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Abstract

In the common trigonometric regression model we investigate the E-optimal de-
sign problem on the interval [c,d]. It is demonstrated that this problem can be
reduced to the consideration of the corresponding design problem for the model on
the interval [—a,a];0 < a < 7. In a second step it is shown that the structure of the
optimal design for the symmetric design space [—a, a] depends sensitively on the size
of the design space and for most cases the F-optimal designs can be found explicitly.
Moreover, in the remaining situations a functional approach is proposed and used for
the numerical determination of E-optimal designs. The results are illustrated in the
linear, quadratic and cubic regression model, for which a complete solution is given.
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1 Introduction

Trigonometric regession models of the form

B

(1.1) =7
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(d — ¢ < m) are widely used to describe periodic phenomena [see e.g. Mardia (1972),
Graybill (1976) or Kitsos, Titterington and Torsney (1988)] and the problem of designing
experiments for Fourier regression models has been discussed by several authors [see e.g.
Hoel (1965), Karlin and Studden (1966), page 347, Fedorov (1972), page 94, Hill (1978), Lau
and Studden (1985), Riccomagno, Schwabe and Wynn (1997), Dette and Haller (1998)].
While most authors concentrate on the design space [—m, 7] much less attention has been
paid to the case of a smaller design space [see e.g. Hill (1978)]. This situation is of
practical importance because in many applications it is impossible to take observations on
the full circle [—m, 7]. We refer for example to Kitsos, Titterington and Torsney (1988),
who investigated a design problem in rhythmometry involving circadian rhythm exhibited
by peak expiratory flow, for which the design region has to be restricted to a partial cycle
of the complete 24-hour period. Optimal designs for estimating some of the individual
coefficients in the trigonometric regresion model (1.1) have been found explicitly by Dette
and Melas (2001). Recently Dette, Melas and Pepelysheff (2001) determined D-optimal
designs for the trigonometric regression numerically.

Due to the minimax structure of the E-optimality criterion explicit results for E-optimal
designs in regression models are only available in specific situations. Most authors con-
centrate on the polynomial case or models with a very similar structure [see Melas (1982),
Pukelsheim and Studden (1993), Dette (1993), Heiligers (1994, 1998), Chang and Heiligers
(1996) or the recent work of Imhof and Studden (2001)]. In the present paper we present a
further model, for which the F-optimal designs can be found explicitly in nearly all cases.
In Section 2 we demonstrate that the problem of determining F-optimal designs in the
trigonometric regression model (1.1) on the the interval [c, d] can be reduced to the corre-
sponding design problem on the symmetric interval [—a, a], where 0 < a < 7. It is then
shown that the structure of the E-optimal design depends sensitivley on the size a of the
interval [note that this is similar to the polynomial case, see Melas (2000)]. In Section 2 and
3 we find the E-optimal designs explicitly, whenever a € [—a, a]\ (a, @), where a, @ are given
constants depending on the degree of the regression. Moreover, it is demonstrated that the
range @ — a not covered by these results is usually rather small. Section 4 contains the
discussion of the the linear trigonometric regression model, for which the optimal designs
can be found explicitly in all cases. Finally, Section 5 deals with models of degree larger
than one in the remaining case a € (a,a), and the functional approach proposed in Melas
(2000) is used to find the E-optimal designs numerically in these cases.

2 Preliminary results and F-optimal designs on large
design spaces

Consider the common regression model

k
(21) y:Zijj(x)+5, re X,
§=0
where the explanatory variable varies in the compact design space X, fy, ..., fr are contin-

uous and linearly independent regression functions and observations at different points are
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assumed to be independent. An approximate design is a probability measure £ on X’ (or on
its Borel field) with finite support [see Kiefer (1974)], where the observations are taken at the
support points proportional to the weights of € at these points. If f(z) = (fo(z),..., fe(2))T
denotes the vector of regression functions, the covariance matrix of the least squares es-
timator for the parameter = (6y,...,0;)" based on uncorrelated observations from an
approximate design is approximately proportional to the inverse of the information matrix

(2.2) M(E) = /X F(0) £7 (1) de(t) |

and an optimal design maximizes an appropriate concave function of this matrix [see e.g.
Fedorov (1972), Silvey (1980) or Pukelsheim (1993)]. In the present paper we are interested
in the E-optimality criterion, which is given by

where Apin(A) denotes the minimum eigenvalue of a symmetric matrix A € RFFXF+1 Note
that maximizing ® is equivalent to minimizing the function

a’ M~ (¢)a.

max
llalla=1,aeRk+1

The expression a’ M~ (£)a is proportional to the variance of the least squares estimate for
the linear combination a”@ (a € R¥!') and therefore an E-optimal design minimizes the
worst variance over all possible (normalized) linear combinations.

It follows by standard arguments [see e.g. Pukelsheim (1993)] that an F-optimal design
exists. For an F-optimal design {r we define P¢, as the eigenspace corresponding to the
minimal eigenvalue Api, (M (€g)) and

(2.4) P = N P
¢p isE-optimal

as the intersection of all eigenspaces corresponding to F-optimal designs. It can easily be
verified that P # () and the following Lemma gives a characterization for E-optimal designs
[for a proof we refer to Melas (1982) or Pukelsheim (1993)].

Lemma 2.1. A design £* is E-optimal for the regression model (2.1) if and only if there
exists a nonnegative definite matriz A* € RFHIFHL sych that tr A* =1 and

(2.5) max 1 (2) A" f(2) < Amin (M (£7))-

reX

Moreover, if x* is a support point of £*, there is equality in (2.5), i.e.

R A f(2%) = Amin (M (£Y))



and the matriz A* can be represented as

(2.6) A=) n
i=1
where z1,...,2s is an orthonormal basis of the set P defined in (2.4), s = dimP and

i, ..., >0 with Y7 a; =1

In the specific situation of the trigonometric regression model (1.1) we have X' = [¢, d],
folt) = 1/3/2, f2;(t) = cos(jt) (j = 1,...,m) and fy; 1(t) = sin(jt) (j = 1,...,m). Note
that we use a slightly different parametrization of the intercept, but most of our results are
also valid for the trigonometric regression model with fo(#) = 1. Our first result shows that
the E-optimal design in the trigonometric regression model is essentially invariant with
respect to transformations of the design space by an additive shift.

(h.ntn>
’)7:
wy ... Wy

denote a design on the interval [c,d], a = (¢ + d)/2 and &, be the design obtained by the
linear transformation t — t — a, i.e.

t1—a ... t, —a
gn:< )7
w1 W,

then the information matrices M(n) and M (&,) in the trigonometric regression model (1.1)
have the same eigenvalues, in particular

)\min(M(T/)) = )‘min(M(gn))'

Lemma 2.2. Let

Proof: Let f(t) = (1/v/2,sint,cost,...,sin(mt),cos(mt))”, then we have for any a € R
ft+a)=Pla)f(t)

where P(a) is a (2m + 1) x (2m + 1) (block) matrix given by

Q(ma)



with
Q(8) = (cos‘ﬁ sinﬁ) c R2<?

—sin 3 cos 3

Because P(«) is orthogonal the matrices M (n) and

/ £ £ (£)de, (1) / F(t - a)f7(t — a)dn(t) = P(—a)M(n)P"(~a)

have the same eigenvalues and the assertion of the Lemma has been established. a

From the proof of Lemma 2.2 it follows that for any ¢,-criterion in the sense of Pukelsheim
(1993) the solution of the ¢,-optimal design problem for the trigonometric regression model
(1.1) on the interval [¢, d] can be obtained from the solution of the corresponding problem
on the interval [—a, a] and a linear transformation. For this reason we will restrict our sub-
sequent investigations about E-optimal designs to symmetric intervals of the form [—a, a],
where 0 < a < 7. Note that in general an E-optimal design for the trigonometric regression
model (1.1) on the interval [—a,a] is not necessarily unique. For example, it follows by
Lemma 2.1 that for the full circle [—a, a] = [—m, 7] any design with information matrix

111 1) R2m+1><2m+1
2727927779

is F-optimal. In particular any design of the form

(2.9 a:(?jj?)

with n > 2m + 1 and

(27) M* = IQm—I—l dlag(

2j — 1
n

(2.9) tj=—-m+ T, j=1,...,n,

has information matrix M* [see Pukelsheim (1993)] and is therefore E-optimal for the
trigonometric regression model (1.1) on the interval [—m, 7]. In the following we will prove
that the E-optimal design for the trigonometric regression model is unique, provided that
the design space is sufficiently small.

