transformed into a linear one, such as provided

by Lindley and Smith (1972). For that purpose the observations yijk are replaced by an

'almost' sufficient statistic ζik with

ζik ∼  N ( βik, 
2
ikτ Cik) , i = 1, . . ., I, k = 1, . . ., K,

where 2
ikτ Cik is the inverse information matrix:

( ) ( )�
�

�
�
�

�
−=

− 22
1111111

2
12 ,,,,,,,ln IKIKIJKT

ikik
ikik yyLEC ττββ

∂β∂β
∂τ ��� .   (3.7)

For example, ζik can be chosen as the mean of the posterior density of βik . In the case of

uninformative priors for the variances 2
ikτ , the posterior distribution of βik can be well

approximated by its likelihood, so that the maximum likelihood estimate of βik can be used

as a good approximation for ζik (Racine-Poon, 1985). For the calculation of the information

matrix, see Selinski and Urfer (1998) or Selinski (2001).

To specify f we suppose that our concentration-time curves can be well approximated by

first order kinetic processes. Hence, the concentration-time curve in the exposition system

is given by
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i = 1, . . ., I, k = 1, . . ., K, where �
�

�
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ik
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with λ2ik < λ1ik < 0.
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Thus, we obtain the following linear hierarchical model A.

Linear hierarchical model A

given βik, 
2
ikτ : ζik ∼  N (βik, 

2
ikτ Cik), i = 1, . . ., I, k = 1, . . ., K

given βi ,Ωi: βik ∼  N (βi, Ωi), i = 1, . . ., I, k = 1, . . ., K

given β, Σ: βi ∼  N (β, Σ), i = 1, . . ., I

p(β) ∝  1, ∀ β ∈  IR4.

where 12 −−
ikik Cτ  is the information matrix as given in (3.7).

Bayes estimates may now be derived from the well known formulas of Lindley and Smith

(1972). These estimates are based on the observations and the covariance matrices. The

latter are usually unknown and in the present study we are especially interested in the

covariance structure of the investigated processes. Thus, the estimation is performed by the

use of an EM algorithm which is introduced in the next section.

Estimation in case of different doses (group B)

Analysing the experiments of group B where each of the ten rats was exposed to

concentrations of 20, 50, 100, 200, and 500 ppm ethylene it has to be taken into account

that the dose varies from occasion to occasion. Thus, the individual and occasion-

dependent initial concentration yik(0) varies across an occasion-dependent mean yk(0),
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about 20 ppm for k = 1, for instance.

For simplification of the notation the rats 11 to 20 in the ethylene data set (group B) are

numbered from i = 1 to 10.

Nonlinear hierarchical model

The observations yijk of the concentration of ethylene in the atmosphere of the exposition

system are supposed to be independent and have the following distribution:

given ϕ ik, yik(0), 2
ikτ : yijk ~ N( f(ϕ ik, yik(0), tj), 

2
ikτ ), i = 1, . . ., I, j = 1, . . ., J, k = 1, . . ., K,

with ϕ ik = (k12ik, k21ik, kelik)
T

given ϕ i, Ωi: ϕ ik ~ N(ϕ i , Ωi), i = 1, . . ., I, k = 1, . . ., K,

with ϕ i = (k12i, k21i, keli)
T,

given ϕ, Σ: ϕ i ~ N(ϕ, Σ), i = 1, . . ., I,

with ϕ = (k12, k21, kel)
T

p(ϕ) ∝  1, ∀  ϕ ∈  IR 3.

Linear hierarchical model B

The nonlinear hierarchical model is transformed into a linear one by substituting the

observations yijk by the maximum likelihood estimates ζik. Thus, we receive the following

linear model B:
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given θ, V: ζ~  ∼  N (θ, V), 

where ζ~  = ( T
11

~ζ , . . ., T
IKζ~ )T with ( )Telikikikik kkk ˆ,ˆ,ˆ~

2112=ζ being the three first components of

the maximum likelihood estimate ζik of βik, θ = ( T
1θ , . . ., T

Iθ )T, T
iθ  = ( T

i1ϕ , . . ., T
iKϕ )T,

V = diag{( 1,1
2
1,1

~
Cτ ), . . ., ( IKIKC

~2τ )}, and ikik C
~2τ  denotes the left upper 3×3 matrix of the

inverse of the Information matrix ( ) 12 −
ikikCτ .

