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Abstract

In the common nonlinear regression model asymptotic expansions for quadratic statis-
tics are considered, which are used in the construction of confidence regions and statistical
tests of hypotheses for the unknown parameter. One purpose of this paper is to present
a unified treatment of the problem, which can applied to a substantially broader class of
quadratic statistics as recently discussed in Grigoriev and Ivanov (1993) or Ivanov (1997).
In particular the method proposed in this paper yields second order asymptotic expansions
for the statistics introduced by Hamilton, Watts and Bates (1982), Pazman (1992) and
Grigoriev (1994). A second purpose of the paper is to use these results for the classifi-
cation of certain properties (invariance, u,-representability) of several quadratic statistics
proposed in the literature for inference in nonlinear regression models.

Keywords and Phrases: nonlinear regression, least squares estimation, asymptotic expansion,
invariance
1 Introduction

Let (R™,B") denote the n-dimensional space equipped with its Borel field and consider the
statistical experiments (R”, B", PJ',0 € ©) generated by the nonlinear regression model

(1.1) y=n(0)+e=(n",0),....nx"0)" +e,
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with the observed vector y € R", the vector of unknown parameter # = (6',...,0™)" € © C

n

R™,m < n, and the random vector e = (e)”_; with i.i.d. components e®*. We suppose that e”

has a distribution not depending on the parameter  with expected value zero, variance v, = o2
and existing third and fourth order cumulants v3 and 4, respectively. The set © is a convex
and open set and for fixed z = (z',...,2") the mapping 0 — 7 is supposed to be continuous
with continuous third (or fourth) order derivatives (if required) such that the rank of the n x m
matrix —t

877a o aya=1,...,n
(12) F-ro-(5)  —mmm
is m for all § € ©. Here n*(0) = n(z*, ) denotes the ath component of the vector n(f), z* € X

is the ath value of explanatory variable and X is the design space with sigma field containing all

i=1,...,m

one point sets and containing at least m points. Let 6, = én(yl, ..., y™) denote the least squares
estimator of the unknown parameter § € © obtained from the observation y = (y%,...,4") by
the condition

(13) S(6) = inf S(r),  S(6) =y~ n(6)],

where ||-||> = (-, ) and the inner product (-, -) on R" is defined with respect to the matrix n="'d,,
(here and throughout this paper d,, = 6% = §° denotes Kronecker’s symbol and simultaneously
the identity matrix).

For the sake of simplicity a function g(f) evaluated at the least squares estimator § = 0, will
be denoted with §, e.g. S = S(6,) (by formula (1.3)) or 7 = 5(6,) (by formula (1.1)). For a
particular value fy € © we use the notation n = n(fy). Following differential geometric conven-
tion we denote a matrix A = (A;)J="""* with Aj;. If ny = ny, then A denotes simultaneously
elements of A™! and the matrix A~ itself (i.e. A = A;;, A”' = AY) the specific meaning will
be clear from the context. We will also make substantial use of Einstein’s rule; for example
AY By, = A;; B'* denotes the matrix AB [and simultaneously the element in the position (i, k)]
and A;;BY = AYB;; = trace(ABT). Throughout this paper we use differential geometric nota-
tions for quantities, which are connected with the expectation surface

(1.4) E™ = {n(0)|0 € O}.

Generalizing the notation of the Fisher information matrix we introduce

iy i) Grege) = Finyeosins Fjroie)

and more generally we define

1 - a a a
H(al)(a2)~~~(ak) = n Z F(Oél)F(Oéz) o 'F(ak) ’
a=1

where for s =1,...,k
as = (i1,...,0,) € Ny
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is a multi index with |a,| = Y77, i;. We denote by

(1.5) T™0,) = {z € R"|z = 7 + Ft,t € R"}

the tangent space of the expectation surface E™ at the point 1 = n(f,), where the matrix
F = F(0,) is defined in (1.2) [note that with this notation 77 (6) is the tangent space of E™ at
the point n(0)]. It is worthwhile to mention that the matrix w;; = 0~?I1(;)(;) is the metric tensor
of the expectation surface E™ at the point f and that the matrix

Mi; = )

is proportional to the Fisher information matrix, provided that some conditions of regularity are
satisfied [see Borovkov (1998)].
For a fixed 6, € © statistical tests of the hypotheses