To this end let EEB denote the set of all designs of the form

—tm oo —t1 tog t1 .. T
é‘:g(a):<w_m wi w1 wm)’

B 5 ’U]OTT

where 0 =tp <t < ... <ty 1 <tp=aandw; >0(j=0,...,m) suchthatzg-nzowj =1.
Furthermore, define

(2.10) =22 =

(2) {6 | supp(€) C [—a,a],3A" € PD(2m+1): tr A" =1,

FUOAF(E) = Auin(M(©)) V1 € [~a,a]},
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where PD(2m + 1) denotes the set of all positive definite (2m + 1) x (2m + 1) matrices. A
straightforward calculation shows &, ., € EEZ;, and with the aid of Lemma 2.1 it is easy
to see that the design &5, ., defined in (2.8) is E-optimal for the trigonometric regression

model (1.1) on the interval [—a,a], whenever a > a, where

(2.11) a=a(m)=m(l-

denotes the largest support point of the design &5, ;. The following result shows that
E-optimal designs for the trigonometric regression model (1.1) on the interval [—a, a] are

either in the set EEB or in Eg; depending on the sign of the quantity a — a.

Theorem 2.3. If a € [a, 7], then any E-optimal design for the trigonometric regression
model (1.1) on the interval [—a, a| is contained in the set EEZ; defined in (2.10). If a € (0,a),
then the E-optimal design for the trigonometric regression model on the interval [—a, a] is
unique and contained in the set EE};; Moreover, £ € Eg; if and only if the information

matriz of £ is of the form (2.7).

Proof: Let £* denote an F-optimal design for the trigonometric regression model on the
interval [—a,a] (0 < a < ), then it follows by similar arguments as given in the proof of
Lemma 2.2 of Dette, Melas and Pepelysheff (2001) that
v o =) =(2
& e Ul
(we only have to replace the equivalence theorem for D-optimality by Lemma 2.1). The
same arguments show that if an E-optimal design for the trigonometric regression model
(1.1) on the interval [—a, a] belongs to the set E(B, then it is the unique E-optimal design
on [—a,al.
We start proving the last assertion of the theorem. If a > a, then the design &5, defined
in (2.8) is E-optimal for the trigonometric regression on the interval [—a, a] and therefore
satisfies M(&5,,,,) = M*, where M* is given in (2.7). Consequently, any design £ on the

interval [—a, a] with M (§) = M* must also be F-optimal and satisfies £ € Egz)

)-
Conversely, let

t1 to ... 1,

wy Wy ... Wy

denote an arbitrary design on the interval [—a, a], then it is easy to see that the information
matrix of £ in the trigonometric regression model (1.1) satisfies

(212) (M@ =5, (@) =m+ .



Now assume additionally that £ is F-optimal and a > a, then the E-optimality of the
design &5,,,, in (2.8) implies

MeinM(€)) = MM (€h11)) = MeinM*) = .

On the other hand we have from the well known estimates (M(€))i; > Amin(M(§)) = 5 and
the equations in (2.12)

1 1 1
(2.13) m+ ; (M€t > 5@m+1) =m+
which shows )
(2.14) (M(&))iu = 50 =L 2m L

In the next step let @ = (M(§));; = (M(§));i denote the element in the position (i, ) of
the information matrix of the design &, where 1 < i # j < 2m + 1, and define

1 :
p= ﬁ(ei — sign(a)e;),

where e; € R*"*! denotes the ith unit vector. Then ||p[|2 =1 and we obtain

5 = MalM©) < P MEp = 51, —sign(o) (a a) (—sigln@v))
1 1
= 3= la] < 5

which implies a = (M(§));; = 0, whenever 1 < i # j < 2m + 1. Consequently the
information matrix of any E-optimal design is diagonal, i.e. M(§) = 3lopi1.

Now let a < a, then it follows from the recent results of Dette, Melas and Pepelysheff
(2001) that for any design £ on the interval [—a, a]

det M(£) < (5)

[see the proof of Theorem 3.3 in the same reference]. Because any E-optimal design &*

in =Y satisfies det M(¢*) = det M* = 2-2™~1  there are no E-optimal designs on the

interval [—a, a], which belong to the set = (if @ < a). Consequently, by the discussion at

the beginning of the proof the E-optimal design is unique and an element of the set =0,
Finally, if a > a we have shown that the information matrix of the E-optimal design for the
trigonometric regression model (1.1) is unique and equal to the matrix M* = M(&5,,,,) =

$Iom1, where the design &, is defined by (2.8). Because &, ., € =2 it follows from

the definition (2.10) that any E-optimal design belongs to the set =2,

O



Note that Theorem 2.3 provides a solution of the F-optimal design problem in the trigono-
metric regression model (1.1) on the interval [—a, a] whenever a > a = w(1 — 1/(2m + 1)).
In this case the solution is not necessarily unique. However, the information matrix corre-
sponding to F-optimal designs is unique although the E-criterion (considered as a mapping
on the positive definite matrices) is not strictly concave. If a < @ the E-optimal design on
the interval [—a, a| is unique and will be described explicitly in the following section, if the
parameter a is sufficiently small.

3 FE-optimal designs on sufficiently small intervals

Throughout this paper let
(3.1) Ty(x) = cos(k arccos ) keN;

denote the k-th Chebyshev polynomial of the first kind [see Rivlin (1974)] which are or-
thogonal with respect to the arcsine distribution, i.e.

, ] Lifi=j>1
T
(3.2) ;/ T(@)Tyr) s = { 2 i i = j =0
- -7 0ifi+j

It is well know [see Rivlin (1974)] that Tj(x) is the unique solution of the extremal problem

min max [2"7'2F +ap_ 2" 4 a4 agf
A0,y ar_1€R IE[*I,I]

and in particular we have equality at the Chebyshev points s; = cos(ir/k), i.e.
(3.3) Ti(si) = (=1)", i=0,...,k
Throughout this paper let a = cosa € [—1,1), define
1 -« n 14+«
S )
2 2
as the extremal points of the Chebyshev polynomial of the first kind

20 — 1 —« Qa0 =
(3.5) T (7> =2 + Y quTi(x)
I-a V2 i=1

(3.4) r; = xi(a) = i=0,...,m,

on the interval [«, 1] and

1
(3.6) t; = t;(a) = —arccosz;, i=0,...,m.
a

We will consider designs of the form

A —at,, ... —aty ty aty ... aty,
(37) ga = ( 'lD_m w1 ~ Wy W

2 0 2 Wo oy e T
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as candidate for the E-optimal design in the trigonometric regression model (1.1) on the

interval [—a, a] (note that &, € EEB) The weights in (3.7) are given by

|72 F el
Yimolda Fleil

where ¢; € R™"! denotes the (i + 1)th unit vector, the vector ¢/ = (qao,- - -, Gam) € R™H!
is defined by the representation (3.5) and the matrix F' € R™*1*™*! ig given by

(3.8) iy = ii(a) =

1=0,...,m,

(3.9) F=

To(xo) Trn(x1) .. To(m)

The following result specifies some properties of the design defined in (3.7) and (3.8) and
is the main tool for proving its E-optimality for sufficiently small design spaces [—a, a].

Lemma 3.1. Let &, denote the design defined by (3.7) and (3.8), then the following
statements are correct.

(i) If 0 < a < /2, then the weights w; = w;(a) can be represented as

2 [t 20 —a—1 dx
Ai:)‘a_ll_ éz Tm )
v ( )7r/1 (x) ( 1l -« >w/1—:v2

where the constant A\, is given by

1
3.10 >\a = )
(3.10) o

the vector qf = (qao, - - -, qum) s defined in the representation (3.5) and

x—a:j

3.11 li(x) =
(3.11) w-T=
denotes the ith Lagrange interpolation polynomial with knots xo, .. ., x, given by (3.4).

(ii) For all a € (0,7] the quantity \, defined in (3.10) is an eigenvalue of the matriz
M (&,) with corresponding eigenvector @o = (qao, 0, qa1,0, - - -, 0, Gam)? -

(11i) The support points and weights defined by (3.6) and (3.8), respectively, satisfy

(3.12) lim ¢;(a) :COS(WT’;_Z) i=0,...,m

a—0 m

L . .: .
(3.13) lim d;(a) = { m ifi=1,...,.m—1

a—0 5= if 1 =0,m.



Proof: Let w = (wy, ..., wy,)" € RPT 3" w; =1 and

—at,, ... —aty ty aty ... at,,
Ea(w) = ( Wi wy wy W )

B B Wo 5 - o

an arbitrary design with positive weights at the points +at; (i = 0,...,m). It was shown
in Theorem 4.1 and 4.3 of Dette and Melas (2001) that for a € (0, 7/2] the optimal designs
§0):§(2)»- - -» §2m) for estimating the individual coefficients 3y, 3;,. .., Bom, respectively, in
the trigonometric regression model (1.1) on the interval [—a, a] are of the form

(3.14) i = &lwyy) . 7=0,...,m,
where the weights w;) = (wj), - - -, Wm)" are given by
By :

(3.15) w(j)i:ﬁ%ms, i=0,...,m,
and

ot dx o
(316)  Byy = (—1)mH / TR = ()
with ¢ = 7/v/2, ¢; = 7/2(j = 1,...,m). Note that we use a slightly different notation for

the support points ¢; and Welghts wy;y; compared to the cited reference.

