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Abstract

The paper discusses structural change as possible mechanism that
generates the appearance of long memory in economic time series.
It shows that there are no long memory effects in German stock
returns and that long memory in squares of German stock returns

disappears once shifting means are properly accounted for.

1 Introduction and Summary

It is a well known stylized fact that many financial time series such as squares
or absolute values of returns, even returns themselves behave as if they had
long memory (Ding et al. 1993, Baillie et al. 1996, Lobato and Savin 1998
and many others). On the other hand, it is also well known that long memory
is easily confused with structural change, in the sense that the slow decay of
empirical autocorrelations which is typical for a time series with long memory

is also produced when a short—memory time series exhibits structural breaks
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(Boes and Salas 1978, Diebold and Inoue 1999, Granger and Hyung 1999,
Gourieroux and Jasiak 2001). Therefore it is of considerable theoretical and
empirical interest to discriminate between these sources of slowly decaying

empirical autocorrelations.

This is done below for German stock returns. Using daily data for various
individual stocks and the German stock—price index DAX, we show that both
the returns themselves and their squares are probably best modelled as short

memory processes disturbed by breaking trends.

2 Long Memory as an Artefact of Structural
Change
Let {x;} be the time series under investigation. Following Heyde and Yang

(1997), we say that {x;} has "long memory” if

2
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For a second order stationary process, this definition encompasses the more

popular conditions

Ii ~v(h) =00 and (2)
lim F() = o0 )

as special cases, where y(h) = cov(wy, x4yp) and f(N) is the spectral density
of {z;}. Definition (1) is slightly more general; in particular, it also applies to

cases where second moments do not exist.

For statistical inference, it is helpful to further specify the rates of divergence
in (2) and (3) such that

FO) ~ % (d> 0,7 0). @)



which is equivalent to
y(h) ~ R (5)

where d is the fractional differencing parameter in the popular long memory
model (see e.g. Beran 1994, pp. 59 ff)

(1= B){z} = {w}, we ~ ARMA(p, q). (6)

From (2), it is obvious that an appearance of long memory in the data is
easily produced by any mechanism that makes for a slow decay of empirical

autocorrelations. As an illustration, figure 1 shows an M A(2)-process

1 1
Ty = & + §€t71 -+ §€t72 (t = 1, ey 1000),

superimposed by a deterministic series

I t<500
dt =
-1 ¢> 500

The MA process is stationary by construction, with (k) = 0 for h > 3.
However, for anyone familiar with plots of long-memory time series the series

very much looks like exhibiting long memory.

Figure 1

Figure 2 shows empirical autocorrelations computed from this series up to
order h = 50. There is no tendency to tend to zero. In fact, it is easily seen
that for second-order stationary processes superimposed by a deterministic

series,
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we have

Z?z_lh<xt — ) (T — T) N A% + v(h)
Sz —7)? A? +4(0)

ph) = (8)

In our example above, we have A = 1,02 = 4,7(0) = 5.4, so 5(0)/4(h) =
0.155 for all A > 3.

Figure 2

Figure 3 shows 4(h)/4(0) (h =1,...,50) for sample sizes n = 4000, n = 16000
and n = 32000. It is seen that the autocorrelation function becomes flat very

fast, as predicted by (8).

Figure 3

The appearance of long memory becomes less obvious when the importance of
the time-varying deterministic component diminishes as sample size increases.
Giraitis et al. (2000a) show that the Mandelbrot/Wallis Rescaled-Range test
indicates long memory whenever the trend d; decays with a rate slower than
ﬁ. For d; decaying faster, the R/S statistic and related formal tests have the
same limiting distributions as under short memory. In the general case the

trend is given by

d(”) —

t

Wi 1<t <
{1 N ©)

EYOif r<t<n

where * = [r*n] and 0 < 7 < 1. If A, = k™ — k™ £ 0 is of order
A, = (5nn’%, 0, — 0, the limiting behaviour of the test is the same as under
Hy. Otherwise A,, = 5nn_%, 0, — 00 leads to a rejection of the short-memory

hypothesis.



If A, = A # 0, does not depend on sample size, the R/S-statistic converges
to the same constant independent of whether the disturbance has short or

long-term memory.

Bhattacharya et al. (1983) show that a monotonic trend of the form
g 1
dt:C(m+t) ,—§</6<0, (10)

can also produce the Hurst effect. Giraitis et al. (2000a) generalize this result
by specifying the rate of decay of the trend necessary for confusing the trend

and long-range dependence.