Hy:0=10, versus H;:0+# 0

are usually based on statistics T, = T,(y',...,y"; 0y) which are quadratic functionals of the
observations and converge weakly to a x2, distribution under the null hypothesis. If x? _(m)
denotes the (1 — a)-quantile of the (central) x? -distribution, and the hypothesis Hj is rejected
if T,, > x3_,(m), then under the null hypothesis

(1.6) ng{Tn < X%_a(m)} —1—a+o(1)

as n — oo. Similary, a confidence region for the unknown parameter 6 is obtained from the
acceptance regions of the above test and given by

(1.7) Ciia=1{0€0|T,0) <3 _,(m)(1+A,n"H},
where A, = A, (#) denotes Bartlett’s adjustment, which eliminates the term of order n~! in the
asymptotic expansion, that is

(1.8) ng{eo c C’l_a} =1—a+o(n™).

It is the purpose of the present paper to present unified second order asymptotic expansions for a
wide class of quadratic statistics, which can be used for the construction of tests and confidence
regions as indicated above. To be precise, we define ¥,, as the class of all quadratic statistics
(weakly convergent to a x2 -distribution) 7;, : R* — R, which admit at the point , € © the

stochastic expansion
(1.9) Ty = Ton + Tipn ™% 4 Toyn ™" 4 €n~3/2,

Here Ty, T1,, 15, are statistics which will be specified below and T}, 15, can be represented in
the form

2
1
Ty, = ) E a; Ai,
i=1

(1.10)
1 9
]:
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where the random variables A; and B, are sums of the i.i.d. errors e in the model (1.1) and
& = £(#) denotes a random variable with the property

(1.11) sup Py {[¢] > e(logn)*?} = o(n™?)
e

for some compact subset () C © and a constant ¢ > 0. The constants «;, 3; are independent of n,
characterize the statistic 7}, and are called structural parameters of the statistic 7},. Note that
the statistic 7}, can depend on the least squares estimate én, ie. T, = Tn(én, @), and the constant
c¢in (1.11) is usually different for any statistic under consideration. It is demonstrated in Section
6 that (to the knowledge of the authors) the class ¥,, contains all quadratic statistics proposed
in the literature for testing the hypothesis Hy : @ = ) in the nonlinear regression model (1.1).
Asymptotic expansions for several quadratic statistics were recently derived by Grigoriev and
Ivanov (1992, 1993) and Ivanov (1997). However these results can not be used to cover all
statistics included in the class ¥,, considered in this paper . For example the statistic of Hamilton,
Watts and Bates (1982) considered in Section 6 cannot be treated by the results obtained in
Grigoriev and Ivanov (1992, 1993) and Ivanov (1997). One goal of this paper is to apply the
method of virtual coefficients introduced by Grigoriev and Ivanov (1993) to obtain asymptotic
expansions for all statistics in the class ¥,, which is substantially larger than the class considered
by Ivanov (1997). A further purpose of the paper is to use these results for the characterization
of certain properties (such as invariance, u,-representability) of the statistics in the class W,,.
The remaining part of this paper is organized as follows. In Section 2 we introduce a virtual vector
v, and investigate its asymptotic distribution. The asymptotic expansion for the distribution
of quadratic statistics in the class ¥, is given in Section 3, while Section 4 introduces several
concepts of statistical invariance. These concepts are used in Section 5 to study properties of
the quadratic statistics in the class ¥,. Finally, Section 6 illustrates these methods in several
examples. Note that our approach is similar to the method used by Grigoriev and Ivanov (1993)
but can be applied to a substantially larger class of statistics for inference in the nonlinear model.
To the knowledge of the authors the examples discussed in Section 6 included all quadratic
statistics, which have been proposed in the literature so far in this context .