A similar argument as given in the proof of Lemma 2.2 of Dette and Melas (2001) shows
that the design 7, obtained by the transtormation

E(x)+&(—2) if0<z<a

(3.17) ne(cosz) = { £(0) £ o0

is optimal for estimating the coefficient §; in the Chebyshev regression model
(3.18) = —° + Z 8;T(x

and the representation (3.5) in this paper and Lemma 2.1 in the cited reference show

(3.19) qzj = eJTMT_I(ng(zj))ej , Jj=0,...,m,

where My (n) denotes the information matrix of the design 7 in the model (3.18). Moreover,
recalling the definition of the matrix F in (3.9) it follows from Lemma 8.9 in Pukelsheim
(1993) that

m

o 2
(3.20) g =ej My (ng,) e (Z el Fle ) = (Z(—l)m“”e?F’lej)

1=0
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(j =0,...,m), where the last equality is obtained by a careful analysis of the sign pattern
in the matrix F~! observing that a € (0,7/2]. Because for a € (0,7/2] the sign of q,; is
(—1)™7J we obtain from the identity (3.20)

m

(3.21) Goj =3 (~1)'e]Fle;,  j=0,....m,
=0

and the second equality in (3.16) gives for the vector ¢! = (qaos - - - Gam)’

(3.22) GF ey =) qu(e] Fle;)
=0
1 m
4aj dx
= li(x —T:(z
| ) BT

1
_ g/ Zi(x)Tm<2x_ 1—a> dx
o l—a /1=22
(i =0,...,m), where we have used the representation (3.5) and the fact that ¢; = 7/2 (j =
1,...,m);co = m/\/2. Moreover, observing that for a € (0, 7/2] the sign of g,; and e]TF_lei
is (—1)™77 and (—1)™**J respectively, we obtain that the sign of ¢/ F~'e; is (—1)". Now
the polynomial in (3.5) attains the values (—1)" at the point x; (i = 0,...,m) and it follows

(3.23) Tm(w> = o0y > Ti(w) = 3 (=174 ().

l—«o

Combining these arguments yields

(3.24) S lgbF e = > (—1)'qi Fle;
1=0 1=0

_ %i(—l)i/_ll&(x)Tm(%:;a)\/%

] G R
T )4 11—« V11— 22
where the last equation is a consequence of the representation (3.5) and the orthogonality

relations (3.2). The assertion (i) of Lemma 3.1 now follows from the definition (3.8) and
the identity (3.22).

In order to prove the second assertion of Lemma 3.1 let P € R¥*™+1>2m+1 denote a permu-
tation matrix such that

(3.25) PM(&)P" = M(&,) = (MC@“) ‘. ) :



where the blocks in the matrix M ( Sa) are defined by

(3.26) / fe(t) FE(t)dE(t) € R
(3.27) M9 = [ 105 e e e
and the vectors f.(t) € R™™ and fs(t) € R™ are given by

(3.28) fE(t) = (1/V2,cost, ..., cos(mt)),
(3.29) fE(t) = (sint,...,sin(mt)),

respectively. Because the matrices M(£,) and M(&,) have the same eigenvalues and its
corresponding eigenvectors are related by the transformation x — Pz the assertion (ii)

of Lemma 3.1 follows, if we prove that the vector ¢, = Pg, = (qI,07)
eigenvector of the matrix M (,) with corresponding eigenvalue

)\a - (q~g(ja)71 - (QZQa)il-

T ¢ R?Zm+l ig an

But this follows easily observing that the sign of ¢ Fle; is (—1) for a € (0, 7] and from

the representation of the weights w; in (3.8) and (3.24), which gives

= ch(ati)fg(ati)wi(h
=0

- 1
=Y flat)——qi F e
i=0 qa qa
1 -1
= T FF 4o = )\aQa .
qa qa

Consequently, we obtain -
M(&a)&a = )\aq~a

completing the proof of the second assertion of Lemma 3.1.

For the proof of the remaining third part recall that the sign of ¢,; and e;FF*Iei is (—1)

and (—1)™"7 respectively. Then (3.21) implies for sufficiently small a

m
ldag) = Y lef F'e
=0

and from the first equation in (3.22) we have

(~D'qg F7'ei = (=1)" Y 1agl (=1)" 7 es F e (=1)7 7
=0

m
= laajlles Feil.
=0

12
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A summation of these quantities yields for the weights of the design &, defined in (3.7)

7 |qng71€i| m '
w; = = Wi o la , ZZO;---,’ITL,
Z > o gl F'e] jz:; Gi - (a)

where 4l
Qaj
(3.30) aj(a) = w17 -
! 25:0 |qas|2
and the weights wy;); are defined in (3.15), (3.16) and (3.20) corresponding to the optimal
design

j=0,...,m,

B _ —at, ... —aty ty aty ... aty,
) = &(wy) = Wiym w1 WG W(j)m
2 o T2 WEHo T e T

for estimating the individual coefficient f,; in the trigonometric regression model (1.1) on
the interval [—a,a], whenever 0 < a < m/2. Note that we use the second representation
in (3.16) and the equation (3.20) to find this normalization. In other words: the design &,
is obtained as a convex combination of the optimal designs for estimating the individual
coefficients in the trigonometric regression model (1.1) on the interval [—a, a] (whenever
0 <a<m/2), that is

(3.31) &= (@) -
=0
If a — 0, the representation (3.5) implies that (v = cosa)
(3.32) lim(l1 —a)q, = fe€R"™,
a—0

where f = (fo,..., fm)? # 0 denotes the vector in the expansion

- Jo -
3.33 22" Nz —1)™ = = + Ty(x)
(3.33) (z —1) NG ; fiTj(x)
Consequently, we obtain from (3.30) for the weights in the convex combinaion (3.31)
(3.34) limaj(a) = a; = %, j=0,...,m.

a=0 im0 il

Finally, Corollary 4.2 in Dette and Melas (2001) shows that for j = 0,...,m the optimal
design ;) for estimating the individual coefficient [; in the trigonometric regression
model (1.1) on the interval [—a, a] converges weakly in the following sense

clli_r%g(?j)([_aa at]) = C([-1,t)) , te[-1,1],

where the limiting design ( is given by

3 35 . —Ym —Ym-1 --- —Y1 Yo Y1 --- Ym—-1 Ym
(3:35) ¢= 11 11 1 11
4m 2m U 2m 2m 2m T 2m 4m



with .
yi:cos<M>, 1=0,...,m.

2m

Consequently, equation (3.31) shows that éa has the same weak limit, i.e.
(llli%fa([—a, at]) =¢[-1,t], te[-1,1],
and assumption (iii) of Lemma 3.1 follows by rewriting this statement in terms of the

support points and weights of the designs éa and ¢, respectively. O

Theorem 3.2. For sufficiently small a > 0 the design &, defined in (3.7) and (3.8) is E-
optimal for the trigonometric regression model (1.1) on the interval [—a, a]. The minimum
eigenvalue is given by Amin(M(&,)) = \o where

2 [t 20— 1—« dx
Al = 7 :_/ T2
[ qaqa T . m l—a /71_:172

and the vector ¢, = (qao, - - -, Gao)’ is defined by the expansion (3.5).

Proof: Recalling the definition of the design &, in (3.7) and (3.8) , we will study the
asymptotic behaviour of the matrix

a*" M (E,)
as a — 0. To this end let

(3.36) Us(z) = sin((k + 1)arccosz)

. k>0
sin(arccos )

denote the Chebyshev polynomial of the second kind and define

2(1 — cost)

u=u(t) = o

Obviously cos(kt) = Tj(1 — %u), sin(kt)/sint = Ug_1(1 — %u) and consequently there

exists an (m + 1) x (m + 1) matrix S(;) and an m x m matrix S such that the vector

ft)= (/7). ;7)) e R

can be represented as

(3.37) f(t) = SAf(u())
where : . : -
(338) ()= (%,u(t), (o), T, T )
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and the matrices A and S are defined by

a® a’ a? a2
(339) A= A(a) = dlag{la 57 ey (5)771, a, a(?) ceey a(;)m_l} & R2m+1><2m+1
and
(3.40) S = (S(l) 0 ) c R2m+1 ><2m+1,
0 5(2)

respectively. It is easy to see that the matrices S(1), S(2) do not depend on the parameter
a and are lower triangular with nonvanishing diagonal elements. Consequently, we obtain
an alternative representation for the matrix M (&,) defined in (3.25)

(3.41) M(£,) = SAM (£,)AS™

where

(3.42) M) = | F(O)f"(t)dE(t) € RImHxEm,
Now let 1

N T
f(t) = (—,t2, SR ..,t2"“1)