Yet another type of structural change is considered by, among others, Boes
and Salas (1978) or Gourieroux and Jasiak (2001), who investigate a series

generated by
Ty = My + Yt, (11)

where vy, is stationary short memory and where m; remains constant over long

stretches of time, i.e.

ki t<mn
ky m<t<m+mn
ks MM+ <t<m+7T+T13

where {k;} and {7;} are i.i.d., 7; integer-valued and positive. In models like
these, whether or not {z;} exhibits long memory crucially depends on the tail

probabilities of 7.

As an illustration, consider the case where k takes values +m and —m, each
with probability 3, so that E(k) = 0 and Var(k) = of. Assume further that
7; ~ i.i.d. discrete Pareto(«), i.e. P(T > ¢) ~ ¢~ ¢, for some « > 0, and, for

simplicity, that y; ~ i.i.d. (0,0?) and that the sequences {7;}, {k;}, and {y;} are
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independent. Put S; = zg':l 7;, So = 0, s0 that {N(¢)}, N(t) =sup{j : S; < t},

is a renewal process in discrete time. Now m; may be written as
¢
my = Z kj]J(Sj—l,Sj](t) . (13)
j=1
By assumption E(k;) = 0 = E(y;), so that

cov(xy, Toyn) = cov(my + Yo, Muysn + Yevn) = E(memeyn) (14)

Now

t+h
E(mimyip) = (E:k;ﬂ S 15} E:k:ﬂ S, 15]ﬁ-%h))

t t+h
= YN E(kikils, sy (O)is, s, (t+ 1)
i=1j=1
t t+h
= Y E(Elkkills,_, s (6)lis,_, st + W)IS1, Sa, .. )
i=1j=1
t t+h
= op S E(Bls,,.s)6)is, st + W)IS1 Sa, ) (15)
i=1j=1

Observing that the sum equals the probability of no structural change in the

interval [t,t 4+ h) one obtains

Jk ZPS <tS]+1>t+h)

~ op-t-hT. (16)
In the case t = 1 this simplifies to o7 - h™*, so finally
cov(xy, x14p) ~ ooh™* (17)

which should be compared to (5). Thus slowly decaying autocovariances are
possible in the above framework if the waiting time distribution has sufficiently

heavy tails, more specifically if o < 1, i.e. E(1) = oc.
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Clearly, the derivation and results remain essentially unchanged if £ does not

have a two-point distribution and {y;} is a stationary short-memory process.

It is of interest to compare the above shifting-levels process to the Markov-
switching or hidden Markov model introduced by Lindgren (1978). In a
Markov-switching model with stationary transition probabilities sojourn times
are geometrically distributed and long memory cannot occur (see Rydén et
al., 1998). However, in a hidden Markov model with nonstationary transition
probabilities one can likewise obtain the appearance of long memory (Diebold
and Inoue 1999).

3 Long Memory in Stock Returns

In an efficient market, excess stock returns (i.e. actual returns minus required
(= expected) returns) form a martingale difference sequence, so they are un-
correlated and cannot have any memory at all. However, Greene and Fielitz
(1977), using the R/S statistic, find significant long memory in return series
of 200 common stocks listed on the New York Stock Exchange. Peters (1992),
Goetzmann (1993), Mills (1993) and Crato (1994) confirm this finding for other
stocks and for indices like the S & P 500. Lo (1991) and Ambrose et al. (1993)
dispute the significance of these results and propose an alternative test statis-
tic based on an estimator of the return variance that is robust to short-term
autocorrelation. The significance of the observed Hurst effect then tends to
disappear. However, Willinger et al. (1999) reopen the debate by showing that
Lo’s approach is open to criticism as well, and find that long memory might

still occur even after adjusting for possible short term autocorrelation.

Below we apply the methods used above to German data. We also use the re-
cent Giraitis et al. VV/S statistic, which has not been applied to stock returns
before. Our approach is similar in spirit to Aydogan and Booth (1988) and
Chow et al. (1995), who purge the raw returns from effects which might in-
duce spurious long memory. Aydogan and Booth (1988) use the market model
to decompose the total return in a systematic and a nonsystematic element

and show that there is less evidence for the Hurst effect in the nonsystematic
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element. Chow et al. (1995) control for calendar effects, which are one of many
possible types of "trend”, and show that the significance of the observed long

memory effects is thereby reduced.

Below we follow Mills (1993) by decomposing a stock return r; := ¢n(P;/P;—1),
where P, is price (adjusted for dividends, stock splits and so on) into an ex-

pected and an unexpected part:
re=E(r) +re — B (ry) =70 4+, (18)

where we approximate 7; by the arithmetic mean.

It is only r; which is by theory required to follow a martingale difference

sequence.