given ψ, Ω: θ ∼  N (Z2ψ, Ω), 

where , θ = ( T
1θ , . . ., T

Iθ )T, T
iθ  = ( T

i1ϕ , . . ., T
iKϕ )T, ψ  = ( T

1ϕ , . . ., T
Iϕ )T
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 is a suitable design matrix.

given ϕ, Λ: ψ ∼  N (Z3ϕ, Λ),

where ϕ = (k12, k21, kel)
T, Λ = diag{Σ, . . ., Σ}, and Z3 = (I3, . . ., I3)

T is a suitable

design matrix,

p(ϕ) ∝  1, ∀ ϕ ∈  IR 3.

Where estimates of yik(0) are required, e.g. for the calculation of the residuals, the

maximum likelihood estimate )0(ˆiky  may be used.
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3.4 EM algorithm

In general the EM algorithm as proposed by Dempster et al. (1977) aims to estimate the

'missing data' of an incomplete data set by an iterative procedure. The term 'missing data'

means not only missing values of a random sample but may also refer to unknown

parameters, for instance. Estimates of the 'missing data' and of the (hyper)parameters are

obtained by computing iteratively the expectation of the posterior density given the

observation and the current estimates of the (hyper)parameters (E-step) and the maximum

of the posterior density conditional on the observations and the current estimates of the

'missing data' (M-step). The EM algorithm finds broad application, for example to

grouped, censored, and truncated data, finite mixture models, iteratively reweighted least

squares, factor analysis, estimation of variance components and estimation of

hyperparameters. The latter is done here for the evaluation of covariance matrices,

individual and population parameters in hierarchical models. The algorithm may be used

for both: estimation within a maximum likelihood and within a Bayesian framework.

The EM algorithm in case of four-stage hierarchical models

Fitting hierarchical models by the use of the results of Lindley and Smith (1972) the Bayes

estimates require the knowledge of certain hyperparameters such as 2
ikτ , Ωi, and Σ in case

of the presented four-stage models. However, we have usually only vague knowledge

about these hyperparameters. Furthermore, it is just the aim of the present inhalation study

to gain information about them, especially with regard to the interoccasion and

interindividual variability. Hence, we estimate both the parameter vectors and the

covariance matrices using an EM algorithm as proposed by Dempster et al. (1977).
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As prior density for the inverse covariance matrices the Wishart distribution is chosen, so

that

1−Ω i ~ Wp(ρ1, R1), i = 1, . . ., I, and

1−Σ  ~ Wp(ρ2, R2),

where Wp(ρ, R) denotes the Wishart distribution with degrees of freedom ρ and matrix R

with p denoting the size of the quadratic matrix R. Vague knowledge about the inverse

covariance matrices 1
1
−Ω , . . ., 1−Ω I , and 1−Σ  can be expressed by choosing ρ1 and ρ2 as

small as possible, i. e., ρ1 = ρ2 = p = 4 in case of model A. The choice of R1 and R2,

respectively, seems to have little influence on the estimates (Racine-Poon, 1985).

The unknown variances 2
ikτ , i = 1, . . ., I, k = 1, . . ., K, are replaced by their maximum

likelihood estimates

( )( )�
=

−⋅=
J

j
jikijkik tfy

J 1

22 ,
1

ˆ ζτ , i = 1, . . ., I, k = 1, . . ., K. (3.9)

which may be used to approximate the Bayes estimates due to the equivalence of the

posterior mode and the maximum likelihood estimates of 2
ikτ  in the special case of our

four-stage models.

Model A

With the assumptions and the notation of model A the rth iteration of the EM algorithm is

given as follows:

E-step
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M-step
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Model B

With the assumptions and the notation of model B the rth iteration of the EM algorithm is

given as follows:

E-step
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Both steps are repeated until )(
1

rΩ , . . ., )(r
IΩ , and )(rΣ  converge. Racine-Poon (1985)

suggests as criterion for convergence, that the maximum change in the elements of the

covariance matrices between successive iterations should be less than 0.001.