V2

and define for any design &

(3.43) M) = [ Fo i et
as the corresponding information matrix. From the expansions
(at)” .
1 — cos(at) = 5 (1+o0(a)) and sin(at) = at(1 + o(a))

and (3.38) it is easy to see that . A
lim f(at) = f(t).
a—0
Consequently we obtain from the third part of Lemma 3.1 and the definition (3.42) that

(3.44) lim M (£,) = M(()

a—0

where ( is the limiting design defined in (3.35). Moreover, from (3.39) we have

a2

. @ m q-1 5
(3.45) ‘IIILI[I]( 5 )" A™ (a) = diag(0,...,0,1,0,...,0),
which gives for the matrix M (&,) in (3.41)
2 ~
(3.46) lim (%)™ A7 (E,) = (ST)"' DS

a—0" 2

and for the corresponding (m + 1) x (m + 1) block
2

s O o 1 e (ol V1 —1
(3.47) clg(l)(?) M; (&) = (S(1))” DSy,

15



where the matrix D € R?>"+1x2m+1 g defined by

0 O
D(l) = Aemeﬁ € Rm+1><m+1,

em = (0,...,0,1)7 € R, )
A =en, M (Cem.

and M, (¢) denotes the m + 1 x m 4 1 matrix formed by the first m + 1 rows and columns
of the matrix M(¢) defind in (3.43). Because the matrices D and D¢y have rank one, the
matrices on the right hand sides of (3.46) and (3.47) have only one non-vanishing eigenvalue.
By the discussion at the end of the proof of Lemma 3.1 we have

2 m
hm<1> Go=f#0€R™
a—0 2

where the vector f is defined by the expansion (3.33). Similary, it follows for the eigenvalue

At of M)
ag 2m ag 2m
lim (5) At = lim (—) 0 q. = f1f#0.

a—0 a—0 2

Consequently, the continuous dependence of the eigenvalues of a matrix from its elements
[see Lancaster (1969)], formula (3.46) and (3.47) imply that for sufficiently small a the

matrices

a2 2

(P MG, (5)7 M (E)

have a maximal eigenvalue of multiplicity 1, which is given by

Cl2

- Zm)\—l‘
(2) a

In other words, the minimal eigenvalue \, of the matrix ]\Z/(éa) has multiplicity 1, provided
that a is close to 0.

Now let 0 < a < a be sufficiently small such that this property is satisfied. By Lemma 3.1

(ii) the vector ¢, = (¢a0, 0, ¢a1,0, .. .,0, gam)? is the eigenvector corresponding to \, and we
define A* = X\,7,q.. With these notations we have from (3.5)
T ¢ 2 Tm 22—1—a
max f7(t)A*f(t) = max 7(%];0( ) = max 7( Tlfa ) =
te[—a,al te[—a,al q, % z€[a,1] q, %
1 A .

_ i =X = Amin(M (&) = Amin(M (&,))

and the optimality of the design éa follows from the equivalence theorem given in Lemma
2.1.

16



Finally, the integral representation of A\-' follows from the orthogonality properties (3.2)
of the Chebyshev polynomials and the representation (3.5), i.e.

- 2 ! dx
A= Ta: ai a'_/ biTi(x)T(7)——
2= qu]'ﬁflj()]()m

i,j=0

2 M NS )
B ;/_1(\/5 " ;qul(x)) V1 — x?

B 2/1T2 2r—1—-a dz
I l1—a V1= 22’

where by =1/2, b; =1,if j > 1.

The following Corollary is an immediate consequence of Theorem 3.2 and its proof.

Corollary 3.3. Let
(3.48) a=a(m)=sup{a >0 | Aun(M(&)) = A} ,

where A, is defined in (3.10). Whenever 0 < a < a, the E-optimal design for the trigono-
metric regression model (1.1) on the interval [—a,a) is given by the design &, defined in
(3.7) and (3.8). Moreover

(3.49) a = min{a, g},

where the quantities ayy and . are given by

agy = agy(m) = sup{a > 0 Amin(Me(&)) = Ao}
(3.50)
) = apy(m) = sup{a > 0 Amin(M; (&) > A}

The quantities a(), a) have been calculated numerically for lower order trigonometric
regression models and are listed in Table 1. Note that these values are rather close to the
upper bound @ = 7(1 — 1/(2m + 1)) obtained in Section 2 and consequently Theorem 2.3
and Corollary 3.3 cover a rather large range of the interval (0, 7] for the parameter a of
the design space [—a, a]. Moreover, the Table indicates that both values might be equal in
general and in Section 5 we will prove that a(,) = a() for all m € N.

Note that Table 1 does not contain the case m = 1, for which a complete analytic solution
is presented in the following section. For later purposes we require the following auxiliary
result, which is probably of independent interest.

17



Table 1: Bounds a, a = min{a, ()} obtained in Sections 2 and 3. The E-optimal design
for the trigonometric regression model (1.1) on the interval [—a, a] can be found analytically,
whenever a € (0,a] U [a, 7]

a) 9) a
0.7417 | 0.7417 | 0.87
0.794m | 0.794m | 0.8577
0.827m | 0.8277 | 0.88971
0.8517 | 0.8517 | 0.9097

Ul w oS

Lemma 3.4. Let 0 < a < a=m(1—1/(2m+ 1)) and £ denote the E-optimal design for
the trigonometric regression model (1.1) on the interval [—a,a]. If the minimum eigenvalue
of the information matriz M(£*) has multiplicity 1, then

&= éaa
where the design &, is defined in (3.7).

Proof: From Theorem 2.3 we have that the F-optimal design £* is unique and of the form

* * * * *
o =ttt Lt
T e wi ok wi wh |

5 SN 'LUO 5 -+ 9

Now let
A= )\mm(M(S*)) = min{Amin(Mc(g*))a )‘min(Ms(g*))}

denote the minimum eigenvalue of the matrix M (£*) and consider at first the case where
A = Amin(M(€%)). Obviously, A\* is a simple eigenvalue of M.(¢*) and we define ¢ =

(qo, - .., qm)T as the corresponding eigenvector. With the notation ¢ = (o, 0, 1,0, ...,0,¢n)T
and A* = qq* /4% q it follows from Lemma 2.1 that (note the £* is E-optimal)
T t))2
N = max fT(t)A*f(t) = max M
t€[—a,a] f ( ) f( ) t€[—a,a] qTq

Consequently, the polynomial

U (z) = ¢" f.(arccos z)

*

attains its maximum absolute value in the interval [, 1] at the m + 1 points ]

(1=0,...,m) and must coincide with the polynomial

$Tm<2x—1—a>’
l—«o

18
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which implies supp(£*) = supp(fa), q = Fq, and \* = )\, = 1/¢q'q,. From the equation

Mc(g*)Qa = )\aQa

it is then easy to see that the weights w; must coincide with the weights of the design €a
given in (3.8) and it follows that £* = &,.

Secondly, if A* = Apin(M(€%)) < Amin(Mc(€¥)), then a similar argument shows that £* is
concentrated at 2m points, which is impossible. O

4 Example: the linear trigonometric regression model
on a partial circle

In this section we study the linear trigonometric regression model on the interval [—a, a],
which indicates that even this relatively simple case is not trivial. Our next proposition
specifies the E-optimal designs in the linear trigonometric regression model. In this case
it proves that a = a and we will show in the following section that this equality only holds
in the linear case.

Proposition 4.1. Consider the linear trigonometric regression model (1.1) on the interval
[—a,al.

(i) If a =27/3 < a <, then an E-optimal design for the model (1.1) is given by

—27 27

¢ = 5 03
3 1 1]

3 3

(i) If 0 < a < a = 27/3, then the E-optimal design for the model (1.1) is unique and

Wl

given by
( ) ( —a 0 a )
4.1 &=
11 ) 2
where 449
cos a
(4.2) ula) =

4+ 2(1 4 cosa)?

Proof: The first point and the statement of uniqueness in (ii) follows from Theorem 2.3,
which also shows that the E-optimal design is of the form (4.1), whenever 0 < a < a.
If a is sufficiently small, we can use Theorem 3.2 and Corollary 3.3 and obtain from the
representation of the weights by the first part of Lemma 3.1 [xy = 1, 7y = a = cosa,
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qad = _\/5(1 + a)/(l - Oé), Qa1 = 2/(1 - Oé)]

1+a+a?
4421+ a)?’

where we have used the orthogonality relation for the Chebyshev polynomials of the first
kind. The representation (4.2) now follows from a trivial calculation, i.e.

4+ 2a

(4.3) p(a) = 1521+ a)

Note that this formula can also be obtained from the representation wy = ¢X F'eq/ql qa,
where ¢y = (1,0)7 and
11
F=|v2Vv2]).
1l «

A straightforward calculation shows that

(1-a)?