Below, we approximate 7; by the six-month money rate, plus a risk premium
of 3 percentage points (on an annual basis). Our data are daily returns of
various individual German stocks and the German stock price index DAX
from January 4, 1960 up to April 30, 1998.

For daily returns, 7; is close to zero, with little variation across time, which
might explain why it has been neglected in previous research. The hypothesis
we want to test is that it can make a slight difference if the time series is long

enough.

The first test we use is the Mandelbrot/Wallis R/S test defined by

R,
== 1
On=7, (19)
where
k k

is the "range” and

S, = $ LS (e — 2 (21)

n:3



is the sample standard deviation. A plot of /n ) against ¢n k scatters around
a straight line with slope % for independent or short-memory processes and it
scatters around a straight line with slope H € (3,1) in the long-memory case.
As an illustration, figure 4 shows ¢n(Qy) and ¢nk for the DAX returns. It also
plots the OLS regression line which has a slope slightly larger than 0.5.

Figure 4

Lo (1991) modifies the R/S statistic by allowing for short-term autocorrelation
under Hy. The modified scale is defined by

1 & - g R
g = n z;(fi — Zn)” +2 ZIWJ'(Q)’YJ' ; (22)
1= 1=
where
()=1-— d 4 1n§( Zn)( 7,), 0< j < n.(23)
wilg) =1—-——— an = — 2 (&= Tn)(Tiy; — Tn), 0 <7 <.

The standard R/S statistic is obtained for ¢ = 0.

To obtain better power properties Giraitis et al. (2000b) introduce the related
V/S statistic. Defining

¢
Sy = (x; —z,) and Var(St,...,S%) =

=1

S

f}(S: CSEL (2

the V/S statistic has the form

_Var(St,...,S%)
M, :=n"" 152 : (25)

where S, is defined in (21).

We also apply log-periodogram regression estimates introduced by
Geweke/Porter-Hudak (1983). This estimator uses the special shape of the
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spectral density of a long-memory process at the origin. The spectral density

of a long-memory process {x;} is of the form
fA) ~ex™2d (26)

Taking logs and adding the log-periodogram calculated at the Fourier frequen-

cies \g, = 22—"", E=1,..., [n%] on both sides gives
log I(Agn) =~ log c — 2dlog Ay, +log & , (27)

where & denotes a sequence of identically standard exponentially distributed

random variables.

Equation (27) is a linear regression model and the memory parameter d can

be estimated by least squares.

Table 1 shows the Hurst coefficient H as estimated from the R/S statistic,
the R/S statistic itself, both in standard form and its modified version R/S*,
computed with a bandwidth of ¢ = 90 as suggested by Lo (1991), plus the
more recent V/.S variant suggested by Giraitis et al. (2000b), plus an estimate
d for d computed by applying the GPH estimator, for various individual stocks
and for the stock price index DAX. The GPH estimator is computed with the
optimal bandwidth of n5 (Hurvich et al., 1998). Hurvich et al. (1998) show

that n%(d — d) is asymptotically normal with variance m

51> Wwhich gives an

approximate standard error of ogpy = 0.016 for our data. Returns are in raw
form. Confirming the findings cited above, the Hurst coefficient is uniformly
larger than 0.5, but not significantly so. Only for BMW and BASF the estimate
d for d is significantly different from 0.
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Table 1

Estimated Hurst coefficient and tests for long memory for raw returns

~

H R/S R/S* V/S d

Daimler 0.59 0.77 1.08 0.02 -0.002
BMW 0.60 0.59 096 0.02 0.114
Hoechst 0.55 0.86 1.43 0.03 0.067
BASF 0.54 0.8 146 0.03 0.14
Deutsche Bank 0.57 0.69 0.90 0.14 -0.019
DAX 0.56 0.97 1.50 0.42 0.066

The 5% significance levels of the R/S, R/S*
and V/S-statistics respectively, are 1.747, 1.747 and 0.1869.

Table 2 shows the same statistics as computed from the excess returns r;. It
is seen that the Hurst coefficient is almost identical for most stocks (small
changes after 2 digits) and slightly closer to 0.5 for BMW and that the signifi-
cance of the test results is even somewhat increased. The data therefore reject
our hypothesis that taking excess rather than raw returns has an impact on
measures of long memory. This result is robust to alternative choices of the
risk premium (2% or 4% per year) and the risk-free interest rate. No matter
which type of returns we take, the evidence for long memory is statistically
insignificant; given a sample size of more than 9000, this means that long

memory in returns does not exist.