Reasonable starting values )0(
1Ω , . . ., )0(

IΩ , and )0(Σ  are given by
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in case of model A, where �
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k
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In case of model B, ζik is substituted by the vector of the maximum likelihood estimates of

the kinetic parameters ikζ~ .

3.5 Application of the modified Hampel Identifier

Toxicokinetic data often contain observations which are not consistent with the general

behaviour of the main part of the data and the understanding of the processes involved in

the generation of the data. In case of small data sets it is usually possible to identify those

observations which differ much from the rest of the data clearly without any 'objective' tool

for outlier identification. For larger data sets and cases which are not quite clear such an

'objective' method is necessary to identify outlying observations. For the models

considered in the ethylene study, an outlier identification procedure which is suitable for
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location-scale models, the Hampel identifier, was accordingly modified (see chapter 2).

In case of the present data of the ethylene study the set of observations yN consists of the

measurements of the concentrations in the atmosphere of the inhalation chamber of a

single experiment, i.e. yik = (yi1k, . . ., yiJk) for some i = 1, . . ., I, k = 1, . . ., K. So, every set

of observations for each rat and each dosing occasion is analysed separately. The residuals

are calculated and possible outliers are identified using the described procedure. As the

sample sizes were about N = 20, the first approach consists in using the standardisation

g(20, α20) from Davies and Gather (1993). The standardisation (2.1) and α = 0.05 were

chosen, hence g(20, α20) = 5.82. The second and more expensive approach is to first

simulate the standardisation values g(N, αN) for the exact sample sizes (here ranging from

N = 16 to N = 21) and then to work with these “precise” values. The results of both

approaches are compared. For sets of observations where no maximum likelihood

estimates ζik and individual and occasion dependent estimates βik are available – due to

non-convergence of the maximum likelihood estimation procedure – it is possible to

estimate the respective concentration-time curve using the individual mean βi or ϕ i or the

population mean β or ϕ. The initial concentration may be estimated by using

f(ϕ, y(0), t) = y(0)g(ϕ, t),

with f specified by eq. (3.4) and
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Thus, estimating g by the use of the respective individual or population mean and

substituting f by the observations yields

( )~ ( ) ,*y y g tijk ijk i j0 = ϕ and (3.22)

( )~ ( ) ,*y y g tijk ijk j0 = ϕ , respectively, (3.23)
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i = 1, . . ., I, j = 1, . . ., J, k = 1, . . ., K, where *
iϕ  and *ϕ  are the Bayes estimates of the

individual mean kinetic parameter vectors iϕ  and of the population mean kinetic

parameter vector ϕ, respectively.

The estimate of yik(0) may then be obtained as

~ ( ) ~ ( )y
J

yik ijk
j

J

0
1

0
1

=
=
� . (3.24)

Hence, it is possible to include sets of observations where the maximum likelihood

estimation was not successful – perhaps due to existing outliers – into the outlier

identification procedure. Nevertheless, in cases where this method leads to poorly fitting

estimates of the data the performance of the Hampel identifier would be rather bad.

Generally, the present modelling approach consists of three parts:

•  maximum likelihood estimation of parameters providing the 'data' for the Bayes

estimation

•  EM algorithm providing estimates of parameters and hyperparameters

•  outlier identification using the previous estimates

which can be repeated to obtain a satisfying fit of the model or perhaps to modify the

model after some iterations. It seems to be reasonable to alter the model after the third

unsatisfying EM estimation.

Although hierarchical modelling and EM estimation provide a certain protection against

outliers (Robert, 1994), the maximum likelihood estimation is certainly affected so that an

elimination of outliers using a reference line from a previous estimation procedure could

be a useful tool to improve the estimation.
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4. Results

In the following, the results of applying the modified Hampel identifier to the ethylene data

are discussed. The identification method is applied in two different ways:

first, for all samples under consideration, the standardisation value g(N,αN) corresponding

to the respective sample size N is determined by simulation, and the outlier identification is

performed on basis of these exact values. Second, a tabled standardisation value for an

‘average’ sample size of all considered samples is used as an approximation. This is a

usual proceeding if no tabled values are available for the real sample size. The results are

then compared to decide whether the difference in the results caused by the approximation

is relevant.