(44) “T1+2(1+a)

is the minimum eigenvalue of M,(&,) and has multiplicity 1. Consequently the critical value
a can be obtained as

a = sup{a € (0,8)Muin(Melde)) < Auin(M, (&) }

= inf{a € (0,@)Amin(Me(€)) = Amin(M (&) }
which gives the equation

_ (1—a)?
44 2(1+a)?

B 44 2«
4+ 2(1+a)?

(1+a)(4+2a)

Aa
1l -«

= pla)(1 - 0?) (1-0a?) =

a

where we have used the representation (4.3) and (4.4) for the last equalities. This yields
the equation 2o + 7a + 3 = 0, which gives as unique solution in the interval [—1, 1]

1 27

cosg=a=—-, 4= —.

2 3

By Theorem 3.2 and Corollary 3.3 the F-optimal design for the trigonometric regression
model (1.1) on the interval [—a,a] is given by (4.1) and (4.2), whenever a € (0, a], which
proves part (ii) of the proposition. a
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5 FE-optimal designs on arbitrary intervals

As it was shown in Section 2 we can restrict the discussion of the F-optimal design problem
to the case of symmetric intervals [—a,a], 0 < a < m. For 0 < a < a = a(m) and
a = a(m) < a < 7 we have already received explicit solutions for the E-optimal design
problem in the trigonometric regression model (1.1) on the interval [—a, a]. Note that the
range (a,a) not covered by these results is rather small (see Table 1) and consequently
explicit solutions of the E-optimal design problem are available for most cases. Moreover,
in Section 4 we have shown that in the linear trigonometric regression model with m =1
we have ¢ = @ = 27/3 and a complete analytic solution is available in this case.

Now we will prove that for m > 2 it follows that a < a and elaborate a technique for the case
a < a < a, which can be used for the numerical construction of E-optimal designs and is
based on a functional approach described in Dette, Melas and Pepelyshev (2000). Roughly
speaking this method shows that the support points and weights of the E-optimal design
are real analytic functions of the parameter a € (a,a) and provides a Taylor expansion for
these functions, which can be used to find the F-optimal designs numerically. The method
will be illustrated for the quadratic and cubic trigonometric regression model at the end of
this section.

We begin with a reformulation of Lemma 2.1. To this end let us introduce the function

(5.1) U(r) = U(nqp) = (qTfu)(:c))?;rT ((11+—pa;2(pr(2>(fv))2,

where ¢ = (qo, ..., qm)" € R™! is an arbitrary vector with ¢, = 1, p = (po, ..., Pm-1)" €
R™ is an arbitrary vector and the functions f;)(x) and fig)(x) are defined by

(5.2) (@) = (1/\/§,T1(x),...,Tm(a:)),
(5.3) @) = (Us(a),. .., Un 1 (2)) .

Due to Theorem 2.3 we can restrict our consideration to the case a < @ and designs £ € =,

The following result is a refinement of Lemma 2.1 for the model at hand.

I

Lemma 5.1. For the trigonometric regression model (1.1) on the interval [—a,a] with
0 <a < a the design

(5.4) gz(—tm...—tl te t ...tm>’

Wi wy w1 Wm
B Wo 5 -+ 9

with ty = 0, t,, = a is E-optimal if and only if there exist vectors ¢ = q(a) = (qo, . .., qm)T €
R™ Y with q,, = 1 and a vector p = p(a) € R™, such that the inequality

(5.5) U(z) = ¥(7;¢,p) < Amin(M(E))

holds for all x € [a, 1], where the function V(x;q,p) is defined in (5.1).
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Moreover, if a design & of the form (5.4) is E-optimal then these vectors are eigenvectors
of the matrices defined by (3.26) and (3.27) corresponding to the minimum eigenvalue
A= Anin(M(&)) of the matriz M(E), that is

(5.6) M(§)q = Ag, M(&)p = Ap,

and '

57) \If(xl) = U(cosa), , i=1,....m—1,
U(r;) =0, , i=1,....m—1,

where x; = cost;, 1 =0,1,...,m — 1.

The polynomial V(x) is uniquely determined. The vectors p and q can be chosen such that
the polynomials

P foy(z) and  q" fr)(z)
have interlacing roots and under this additional condition the vectors p and q are also
uniquely determined. If a € [0,a] it follows, that p = 0.

Proof. Let us prove that the inequality (5.5) is a necessary condition for E-optimality. To
this end assume that a design £ of the form (5.4) is E-optimal and let A* be the matrix,
defined in Lemma 2.1, such that the inequality (2.5) is satisfied.
Consider the function

U(z) = h(arccosz),

where h(t) = fT(t)A*f(t), t = arccosz. Note that due to Theorem 2.3 ¥(z) # const
whenever 0 < a < a. Since
sin(k arccos x) = V1 — 22U, ()
and
cos(k arccos x) = Ty (x),

it follows that W¥(x) is a polynomial of degree 2m [note that W(x) is not constant and by
Lemma 2.1 has 2m — 1 roots counting multiplicities]. Our polynomial is nonnegative for
—1 < 2 <1 due to nonnegative definiteness of the matrix A*. It is known (see Karlin,
Studden, 1966, Ch. 2) that such a polynomial can be represented in the form

(5.8) U(z) = pi(z) + (1 = 2°)p3(x),
where 1 (z) is a polynomial of degree m, ps(x) is a polynomial of degree m — 1, i.e.

m m—1

(5.9) pr(@) =Ci [[(x =), p2=Co [[ (- 50),

=1 =1

and that the roots of these polynomials are interlacing, i.e.
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MN<Y< oo <Yy 01 < .o < Opp1-

Morover, this representation is unique. Since the polynomials Ty(z), ..., T,,(x) are linearly
independent and the same is true for the polynomials Uy(z), ..., U, 1( ), we have

e1(z) = Cq" fu)(z),
pa(w) = Cp' fo)(x),

where C' > 0 is a constant and ¢ = (qo, ..., ¢n)" € R™"' p € R™ are appropriate vectors
with ¢,, = 1. Recalling that the functions v/2fi(t), k =0, 1,...,2m are orthonormal with
respect to measure —dt on the interval [—m, ] we obtain

1 " * _ *
;/_W fr)A* f(t)dt = trA* =1,

and, therefore,

1= 2 [ = X [ )+ 0 e - )

= Cl¢"q+p'p).
Consequently, C' = 1/(¢¥q + pTp) and due to Lemma 2.1 it follows for all ¢ € [—a, d
FEOA (1) < Amin(M(€)),
or equivalently

510) ¥ = wgp) = CHOELEZ DR

for all x € [a, 1], where A = Apin(M(€)) denotes the minimum eigenvalue of the matrix
M(&). Therefore condition (5.5) follows from the E-optimality of the design £. Due to
Lemma 2.1 the left hand side of the inequality (5.10) attains its maximal value A at the
support points z; = cost;, i = 0,...,m (since ¥(z) = h(t), t = arccosz) and the system of
equations in (5.7) provides also a necessary condition for F-optimality.

To prove that (5.6) is also a necessary condition for E-optimality we put z = cost and
integrate the left hand side of (5.10) with respect to the measure &£(dt). We receive

" M.(§)q + p" My (&)p
pI'p+q%q

(5.11) < A

where the second term should be replaced by zero if p = 0. Since

.
in T i) 2 2,
(5.12)
min PSP @) 2
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it follows that ¢ is an eigenvector of the matrix M.(§) corresponding to its minimal eigen-
value A, that is

M.(§)g = Aq.

Similary, p is either equal to 0 € R™ or an eigenvector of the matrix M(&) corresponding
to its minimal eigenvalue A. In both cases we have the equation

M,(&)p = Ap.

Finally, we prove that (5.5) is a sufficient condition for F-optimality of the design £. To
this end define

A= (qq" +p")/(¢"a+1"D),
then tr A =1 and it follows from (5.5) that for all ¢ € [—a, a]

FrOAF(H) < Amin(M(E))-
Due to Lemma 2.1 the design £ is E-optimal.

Note that the polynomial ¥(z) is uniquely determined by the conditions (5.7) and (5.5).
Moreover, we proved above that the vectors p and ¢ are uniquely determined under the
additional condition of interlacing roots.

Let 0 < a < a, then Apin(M,(€)) > A and from (5.11) and (5.12) it follows that p = 0. In
the case a = a the equality p = 0 follows from a continuity argument. O

Lemma 5.1 will be used to obtain a representation for the minimal eigenvalue of the in-
formation matrix of the F-optimal design. This representation will be essential for the
numerical construction of E-optimal designs.

Lemma 5.2. For the trigonometric regression model (1.1) with m > 2 we have for the
quantities a and a defined in (3.48) and (2.11), respectively,

a<a.