2 Asymptotic expansions for the distribution of the vir-
tual vector

Let u, = \/n(f, —#) denote an affine transformation of the least squares estimator, which admits
the stochastic expansion [see Ivanov and Zwanzig (1983)]

(2.1) Uy, = hop, + hlnrfl/2 + hopyn ' 4 hgnrf?’/2 ,

where
sup Pj'{|hsn| > c(logn)*?} = o(n*?)
0eQ



[see also formula (1.11)] and h,,,, = (h?,)="™ v =0, 1,2, are homogeneous vector polynomials
of degree v + 1 in the random variables

(2.2) b = (e, F,

il...ikn1/2>

01 ..0p
(i + ...+ i = v+ 1) with coefficients uniformly bounded in n. We recall the definition of
the Fisher information matrix M = Il;)(;), denote its inverse by AY = M~!, introduce random
variables

(2.3) ah =N, k>0

and define the quantities A;, Bj in the representation (1.10) as follows:

Ar = gy apa’a®,

Ay = Hgra'a'd:,
B, = H(i)(j)xfdxjxkxl,
By = Ty mpa’ za®,
B; = H(i)(kg)l';l'jl'kl'e,

(2.4) B, = H(ik)(g)xé-xjxkxé,
Bs = iy ay 0 A™ o' e 2",
By = Wiayi (a0 A™ o' 2",
Br = Wiy oe A a's s 2,
Bg = H(ij)(kg)xixjxkxl,

Bg = H(i)(jkg)xil'jl'kl'e.

Note the difference to Grigoriev and Ivanov (1993) who did not consider each term of the sum
BsBs + PeBs + [f7B; with a separate factor, but used g5 = g = 407 for their asymptotic
analysis. Thus our results contain the results of these authors as a special case and we will
demonstrate in Section 6 that there are important situations where the asymptotic analysis of
this paper is applicable in contrast to the expansion derived by Grigoriev and Ivanov (1993) [e.g.
the statistics introduced by Hamilton, Watts and Bates (1982), Pazman (1992) and Grigoriev
(1994)]. Moreover, it is demonstrated in Section 6 that all quadratic statistics considered in
the literature for the problem of testing simple hypotheses or for the problem of constructing
confidence regions in the nonlinear model belong to the class ¥, defined in Section 1, i.e. they
admit a stochastic expansion of the form (1.9) and (1.10).

Following Grigoriev (1994) or Ivanov (1997) the terms h?,, in the expansion (2.1) can be rewritten

as

i

hy, = ',

. R | o

i i 1o k

hi, = wia! — ZanA vl x”,

i Lo ik ik i, gk
(2.5) h,, = e Lt + zirpat — Eaaﬂcgl\ xxt,



1

o 1 o
——aajk/\aﬁa:lﬁx]xk — —aajkAw‘x%xkxl,
4 2
1 . .
+§aagja7k4A’aA67x]xkxe,

where the quantities a;j;, and a1, are defined by

aije = 2(L)gry + H)any + L))
(2.6)

Gijke = 2 (Hu)w) + Hegare) + awyaio + Hean) + Hapwo + Uarge + H(z’f)(jk)) :

The following definition was introduced by Dette and Grigoriev (2000) and characterizes a broad
class of quadratic functionals.

Definition 2.1. A statistic T, is called u,-representable at the point 0 if it admits a stochastic

asymptotic expansion of the form
(2.7) T, =T, + 0,(n"),

where
T’I”L = TOn + T’lnnil/2 + T2nn71

and

n-n’

Ton = My tnt)

Tln = CIH(,)(]k)u’ ujuk

n-n-n’

Ton = (callisiue) + calliyng + A Ty sy ) o

The vector ¢ = (¢;)i_, € R* characterizes the u,-representable statistic T,. The coefficients of
the vector ¢ are called structural coefficients of the u,-representable statistic T,,.

Observing the equations (2.1) - (2.5) it is straightforward to show that any w,-representable
statistic also admits a stochastic expansion of the form (1.9) and (1.10) and therefore belongs to
the class U, defined in Section 1. However, the converse inclusion is not true. A typical example
is the statistic of Neyman and Pearson which admits an expansion of the form (1.9) but is not
up-representable [see the statistic 7" in Section 6 for more details].