Table 1 gives the simulated standardisation values for the Hampel identifier for sample

sizes from 16 to 21.

Table 1. Simulated standardisation values g(N,αN) for the Hampel identifier according to

standardisation (2.1), α = .05.

N g(N,αN) N g(N,αN)
16 6.09 19 5.99
17 6.27 20 5.82
18 6.08 21 5.87

4.1 Identification of outliers in group A

The single data sets for the individuals at the different dosing occasions were analysed with

respect to possible outliers using the modified Hampel identifying procedure described in

section 2. The residuals were computed using the individual and occasion dependent Bayes

estimates *
ikβ  from model A. Additionally, reference lines were constructed by the use of
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the maximum likelihood estimates ζik, by the estimated individual means *
iβ , and by the

estimated population mean β*. The results are compared with respect to the influence of

the estimate on the identification of outliers and the effect of substitution of the chosen

individual and occasion dependent estimate by the individual or the population mean.

The modified Hampel identifier was standardised using the simulated values of g(N, αN),

α = .05, from table 1. The procedure was repeated, this time approximating the

standardisation by g(20, α20) = 5.82, α = .05, from Davies and Gather (1993) as the

number of observations Jik was about 20 for i = 1, ..., 10 and k = 1, ..., 5. Thus, the effect of

the approximation of the standardisation on the identification of outliers was observed.

Table 2 gives the upper and lower bound for the outlier region as specified in definition 2.5

for the data of every single inhalation experiment based on *
ikβ .

Table 2. Lower and upper bound of the αN- outlier region of group A determined by the

use of the Hampel identifier.

rat dose Jik L(xN. αN) R(xN. αN)
1 1 19 -0.9112477 1.8469077

2 20 -5.1319621 8.2092821
3 21 -6.197436 13.030336
4 20 -1.3363561 6.4811261
5 20 -1.0922147 2.3309347

2 1 19 -1.2611003 2.3684803
2 20 -2.3060923 4.3201523
3 21 -10.3808912 17.1700712
4 21 -4.1520851 9.0170251
5 21 -5.5830083 11.4880083

3 1 19 -2.4239292 3.9384092
2 20 -11.7724956 22.3103556
3 21 -1.5865529 3.4108129
4 21 -0.6704028 1.6123228
5 19 -0.6088355 4.0807355

4 1 19 -1.629495 2.569495
2 20 -1.4500249 3.8426249
3 21 -1.3563067 3.6262667
4 21 -1.2776793 2.3310793
5 21 -2.3888117 3.7149317

5 1 19 -0.3040584 0.9916984
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2 20 -1.2766367 2.1069367
3 21 -1.2405029 2.4419829
4 20 0.2139601 7.7298499
5 18 -0.8827382 14.0669482

6 1 21 -1.9182938 3.9369138
2 20 -4.0483568 7.7282968
3 21 -2.2980068 3.6147268
4 21 -1.1012089 2.2736889
5 21 -1.9999311 3.1366711

7 1 20 -2.4866053 4.8892553
2 21 -1.2431173 2.8634173
3 19 -1.3819064 3.1149064
4 21 -0.9986904 3.4146104
5 20 -2.6586297 4.2623397

8 1 20 -2.3686071 4.2476271
2 19 -2.0463594 3.8125794
3 19 -1.4889307 3.3261907
4 21 -1.582507 2.809427
5 20 -4.8864884 8.4601684

9 1 21 -4.3225879 6.4802079
2 19 -4.2012541 13.8237341
3 19 -1.7963907 3.5817907
4 20 -1.881953 3.724453
5 21 -1.1036918 2.0794918

10 1 21 -2.1951778 3.7093378
2 21 -1.6900844 4.1930644
3 21 -3.1143014 5.6345814
4 16 -1.4873949 2.5028949

Table 3 shows which observations are identified as outliers.