Proof. It is evident that a < a. Suppose that a = @, then Theorem 3.2 and Corollary 3.3
show that for a < g the design &, defined by (3.7) and (3.8) is E-optimal. For ¢ < @ there
exists a unique E-optimal design by Theorem 2.3 and a continuity argument shows that
there also exists a unique F-optimal design in the case a = a = a, which is of the form

b =t to  t ...t
*_
&= 1 1 1 1 1 ’
M+l "' 2m4l 2m4l 2m4l " 2mtd
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where the support points are given by

' |
ti:ﬂ(l— ) i=0,...,m.
m 2m +1

Therefore, £* = fa and we obtain the equations

1=0,...,m,

. [m'(l 1 )] 1—a 7ri+1+d
cost; = cos|—|(1— = CcoS — ,
m 2m + 1 2 m 2

where @ = cosa, a = 7(1 — 2m1+1). In order to prove that this is impossible we note that

for 0 <a<m, 1/2 <u <1 it follows that

1 —cosa 1+cosa
(5.13) cosau > TCOSMHL —

This inequality can be proved observing that for a = 0 and a = 7 we have

1—-cosa 1+ cosa
cos au — Tcoswu— —_— =

2
and verifying that the derivative of the left hand side has only one zero in the interval
(0,7) corresponding to an absolute maximum in this region. Substituting a = a, u = i/m
in (5.13) we obtain a contradiction, which shows that ¢ < a, whenever m > 2. O

Throughout the remaining part of this section we assume m > 2 (the linear case m = 1
was discussed in Section 4), a < a < @ and define

pla) = p(a) €R™,

G(a) = (qola),...,qm-1(a))" € R™,
z(a) = (z1(a),...,Tm-1(a)” € R™T,
w(a) = (wo(a),..., w, 1(a))’ € R™,

where p(a) and q(a) = (qi(a),...,qm 1(a),1)" are the vectors defined by Lemma 5.1,
zi(a) = cost;(a), i = 1,...,m — 1 and {t;(a)}i=1, _m—1, {wi(a)}izo. m—1 correspond to
the positive support points and weights of the F-optimal design &, on the interval [—a, al.
For arbitrary vectors ¢ = (qo, .., Gm-1), » = (Pos- -+ Pm-1)", 2 = (1,..., Tp_1)T, w =
(wo, ..., Wp_1)T, with a = cosa < 2y < ... < 2y < 1, w; > 0,4 =0,...,m — 1,
S b < 1 we define the vectors

© = (907 Tty 94m72)T = (ﬁTa q~T7 xTa wT)T € R4m717
(5.14)

and similary



as the vector containing the support points and weights of the E-optimal design and the
components of the vectors ¢(a) and p(a) defined in Lemma 5.1. Let us introduce the
function

@ Fy (@) + (L= 2D 0" foy (@)

(5.15)  A(©,a) = z; P w; +
(¢ fy(@))* + (1 = o) (p" fro) (@)
L Wil qTq+pgp DI —wy— . =),

where o = 1 and the vectors ¢ and p are given by ¢ = (¢*, 1)”, p = p. If &, is the F-optimal
design on the interval [—a, al, then

Aa) = A(O(a), a) = Amin(M (&),
and an immediate differentiation of the function A\(O,a) shows that the conditions

(5.16) i)\(@,a) lo—o =0, i=0,...,4m — 2

00;
coincide with conditions (5.6) and (5.7) if © = ©O(a). Therefore, by Lemma 5.1, these
conditions are necessary conditions for the vector ©(a), which gives the support points and
weights of the E-optimal design. We will call the vector equation (5.16) basic equation.
In order to study the Jacobi matrix of this equation we will present a couple of auxiliary
results, which are of independent interest. To this end denote with

o .. ITm
(5.17) n=
wy ... Wy

a design on the interval [a, 1] (with zy = 1) and let

—tm .. —t1 o t1 ...t
(5.18) & =

wi W
5

be the design corresponding to n by the transformation (3.17), where t; = arccosz;, i =
0,...m. Similary, for any symmetric design £ of the form (5.18) on the interval [—a, a] we

denote by
g ... Ty
Ne = )
woe ... Wy

with x; = cost;, i = 0,...,m, the design on the interval [a, 1] obtained by the transforma-
tion (3.17). Finally, v = v(a) denotes the multiplicity of the minimum eigenvalue of the
matrix M.(&,) and v = u(a) is the multiplicity of the minimum eigenvalue of the matrix
M;(&,), where &, denotes the E-optimal design for the trigonometric regression model (1.1)
on the interval [—a, a] and the matrices M.(&,) and M (&,) have been defined in (3.26) and
(3.27), respectively.

26



Lemma 5.3. Let 0 < a < m. A design &, of the form (5.18) is an E-optimal design for
the trigonometric regression model (1.1) on the interval [—a, al, if and only if

(5.19) o = o

where 1, is an E-optimal design for the Chebyshev regression model (3.18) on the interval
[a, 1] and o = cos a.
Moreover, the quantities ay and a in (3.50) are equal, i.e.

and the multiplicities v(a) and u(a) of the minimal eigenvalues of the matrices M.(&,) and
M;(&,) of the E-optimal design &, satisfy

whenever v(a) > 1.

Proof. Let us begin with the last assertion, denote with &, the E-optimal design, by
4a), - - - » 4(v) the eigenvectors of the matrix M.(§,) corresponding to its minimal eigenvalue

Amin (M, (fa)) and define the coordinates of ¢(;y by gy, i =0,...,m, j = 1,...,v. Without
loss of generality we can choose gy such that gy, = 1, g2 such that ge), = 0, ¢() such
that ¢(3ym = q@ym-1 = 0 etc. For v > 2 we introduce the polynomials

2
T . )
() = (q(l)f(l)( ) :
Q(l)Q(l)
2
T x)
Px) = (q‘”ff”( Vi
9y 4(:)
2(2) + 2 (x
g(l‘) — (101( )2802( ) ,

where the vectors f(1)(z) and f(2)(z) have been defined in (5.2) and (5.3), respectively. Note
that the polynomial g is nonnegative, of degree m and

(5.20) / 9(c0s Ea(dt) = Auin(Mo(Ea).

As in the proof of Lemma 5.1 we can find appropriate vectors ¢ € R™*! and p € R™ such
that the polynomial g(z) can be represented in the form

(5.21) g(z) = @i(x) + (1 — 2°)@3(x),

where @1 (z) = ¢* fu)(z), @2(x) = p* f2)(x), Substituting x = cost, integrating both sides
of (5.21) with respect to the measure §a(dt) and taking into account the identitiy (5.20) we
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receive

)\min(Mc(é‘a)) = qTMc(ga)Q‘i‘pTMs(é‘a)p
(5.22)

Z )\min(Mc(é‘a))qTq + )\min(Ms (ga))pr'

A further integration of the function g(cost) with respect to the uniform distribution dt/27
on the interval [—m, 7] yields [observing the representation (5.21)]

(5.23) dq+pp=1
In Section 3 we proved that
)\min(Ms(ga)) Z )\min(Mc(ga))a

and consequently (5.22) and (5.23) imply that one of the following conditions holds

(1) v = 17 b= 07 )\min(Mc(ga)) — )\min(M(ga)) < )\min(Ms(ga))a
(ii) v > 1, p # 0 is an eigenvalue of the matrix M(&,), Amin(M:(£2)) = Amin(Ms(&s))-

The second part (ii) is an immediate consequence of the previous discussion. For a proof
of the first case (i) assume that

A= )\min(Mc(ga)) — )\min(Ms(é‘a))

and let p and ¢ be vectors such that p # 0 and

M(&a)a = Ag, My(&a)p=Ap
We introduce the polynomial

g(z) = gi (@) + (1 — 2%)@a(2),

where ¢1(z) = ¢" foy(z), @a(x) = p* f2)(x). This polynomial can be represented in the
form

(a7 foy (@) + (65 fi (@)
and a similar calculation as given in previous discussion shows that ¢; and ¢, should be

eigenvectors, corresponding to Apin(M.(&,)). Therefore it follows that v > 2 and this proves
that (i) is correct.

In the first case Apin(M(&,)) is simple. In the second case v > 2 and for each eigenvector
q(i) there exists an eigenvector p(; of the matrix M(&,). It can be easily checked that the
vectors p(;), © = 2,...,v are of the form

(p(Z)Ua Tt 7p(2)m71)T7
(p(3)07 <y P(3Ym—2, O)Ta

(p(v)o, e ,p(v)m,wl, O, ceey O)T.
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Consequently, these vectors are linearly independent, which gives v(a) > u(a) + 1. In a
similar way we can prove that v(a) < u(a) + 1 and we obtain for the case v(a) > 1 that

v(a) = u(a) + 1.