Table 2

Estimated Hurst coefficient and tests for long memory for adjusted returns

~

H R/S R/S* V/S d

Daimler 0.59 0.80 1.11 0.04 0.03
BMW 0.57 0.61 0.98 0.05 0.13
Hoechst 0.5 094 1.55 0.10 0.08
BASF 0.54 094 158 0.12 0.15
Deutsche Bank 0.57 0.69 1.02 0.03 0.01
DAX 0.56 1.07 1.62 0.13 0.08
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4 Long Memory in Squares of Stock Returns

Contrary to stock returns themselves, squares (or absolute values and various
other functions) of stock returns have long been known to exhibit considerable
autocorrelation. The only issue is whether or not the autocorrelation function

dies out fast enough to preclude long memory.

In GARCH-models of the type

re = zt\/hi (28)

he = fOririo . hioi,hia,...), (29)

where z; is i.i.d. (0,1) and f is linear, it is easily seen that the autocorrelations
of the squared returns must die out exponentially if they exist (see e.g. Mikosch
and Starica 1999). In the GARCH (1,1) model

hy = w + arf_l + Bhy_1 (30)

one often obtains estimates of o and # which sum to unity, in which case
there are no finite fourth moments of r; and the autocorrelations of r? do not
exist. It is an open problem which we address in a separate paper whether
in such models, and in the more general FIGARCH model of Baillie et al.
(1996), condition (1) applies. In any case, empirical autocorrelations of squared
returns, which can always be computed, whether population counterparts exist

or not, often indicate the possibility of long memory.

This appearance of long memory can be explained either by employing a non-
linear function f in (29), or by entertaining the possibility of structural changes
in the function f (i.e. changes in Er?, see e.g. Mikosch and Starica 1999). If
there are structural changes, the appearance of long memory should decrease

when we consider subperiods of the sample:

This is what we do below. Table 3 gives the analogous statistics from tables 1
and 2, as applied to the squares of the returns. In addition, it also shows the

ML estimates for a and 3. The table shows that, more often than not, the data
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indicate long memory. The R/S, R/S*, V/S and d statistics are all significant
at 5%. Also, the estimated GARCH coefficients sum to almost unity.

Table 3

Estimated Hurst coefficient and tests for long memory for squared returns

H R/S R/S* VIS d a [ a+p

Daimler 0.66 4.04 234 048 042 0.14 0.84 0.98
BMW 0.69 283 240 043 028 0.14 0.85 0.99
Hoechst 0.67 3.76 276 055 027 0.12 0.84 0.96
BASF 0.66 331 255 038 028 0.13 0.82 0.95
Deutsche Bank 0.71 3.52 2.17 035 034 0.11 0.88 0.99
DAX 0.71 3.19 225 032 022 015 0.83 0.98

Table 4 shows the same statistics, as computed for the eight 5-year periods
separately. The relevant approximate standard errors for d are now 0.036.
To save space, only averages of the respective coefficients are indicated. It is

obvious that the appearance of long memory is considerably reduced.

Table 4
Estimated Hurst coefficient and tests for long memory for squared returns
(averages over 5-year subperiods)

H R/S R/S* VIS d a 3 a+p

Daimler 0.68 289 1.25 0.14 0.26 0.15 0.80 0.95
BMW 0.68 3.14 149 0.18 0.17 0.18 0.76 0.94
Hoechst 0.67 285 145 0.15 0.08 0.13 084 0.97
BASF 0.68 289 143 0.15 0.15 0.17 0.61 0.77
Deutsche Bank 0.71 3.25 1.31 0.15 0.21 0.17 0.61 0.90
DAX 0.73 273 120 0.13 020 0.15 097 0.95
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The significance of the long-memory effects can be further reduced by taking
still shorter periods (one year, two years) or by subdividing the sample at time
points where structural changes are known to have occurred (oil crisis, 1987
crash), or by first estimating structural changes and subdividing the sample ac-
cordingly. This latter strategy suffers from unresolved problems concerning the
null distribution of popular tests for structural changes (Kramer/Sibbertsen
2000) and is not followed here.

5 Conclusion

We show that long memory in German stock or squares of German stocks
returns is basically a non-issue which results from either insignificant samples
or structural change in the expectation of the series. An open question is
whether non-existing second moments can likewise make a series appear as if

it had long memory. We hope to add some insights here in later work.
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Figure 1

A short-memory time series superimposed by a broken trend
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Figure 2

Empirical autocorrelations of the time series from Figure 1
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Figure 3

Empirical autocorrelations as sample size increases,

n = 4000, 16000, 32000 (from top)
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Figure 4

The R/S statistic as a function of the sample size