Table 3. Outliers in group A, time in hours since application of ethylene.

rat occasion time rat occasion time
3 4 7:55 6 4 0:25
4 2 2:55 6 5 0:25
5 1 0:25 7 4 7:15
5 1 0:50 9 3 5:50
5 2 7:30 9 4 8:10
5 2 8:20 10 1 0:25

Note, that only part of the irregular observations would have been detected as 'outliers' at

first sight at the data.
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As the estimates of the individual and population parameters were satisfying according to

the coefficient of determining

( ) ( )�� −−−=
=
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jj yyyyR 2

1

22 ~1 ,

where yj denote the observations and the jy~  are the estimated observations no further

elimination and subsequent maximum likelihood and EM estimation was carried out.

Performing the identification procedure also based on the maximum likelihood estimates,

the estimated individual and population means yields the following results (table 4) which

are illustrated by figures 3 – 6 (see also figures 7 and 8).

Table 4. Outliers identified using *
ikβ , ikζ , *

iβ , and *β , respectively, i = 1, . . ., 10,

k = 1, . . ., 5, for the calculation of the reference line. Observations identified as outliers

are marked by a cross.

   Identifier based on

rat occasion time (in h) *

ikβ ikζ *

iβ *β
1 5 8:20 ×
2 4 4:35 ×
2 5 6:15 ×
2 5 6:40 ×
3 2 5:50 ×
3 2 6:15 × ×
3 2 6:40 × ×
3 2 7:05 × ×
3 2 7:30 × ×
3 2 7:55 × ×
3 2 8:20 × ×
3 3 8:45 × × ×
3 4 6:40 ×
3 4 7:55 × × × ×
3 5 7:30 × × ×
3 5 8:45 × ×
4 1 0:50 ×
4 2 2:55 × × × ×
4 2 5:50 × ×
5 1 0:25 ×
5 1 0:50 ×
5 2 7:30 × ×
5 2 8:20 × ×
6 1 0:25 × ×
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6 1 4:10 × ×
6 4 0:25 × ×
6 5 0:25 × ×
7 2 0:25 ×
7 4 7:15 ×
7 4 7:55 ×
7 4 8:20 ×
7 4 8:45 ×
8 5 1:15 ×
8 5 2:55 ×
9 3 5:50 × × × ×
9 4 8:10 × ×
10 1 0:25 × × × ×
10 4 6:40 × ×

Note, that there are few observation which are identified as outliers at the basis of all

estimators for the parameters of the deterministic model. Furthermore, the fit of the

respective reference line to the data is often poor in case of the estimated individual mean

and population mean where the latter yields often better results. Thus, a careful look at the

data, especially when using mean parameters, seems to be indispensable to decide if there

is really an 'outlier' or a simple lack of fit of the reference line. Some typical graphs are

given below.
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Figure 3. Observations y and reference lines based on the maximum likelihood estimatesζ,

the individual and occasion-dependent Bayes estimates θ, the estimated individual means

ψ, and the estimated population mean β, respectively, for rat 3, 3rd occasion, group A.

Observations identified as outliers with respect to at least one of the reference lines are

marked by an open circle, the respective reference line is marked grey at that point.
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Note, that in figure 3 the last observation was identified as outlier using all estimates but

the Bayes estimate of θ = (β11, . . ., βIK)T although the difference between the estimated

concentration-time curves of the maximum likelihood estimate and the Bayes estimate is

rather small. The fit of both estimate is quite good 0.98) 0.99,( 22

3333
== βζ RR . Although the

fit of the individual and the population mean is really bad the last observation of this data

set is identified plausibly as outlier.
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Figure 4. Observations y and reference lines based on the maximum likelihood estimatesζ,

the individual and occasion-dependent Bayes estimates θ, the estimated individual means

ψ, and the estimated population mean β, respectively, for rat 4, 2nd occasion, group A.

Observations identified as outliers with respect to at least one of the reference lines are

marked by an open circle, the respective reference line is marked grey at that point.

Though the fit of all reference lines is rather bad (R² from 0.58 to 0.75), it can be seen in

figure 4 that the first outlier at 2:55 h since application of ethylene was identified clearly

by use of each estimate. Furthermore, the observation at 5:50 h was identified as outlier

using the maximum likelihood estimate and the individual and occasion-dependent Bayes

estimate of 42β .