From (5.22) and (5.23) it also follows that v(a) > 1 in the case Apin(M(€a)) = Amin(Ms(&a))-
Recalling the definition of a(;y and a(,) in (3.50) it thus follows that

aqy = inf{a | v(a) > 1},
ay = inffa | Amin(Me(&a)) = Amin(M:(&))}

and the previous remarks yield
Gy = 4 = &

In order to prove the first assertion of Lemma 5.3 let £, be a symmetric E-optimal design
of the form (5.18) for the trigonometric regression model (1.1) on the interval [—a, a], then
it follows from the previous discussion that

)\min(M(é‘a)) = )‘min(Mc(ga))‘

From the definition of the transformation (3.17) we have

Me(€a) = Mi(1e, ),

where
Mi(n) = [ foy(@) @i

denotes the information matrix of the design 7 in the Chebyshev regression model (3.18).
Therefore a design £, is an E-optimal design for the regression function f.(t) on the interval
[—a, a] if and only if the design 7, is an E-optimal design in the Chebyshev regression model
(3.18) on the interval [a, 1], where @ = cosa. Now it is easy to verify that any E-optimal
design of the form (5.18) for the regression function f.(t) on the interval [—a, a] is also an
E-optimal design for trigonometric regression model (1.1) on the interval [—a, a] and vice
versa. Thus a design &, of the form (5.18) is an E-optimal design for the trigonometric
regression model (1.1) on the interval [—a, a] if and only if the corresponding design 7, is
an F-optimal design for the Chebyshev regression model (3.18) on the interval [o,1] O

Throughout this paper we denote by 7(a) the number of common roots of the polynomials
e1(z) = ¢" fa)(z) and po(x) = p' fo)(x) defined by Lemma 5.1. The following resuls
provides the basis for the implementation of the functional approach.

Theorem 5.4. Consider the trigonometric regression model (1.1) on the interval [—a,al,
where 0 < a < 7m and m > 2. Then a < a and there exists a number v € N and real
quantities

a=m <am<a<...<a,=4a
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such that the vector-function

(Q, a/) — R4m—1

5.24 o*:
(5.24) { a — O(a)
15 uniquely determined, real analytic on the set

v—1
(5.25) U (@, 0551)

j=1
and satisfies the system of equations

0

5.26 A(O, ‘ — 0, i=0,...4m—2,
( ) 00; (©,0) 0=06(a) ! m

where the function A\(©,a) is defined in (5.15).

Proof. We have already proved above that the vector-function ©* is uniquely determined
and satisfies (5.26). It is also obviously continuous. In order to study its analytic properties

we define
82 4m—2

G(9,a) = (aez_aej)\(@,a)) :

i,j=0

as the Jacobi matrix of the system (5.26) and denote by
(5.27) J = J(a) = G(6(a),a),

the corresponding value at the point © = ©(a). A straightforward but tedious differentia-
tion shows that this matrix is of the form

T pT
S Bpy By
(5.28) J=h| By D 0 |,
By 0 0

where h = 1/(¢"q¢+ p'p), ¢ = q(a), p = p(a). The matrices in the block matrix (5.28) are
given by

oo (Mo 0

0 Mgy

where

M(l) - Ms(ga) - )\[m
Similary, if A_ denotes the matrix A with deleted last row and last column, M) is defined
by
M(Z) - (Mc(ga) - )\[erl)fa

D = dlag {dlla ) dmfl,mfl}a
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where the elements of the matrix D are given by

di = (¢ foy @)’ + @ Sy @) QA=) | =l m
and
B(TI) = <B11 B1 )
By = (U@ f@)w| ) ,
e=i(a) / ;1 m—1

B = (U@ - ) ,

e=i(a) i=1,...,m—1
- ()
B(T;n = (f (i) q f ))i:O,...,m—l’

Bl = (foy(@)p fiy (@)1 = 2%)) g iy

where b_ denotes the vector b with deleted last element. Let @ € (a,a) such that the
following condition is satisfied:

(A) there ezists a neighbourhood U of the point @ such that for all a € U we have

Denote by 61, ...,d, the common roots of the polynomials

pi1(z) = ¢
pa(z) = p'(a)f) (2),

by Y1, .., Ym—- the remaining roots of the polynomial ¢;(z) and by ki,...,Kkp,_1_, the
remaining roots of the polynomial ¢y(x), that is

o) =TT =) [T =),
prla) = wn [T =) [] o=
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(recall, that it was shown in the proof of Lemma 5.1 that ¢; and o have simple roots,
which are interlacing and note that k,,_, denotes not a root of the polynomial ¢, but its
leading coefficient). Define the vector

~ ~

@(CL) = 0= (717'"7me—Tal€17"'7’€m—77617'"757'7j(a)7w(a))T

~

- (907 ) é4mflfT)T-

and note that in a neighbourhood of the point @ there exists essentially a one to one

~

correspondence between the points O(a) and ©(a). Consider the matrix
(5.29) J=HTJH,

with
- <aé/89 ) dm—1—71,4m—2
N Y ) iz0,5=0
We will prove below that the matrix J is nonsingular for any point a satisfying the condition
(A). Because 7(a) € {1,2,...,m} it therefore follows that all points a € (a, a) except for a

finite set denoted with {ay, ..., a,} satisfy condition (A). Therefore the vector-function
0% : a— O(a)

is a real analytic vector-function on the set (5.25) due to the well known Implicit Function
Theorem (Gunning, Rossi, 1965). Because the coefficients of a polynomial are analytic
functions of its zeros it follows that the vector-function ©* is also real analytic on the same
set.

The proof of the nonsingularity of the matrix J is tedious and we indicate the main steps.
Denote by P the eigenspace of the matrix M.(§,) corresponding to its minimal eigenvalue
Amin(M(&,)) and by P, the subspace of all vectors r = (rg,r1,...,7,)7 such that the
polynomial } 7" ; ;27 has the form

T -7

3

i=1 §=0
for some vector 7 = (7y,...,7m_-)" of size m — 7 + 1. For the sake of tranparency we
introduce the notation F'(z) = (1,z,...,2™)" and define for vectors r, s € R™*!:

<1 s> = /_1 (r'F(z)) (s"F(z)) ne, (dz) - E /_1 (r"F(z)) (s"F(x)) _\/% )

A straightforward calculation shows that the condition

8)\(@, a) 0
i B

32



is equivalent to the condition

~

< ¢y, q >= A(O, a),
where the vector ¢,, € P; is defined by

1
0 F(z) = — - ¢"F(z) = ——q"F(a)

for any i =1,...,m — 7. This means that

¢, €EP, i1=1,....m—r7

[note that the vectors ¢,,, ..., ¢, _. are linearly independent]. Note that a direct calculation
gives
. 1M (&) gy, 5 1 .
AO,a) = <M—)\(@,a)> — hj=1...,m—T.
9707 a5, 4, a5, v

Since ¢,;, € P we obtain

0? A
,a) =0, 4,5=1,...,m—rT,
07:0i )

In a similar way it follows that
pniep(2)7 izla"'am_Ta

where Py is the eigenspace, corresponding to Amin(M(s)(&,)), and we obtain by the same
arguments

32

A6O,a) =0, ij=1,...,m—.
aﬁzah}](7a) 7Z7j ) 7m T

It is easy to check that for a € (a,a) it follows that 7 > 1. Moreover, using the above
formulas we receive that the matrix J has the structure indicated in Table 2, where A is a
nonnegative definite matrix and D is the negative definite matrix, defined above.

If b # 0 and the matrices C' = (C;:Cs), By and By have full rank it follows by similar
arguments as given in Dette, Melas and Pepelysheff (2001) with the help of the Frobenius
formula that det.J # 0. The verification of the listed conditions is equivalent to the
verification that certain polynomials are not identically zero. This can be done by the
standard technique of counting zeros and is left to the reader. Thus det J # 0 for any point
a satisfying condition (A). O
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Table 2: Structure of the matriz J defined in (5.29)

1 m—7 m—1 m—1 m

110 b
m—T 0 VT BT | CT
m—1 v A | B |cF
b
m—1 Bl 82 D 0
m Cl CQ 0 0

Since the vector function ©(a) = O(arc cosa) is real analytic on the set defined by (5.25)
it can be expanded into Taylor series in a neighbourhood of any point a # a;, j =1,...,v,
a < a < a and we obtain for its components an expansion of the form

oo

Oi(a) =) Oin(a—a)*, i=0,...,4m -2,

k=0

where & = cosa@, o = cosa. For the determination of the coefficents {6;} the general
recurrent formulas introduced in Dette, Melas, Pepelyshev (2000) can be applied provided

that initial conditions 6;9, i« = 0,...,4m — 2 are known. To find such initial coefficients
O = (6pp,. .-, 04m_20)" we solve the equation
m=2 g 2
00 ;= SN(©, ) ~0
Q") = 3 (e,

for some a, which can be done by standard numerical algorithms. To obtain an approxi-
mation of the function ©(a) with a given precision we have to find one or several points
ay, - - ., 0, construct the corresponding Taylor series and verify that the calculated design is
E-optimal with sufficient precision (note that ©(a) contains also the vectors p(a) and ¢(a)
for the equivalence theorem in Lemma 5.1). In the following examples we will illustrate
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this approach for the quadratic and cubic trigonometric regression model on the interval

[—a,al.