Ivanov and Zwanzig (1983) modified techniques of Pfanzagl (1973) and Michel (1975) to obtain
the (asymptotic) distribution of the least squares estimator in nonlinear regression models. These
expansions can be used for the determination of the (asymptotic) distribution of u,-representable
statistics [see e.g. Bardadym and Ivanov (1985) or Dette and Grigoriev (2000)]. In order to solve
this problem for non wu,-representable statistics Grigoriev and Ivanov (1992, 1993) proposed
a technique of virtual expansions and used this method to derive asymptotic expansions for
the Neyman-Pearson, Wald- und Kullback-Leibler statistic [note that these statistics admit an
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asymptotic expansion of the form (1.9) with 5 = s = 4/7; see Ivanov (1997)]. However, for
the general class U,, of statistics defined by (1.9) this method has to be modified. To this end
we introduce a general v,-vector

2
T —v/2 -1
(2.8) Uy = E By 1% 4 0,(n 1),
v=0
where (for appropriate constants 7, s, p1, . - ., P16)
i i
on — L
hlln = 71'11'31'] + Wgaajk/\ml‘]l‘k,

B;n = (plelglﬂ + pz%‘%l"g):va,

<p3H(s)(aﬁ)Ajsl‘§ + p4H(j)(m)Airl‘]ﬁ',

p5H(7")(]'a)AiTx]5 + pﬁﬂ—(a)(s,B)Ajsx;' + p7H(a)(rj)A"xé)xo‘xﬁ,
(PSH(T)(jv)H(s)(a,B) + Poll () iay(ss) + Prolly i) is)(s),

Pl ss) + P12l ey s + P13H(j)(T7)H(S)(aﬂ)> AN 20,

+ o+ o+ o+ o+

<p14H(ra)(ﬁ7) + p151_[(r)(aﬁ7) + plBH(a)(rﬁv))Airl‘alﬂlﬁ-

Observing the representation (2.5) a straightforward calculation shows that for the choice

1
(29) ™ = 17 g — _ia P11 = 57
P2 = ]-7 pP3 = _%7 Py = _]-7
P = _]-7 Pe = _]-7 pr = _]-7
Ps %7 po = 1, pip = %7
pii = 1, po = 1, p13 = %7
_ 1 _ 1 _ 1
Pia = —35, P15 = —5» P16 = T3

the virtual vector v, defined in (2.1) and (2.8) coincides with the vector u, defined in (2.5).
Moreover, it is of independent interest to compare this vector with the virtual vector intro-
duced by Grigoriev and Ivanov (1993) or Ivanov (1997), which contains the virtual coefficients
(71, 72,71, ..., 76) and is given by

(2.10) hon = ',
by, = makel + mae\ 2l zk,
ﬁan = Tlxékmjxk + Tgxémixk + Tgaajk,gAiafL'jfL'k{L'e
T4aajkAaB$%$j$k + T5aajkAml‘zl‘kl‘l
ket

+ o+

T6aa5ja7k4AzaAﬁ7$]$
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where ;5 and a;j; are defined in (2.6).

The common procedure of deriving asymptotic expansions for the distribution of the statistic
T, = T, + op(n ') consists of two steps [see e.g. Ivanov (1997)]. In a first step one derives
(assuming appropriate conditions of regularity) the estimates

(2.11) P}{Té <z-— 5n} +o(n %) < Pf{Tn < z} < P}{Té <z+ 5n} +o(n3/?)

uniformly with respect to 6 € ), where () C © denotes a compact set specified below, and the
sequence 4, is given by &, = cn~3/?(logn)®/? [see equation (1.11)]. In a second step we use that
the statistic 7). is v,-representable and calculate the probability

(2.12) P{Tl < zx4,} = /I{x T30+ 0% < 2 £6, }Fy(a)

where F), denotes the distribution function of the statistic v,,. The asymptotic expansion is now
obtained from (2.11) and (2.12) by an expansion of the integral. This procedure can be applied
for any statistic 7,, = T, + o,(n"'), where T, can be expressed as a function of v,. Substituting
the expansion (2.8) for v, in a representation of the form (2.7) we obtain a stochastic expansion
of the form (1.9) and (1.10), where the structural coefficients in (1.10) are given by

(2.13) ap = 2,
oy = 121 + ¢y,
B = 2p,
Bo = 2py + 77,

Bs = 2(p3 + pa) + 4mmy + mic1,

Ba = 2(ps + ps + pr) + 8mima + 2mic,
Bs = 2(ps + po + pro) + 1675 + 8macy,
Be = 2(p11 + pr2) + 1675 + 8macy,

Br = 2p13 + 47r§ + 2mycy + ¢y,

Bs = 2p1a + ca,

By = 2(p1s + p1s) + c3.