- 36 -

70

75

80

85

90

95

100

105

110

00
:2

5

01
:1

5

02
:0

5

02
:5

5

03
:4

5

04
:3

5

05
:2

5

06
:1

5

07
:3

0

08
:2

0

time 

p
p

m

y

ζ
θ
ψ
β

Figure 5. Observations y and reference lines based on the maximum likelihood estimatesζ,

the individual and occasion-dependent Bayes estimates θ, the estimated individual means

ψ, and the estimated population mean β, respectively, for rat 8, 5th occasion, group A.

Observations identified as outliers with respect to at least one of the reference lines are

marked by an open circle, the respective reference line is marked grey at that point.

Figure 5 shows the dependency of the outlier identification on the model and the fit of the

data. Outliers are identified here only by the use of the estimated population mean for the

calculation of the reference line ( 36.02 =βR , else R² from 0.81 to 0.88).
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Figure 6. Observations y and reference lines based on the maximum likelihood estimatesζ,

the individual and occasion-dependent Bayes estimates θ, the estimated individual means

ψ, and the estimated population mean β, respectively, for rat 10, 1st occasion, group A.

Observations identified as outliers with respect to at least one of the reference lines are

marked by an open circle, the respective reference line is marked grey at that point.

In case of good fit, as shown in figure 6 for rat 10 at first occasion where R² is between

0.92 and 0.99, even small deviations from the supposed concentration-time curve may be

identified as outliers.

Using the approximation of the standardisation g(20, α20) = 5.82, α = .05, from Davies and

Gather (1993) yields slightly different lower and upper bounds of the respective outlier

regions but for all estimators of the reference line the observations identified as outliers are

exactly the same.

4.2 Identification of outliers in group B

Corresponding to the proceeding for group A the modified Hampel identifier as described

in section 2 is used to detect possible outliers in the data of group B. Due to the lack of fit
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of the Bayes estimates *
ikϕ , the residuals were calculated using the maximum likelihood

estimates ζik. In case of the data of rat 11, 2nd and 5th dose, and rat 16, 5th dose, where no

maximum likelihood estimates were available, the population mean ϕ was used instead.

The population mean was preferred to the individual mean as the first provided a better fit

to the data. The initial concentration was estimated using eq. (3.22) and (3.23) of section

3.5. Thus, it was possible to obtain a reference line for the construction of an αN outlier

region.

Additionally, the residuals were estimated by the use of the Bayes estimates of individual

means *
iβ , and the population mean β*, respectively. Furthermore, all results were

computed for the standardisation g(N, αN) from table 1 and for the approximation

g(20, α20) = 5.82 from Davies and Gather (1993), where α = .05 in both cases.

Table 5 gives the lower and upper bound for the αN outlier region, as specified in definition

2.5, for the observations of every single inhalation experiment. The estimation of the

residuals was based on the maximum likelihood estimates ζik except for rat 1, 2nd and 5th

occasion, and rat 6, 5th occasion, where no maximum likelihood estimates were available.

Table 5. Lower and upper bound of the αN- outlier region determined by the use of the

Hampel identifier. Estimates based on the population mean are printed bold.

rat dose Jik L(xN. αN) R(xN. αN)
11 1 21 -0,2841110 0,7407910
 2 21 -5,1696606 10,0360206
 3 21 -0,5761980 2,0416380
 4 21 -2,4045774 4,4638374
 5 20 -7,0606730 12,0597730

12 1 21 -0,2110814 0,3566014
 2 21 -1,3074840 2,1111840
 3 21 -1,1123918 2,6879518
 4 20 -1,4619400 3,8284400
 5 20 -7,6526084 15,0642484

13 1 21 -0,6050284 1,2878684
 2 20 -0,7778164 1,4805764
 3 21 -1,2242896 2,1080096



- 39 -

 4 20 -2,5148430 4,0751430
 5 21 -4,8218580 9,6338580

14 1 21 -0,1945366 0,5402966
 2 21 -0,8605570 1,7159570
 3 20 -0,5528605 1,3709405
 4 20 -3,0541951 4,8529151
 5 21 -7,5056920 12,7548920