Table 3: Coefficients in the Taylor expansion (5.30) for the quadratic trigonometric regres-
sion model (m = 2), where 0.741 < a/7 < 4/5=10.8

0 1 2 3 4 5 6 7

Do 0.4771 | -0.0781 | -1.3312 | -1.9692 1.2116 3.8592 8.7587 -2.8454

D1 -0.4928 | 2.0781 | -0.5175 | 0.0124 1.9268 -1.7913 0.9055 -7.3152

Qo -0.3532 | -2.7276 | 11.4353 | -92.0212 | 896.9923 | -9.90e+4-03 | 1.18e+05 | -1.46e+06

¢ -0.3794 | -2.5761 | 15.1122 | -109.6045 | 1.05e+4-03 | -1.15e+4-04 | 1.36e+05 | -1.69e+06
1—2y | 0.7588 | -1.2582 | 1.5801 3.9027 0.3966 -11.1756 | -20.1314 6.0409

wy 0.1862 | 0.1994 | 0.5826 0.2185 -2.1883 -0.1277 0.2418 30.3188

Wo 0.2289 | -0.4732 | -0.3163 | 0.5386 -0.2008 0.5346 3.5705 -0.3601

Example 5.5. Consider the quadratic trigonometric regression model (1.1) on the interval
[_aa (Z]
BYF(t) = Bo/V2+ Prcost + Bysint + B3 cos 2t + B4 sin 2t.

By the discussion of Section 2 it follows that for a = 0.87 < @ < m an E-optimal design is

given by
_4r 21 () 2z 4m
5 5 5 5
101 11 1 )
5 5 5 5 5

Similary, Corollary 3.3 and Theorem 3.2 show that for 0 < a < a ~ 0.7417 the unique
E-optimal design is given by

where
1+ cos a)

2
and the weights wp, w; and ws can be found by fomula (3.8). In the intermediate case

t(a) = arccos(
a=074lr <a< 08T =a
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we will construct the E-optimal design by the functional approach. Note that due to
Theorem 2.3 an E-optimal design is of the form

where tyg = 0, t5 = a. Since wy+w; +wy = 1 it is enough to consider the weights w; and w,
and the point z; = arccos t;. We take @ = 0.777 = (a + a)/2. The first Taylor coefficients
for the parameters

do = qo(arccosa),

¢ = qi(arccosa),

po = polarccos @),

p = pi(arccosar),

1 -z = 1—x;(arccos o),
w; = wi(arccosa),

wy = wy(arccos ),
in the expansion

(5.30) O(arccos o) = Z O™ (o — cosa)"
n=0

are listed in Table 3. The dependence of the support points and weights of the E-optimal
design in the trigonometric regression model from the parameter a € (g, a) is illustrated in
Figure 1. In the present case it follows that a; = a < as = a and for a; < a < ay we have

7(a) =1, u(a) =1, v(a) =2.
It is also interesting to note that for 0 < a < a; = a we have
u(a) =0, v(a) =1,
while for the case @ = ay < a < 7 it follows that
u(a) =2, v(a) = 3.

In other words, if the parameter a is increased from 0 to 7 the multiplicity of the minimum
eigenvalue of the information matrix of the E-optimal design changes from 1 to 5 by steps
of size 2.

Example 5.6. Consider the cubic trigonometric regression model on the interval [—a, a],
i.e. m = 3. Then, similar to the preceding example an E-optimal design can be found in
an explicit form whenever 0 < a < a~ 0.7947 and a < a <7, a =6/77 ~ 0.8577. In the

case a > a the design
_6r_ Am _ 27
7 7 7
1011 '
7 7

7

4

I \1|§
~l= «1|Sf

2
1
7

=
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is F-optimal (but not necessarily unique), while in the case a < a the support points of
the unique F-optimal design are given by

(3 + Cosa)

1+3
, j:arccos(m)

+a , =+ arccos 1

and the weights are obtained from formula (3.8). It was found numerically that
ap=a < ay 081131 < a3 = a = 6/77 ~ 0.8577.

and for a € (ay,as) the first coefficients for the Taylor expansion at the point a; = 0.817
are presented in Table 4, while Table 5 contains the corresponding coefficients for the case
a € (ag,a3) (for the expansion at the point ay = 0.837). Note that the multiplicities of the
minimal eigenvalues of the matrices M (&,) and M.(&,) are given by

u(a) =0, v(a)=1 if a€ (0,a)

uw(a) =1, v(a) =2 if a € (a1,az)
u(a) =2, v(a) =3 if a € (ag,a3)
u(a) =3, v(a)=4 if a € (a3, m),

where a; = a and a3 = a.

The behaviour of the optimal design points and weights is presented in Figure 2. It can
be verified numerically that the points and weights can be determined with high precision,
which is illustrated in Figure 3. This figure shows the extremal polynomial

" fy (@) + (¢" frp(2))?
p'p+q'q

in the equivalence theorem for various values of a (note that by Lemma 5.1 this function
has be less or equal than the minimum eigenvalue of the information matrix corresponding
to the F-optimal design with equality at the support points).
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Table 4: Coefficients in the Taylor expansion (5.30) for the cubic trigonometric regression
model (m = 3), where 0.794 < a/m < 0.8113

0 1 2 3 4 5 6 7
Do -0.3965 | 4.0928 | -0.3055 | -12.3495 | -11.4981 | 761.5907 | 2.99e+05 | 1.21e+08
D1 0.6477 | -1.8835 | -3.2233 | -5.1845 1.6191 811.6268 | 3.06e+05 | 1.24e+08
D2 -0.5608 | 1.6899 | 3.0650 3.2670 -2.9128 | -928.5566 | -3.66e+05 | -1.48e+08
Qo 0.1501 | 2.0088 | -28.2704 | 430.0770 | -8.39e+03 | 1.96e+05 | -3.60e+06 | 6.06e+08
¢ 0.2599 | 4.2543 | -37.1810 | 612.9954 | -1.27e+04 | 2.96e+05 | -7.06e+06 | 3.19e+08
g2 0.2219 | 3.4819 | -34.7987 | 534.1822 | -1.11e+04 | 2.56e+05 | -7.21e+06 | -1.42e+08
1 —2y | 0.4047 | -1.4247 | 2.2884 9.9250 15.0767 | -48.0838 | -405.3233 | -1.19e+03
—x | 1.3565 | 0.3121 | 0.7705 2.0655 2.2545 -12.2375 | -83.8545 | -224.4858
wy 0.0966 | 0.4030 | 1.2655 1.5036 -9.9210 -81.2046 | -281.6821 | -1.1661
Wo 0.1397 | -0.3048 | 1.2041 5.8567 -1.1242 -68.7337 | -146.2008 | 467.5664
w3 0.2164 | -0.4311 | -2.8260 | -3.6782 21.5715 | 101.4223 | 64.3300 | -810.3346

Table 5: Coefficients in the Taylor expansion (5.30) for the cubic trigonometric regression
model (m = 3), where 0.8113 < a/m < 6/7 = 0.857

0 1 2 3 4 5 6 7
Do -0.0674 | 9.6717 | 12.2522 | 43.8534 | -2.67e+03 | 6.11e+04 | -1.65e+06 | 4.47e+07
D1 0.8655 | 5.9768 | -7.3377 1.8819 | -2.75e+03 | 6.44e+04 | -1.71e+06 | 4.64e+07
D2 -0.7126 | -3.5536 | 9.0726 | -65.9985 | 3.11e+03 | -7.76e+04 | 2.07e+06 | -5.59e+07
90 0.6670 | 9.0433 | -68.2559 | 962.3302 | -1.87e+04 | 4.10e+05 | -9.68e+06 | 2.41e+08
a1 0.5298 | 5.6016 | -35.9075 | 387.2603 | -6.62e+-03 | 1.30e+05 | -2.86e+06 | 6.81e+07
Q2 0.0868 | -0.7658 | 22.7645 | -454.2934 | 9.99e+03 | -2.39e+05 | 5.93e+06 | -1.52e+08
1—a2, | 0.3917 | -0.3409 | -1.0703 2.8779 38.4908 158.1277 27.2050 | -3.51e+03
1—29 | 1.2958 | -1.9386 | 1.7869 25.6580 62.2862 | -124.9227 | -1.40e+4-03 | -3.53e+4-03
wy 0.1197 | 0.6556 | -1.8890 | -4.5152 46.8271 18.8599 | -223.6196 | -876.7235
Wo 0.1383 | 0.0358 | 1.8823 1.6989 -29.6814 | -78.2035 | -40.4011 | 1.61e+03
ws 0.1826 | -1.0283 | 0.8572 5.4231 -35.5716 D7.4784 271.3875 | -1.15e+03
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