15 1 21 -0,0167828 0,5365828
 2 21 -1,1792246 1,8999046
 3 21 -0,7239230 2,0306830
 4 21 -1,2661693 3,1001693
 5 21 -9,9015640 14,9172440

16 1 21 -0,8152432 1,3237232
 2 21 -0,8988106 1,8171506
 3 21 -1,8805286 3,4183486
 4 21 -2,9999606 6,9502606
 5 21 -7,2831032 11,6407432

17 1 21 -0,5519696 1,1390896
 2 21 -0,7586380 1,5099980
 3 21 -1,7376710 3,0702310
 4 21 -2,5484972 5,9540572
 5 21 -10,8637180 18,4097180

18 1 20 -0,2766110 0,7250110
 2 19 -0,6991320 1,5427320
 3 20 -0,7032793 1,5620393
 4 21 -4,0032186 7,5172386
 5 21 -2,9866706 7,1847106

19 1 20 -0,8227933 1,2848033
 2 21 -0,8453054 1,8548254
 3 21 -1,5204196 4,0583996
 4 21 -4,1272774 8,6833574
 5 21 -6,9795800 13,2565600

20 1 21 -0,5181892 0,8734892
 2 21 -0,6511838 1,2995638
 3 21 -1,7231070 3,3327270
 4 21 -3,7732944 7,2022944
 5 21 -2,3303078 5,4311278

The following observations were identified as αN outliers (table 6).

Table 6. Outliers in group B, estimation of the concentration-time curve performed by the

use of the Bayes estimate of ζik  from model B, time in hours since application of ethylene.

rat occasion time rat occasion time

1 3 0:25 5 1 3:20

1 3 7:05 7 3 3:20
2 1 0:25 8 1 4:10

3 2 8:20 8 3 2:30
3 5 0:25 8 3 7:30
4 1 3:45 8 5 3:20



- 40 -

4 2 0:25 10 1 5:00

4 3 3:20 10 5 0:25

4 3 3:45 10 5 5:25
4 4 6:15 10 5 8:20

Note, that no outliers are detected in the data sets of rat 11, 2nd or 5th dose, or rat 16, 5th

dose, where the Marquardt algorithm in PROC NLIN did not converge. The detection of

outliers is not related to the performance of *
ikϕ .

Using the Bayes estimates of the individual means and of the population mean,

respectively, yields quite diverse observations which were classified as outliers (see table

7).

Table 7. Outliers identified using *
iϕ , *ϕ , and ikζ , respectively, i = 1, . . ., 10,

k = 1, . . ., 5, for the calculation of the reference line. Observations identified as outliers

are marked by a cross.

Identifier based on

rat dose time (in h) ikζ *
iϕ *ϕ

1 3 0:25 ×
1 3 7:05 ×
2 1 0:25 ×
2 2 0:25 ×
2 2 0:50 ×
2 2 1:15 ×
2 3 0:25 ×
2 3 0:50 ×
2 3 1:15 ×
2 4 0:25 ×
2 4 0:50 ×
2 5 0:25 ×
3 2 8:20 ×
3 5 0:25 × ×
4 1 0:25 ×
4 1 0:50 ×
4 1 3:45 ×
4 2 0:25 × ×
4 2 0:50 ×
4 3 0:25 ×
4 3 0:50 ×
4 3 3:20 ×
4 3 3:45 ×
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4 4 0:50 ×
4 4 1:15 ×
4 4 1:40 ×
4 4 6:15 ×
4 5 0:25 ×
5 1 3:20 ×
7 3 3:20 ×
8 1 4:10 ×
8 3 2:30 ×
8 3 7:05 ×
8 5 3:20 ×
9 1 0:25 × ×
9 1 0:50 ×
9 1 1:40 ×
9 1 2:30 ×
9 2 0:25 ×
9 2 0:50 ×
9 2 1:15 ×
9 2 1:40 ×
9 3 0:25 ×
9 3 0:50 ×
9 3 1:15 ×
9 3 1:40 ×
9 3 2:05 ×
9 4 0:25 ×
9 4 0:50 ×
9 4 1:15 ×
9 4 1:40 ×
9 5 0:25 ×
9 5 0:50 ×
9 5 1:15 ×

10 1 4:35 ×
10 5 0:25 ×
10 5 5:25 ×
10 5 8:20 ×

Remarkably, the parallel identification of outliers occurs only seldom for the data sets of

group B. This is probably due to the lack of fit of the Bayes estimates. Some typical

situations are shown by figures 7 and 8.
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Figure 7. Observations y and reference lines based on the maximum likelihood estimatesζ,

the individual and occasion-dependent Bayes estimates θ, the estimated individual means

ψ, and the estimated population mean β, respectively, for rat 3, 5th dose, group B.

Observations identified as outliers with respect to at least one of the reference lines are

marked by an open circle, the respective reference line is marked grey at that point.

Although the fit of the estimated population mean was quite bad for rat 3 at 5th dosing

occasion ( 2
βR  = -4.3) the first observation was identified as outlier using both, the

maximum likelihood and the population mean estimate (see figure 7).



- 43 -

0

20

40

60

80

100

120

140

160

180

200

00
:5

0

01
:4

0

02
:3

0

03
:2

0

04
:1

0

05
:0

0

05
:5

0

06
:4

0

07
:3

0

08
:2

0

time

p
p

m
y

ζ
ψ
β

Figure 8. Observations y and reference lines based on the maximum likelihood estimates

ζ, the individual and occasion-dependent Bayes estimates θ, the estimated individual

means ψ, and the estimated population mean β, respectively, for rat 4, 4th dose, group B.

Observations identified as outliers with respect to at least one of the reference lines are

marked by an open circle, the respective reference line is marked grey at that point.

Figure 8 is an example of a misleading identification of 'outliers' by an inadequate model.

Although there is no apparent deviation of the first three observations from the supposed

concentration-time curve these observation are identified as outliers by the use of the

estimates individual mean β4 ( 0.92

4
−=βR ). A small deviation is identified as outlier by the

use of the maximum likelihood estimate ζ44.

Using the approximation of the standardisation g(20, α20) = 5.82, α = .05, from Davies and

Gather (1993) as before yields slightly different lower and upper bounds of the respective

outlier region. For all estimators of the reference line but *
iϕ  the observations identified as

outliers were exactly the same. In case of the individual mean an approximation of the

standardisation g(21, α21) = 5.87 yields an additional outlier for rat 4, 5th dose, 50 minutes
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after application of ethylene.

Thus, the approximation of the standardisation seems to have a minor effect on the

identifying procedure if the sample size is near enough to the tabled value.
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5. Discussion

The present approach provides a flexible tool for outlier detection in data sets which are

supposed to be generated by some known processes as it is the case in toxicology, for

instance. In case of population models it is further possible to search for outliers without

valid estimates for a subset of the data.

Application of this approach to a toxicokinetic study with the chemical ethylene shows the

strong dependency of the identified observations from the model. Nevertheless, alternative

models (maximum likelihood and Bayes) with similar good fit to the data in terms of R²

classify almost the same observations as outliers. Of course 'clearly' outlying observations

are detected by both identifying rules. However, the suggested identification procedure

does not replace the look at the data as the classification may result from observations

which differ much or little from the rest of the data as well as from systematic deviations

from the model. Hence, we consider the modified Hampel identifier as a powerful

screening tool more than as a formal decision rule that separates irregular from regular

observations.

The trouble spot of the modified Hampel identifier is the dependency of estimation

procedure used for the calculation of the reference line. Maximum likelihood or least

squares estimation, for instance, is not robust against outliers. Thus, the irregular

observations we wish to detect influence the estimation procedure and as a result the

identification rule itself. An alternative would be the application of robust estimators for

the parameters like for example M- or S-estimators which presumably have to be adapted

to the model situation considered here. Since these estimators are computationally

expensive even for simpler models, we expect a much higher computational effort in our

case. For the data of the ethylene study already performing the maximum likelihood

estimation procedure lasted several weeks which gives a hint on what to expect for robust
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procedures. Nevertheless, this is the next step and will be done in future research.
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