The representation (2.13) has two important consequences. On the one hand it follows that
for any statistic 7,, € ¥, there exists a vector v, with virtual coefficients such that (2.13)
holds. Consequently an asymptotic expansion for the distribution of any statistic in the class
¥, is available, which depends only on the virtual coefficients 7y, m, p1, ..., p16. Secondly, using
the equations (2.13) we can express these coefficients in terms of the structural parameters
i, a9, B, ..., 08y and consequently the asymptotic expansion of any statistic 7;, in the class ¥,
can be specified in terms of its corresponding structural parameters. Note that the technique
of virtual coefficients introduced in this paper can be applied to a broader class of statistics as



considered in Grigoriev and Ivanov (1993). The main result of this section gives an asymptotic
expansion for the asymptotic distribution of the statistic v, defined in (2.8). To be precise
let C™ denote the class of all convex Borel sets of R™ and define ¢(+;X) as the density of an
m—dimensional multivariate normal distribution with mean zero and covariance matrix X.

Theorem 2.2: [f the assumptions I — VIII in Grigoriev and Ivanov (1993) are satisfied for a
compact set ) C O, then

sup sup ‘Pg”{vn(ﬁ) € C’} - / o(y; 02N(0)){1 + My, (0;y)n Y% + My, (05 y)n L}y
9eQ cecm c

log®n
where the random variables M,,(0;y) are polynomials iny = (y',...,y™) of degree 3v (v = 1,2)
with coefficients uniformly bounded with respect to 6 € @), n € N and explicitly given in the
Appendiz.

The proof of Theorem 2.2 is omitted because it proceeds along the lines of Linnik and Mitrofanova
(1963), Pfanzagl (1973), Chibishov (1973) and Michel (1975) and is similar to the one given in
Ivanov and Zwanzig (1983) (note that in contrast to the first named authors we have to use
results for asymptotic expansions for sums of non i.i.d. random variables). The polynomials M,
and Mo, are calculated similary as in Michels (1975) [see also Ivanov (1997)] and are given in the
Appendix for the sake of completeness. Note that in general the polynomial M, consists of 56
sums and differs from the one obtained in Grigoriev and Ivanov (1993). A slight simplification
of M, is obtained in the case v, = u,, where M,, contains only 40 sums. Similary, in the case
of a symmetric error distribution the polynomial Ms, reduces to 30 sums.

3 A unified asymptotic expansion for the distribution of
quadratic statistics in the class VU,

In order to provide asymptotic expansions for the distribution of statistics in the class ¥, we
introduce 16 functions P; = P;(6) defined by

Y4 4 is  jr
(3.1) Pr= AN G Gy
’Yg is A jr A Kt
Py = —SAATAT LGy i) )

2
V3 rispgr Ak
Py = S AN ALy 500 sy )0

V3 s pgr
Py = A s ),



V3 pis A g7
Py = S AN )0,
73 S AT Ak
Py = ﬁA ANTA tH(i)(jr)H(k)(i)(s)’
Y3 S AT Ak
P = - AN AT 6 Iy () () »
Y3 Aispjr Ak
Py = S ANTAM Ty ) T ) )
Py = g2Ai5Aj’"AktH(kt)(j)H(ir)(S)’
Py = o A"AAM Ty () oy o),
Py = o AUATAM Ty oy ey oy
Py = ® AN ATy )
Py = o APATAM Ty iy sy oy,
P14 — 0'2AlsA]TH(is)(jr)7
P15 = O'2AlSA]rH(ij)(rs)7
Py = UzAZSA]rH(i)(jrs)a

where v3 and 4 denote the third and fourth cumulant of the error distribution, respectively. The
proof of the following Theorem 3.1 is similar to the one given in Grigoriev and Ivanov (1993) [see

also Bardadym and Ivanov (1985), Ivanov (1997) and Dette and Grigoriev (2000), who obtained
similar results for a smaller class of quadratic statistics].

Theorem 3.1: If the assumptions of Theorem 2.2 are satisfied, then for any zy > 0 (in the case
m = 1) and any zo = 0 (in the case m > 1) as n — oo

3 16

Pan{Tn < Z} — Gn(2) — l ZZ)\jkPk(g)Gm-;-Qj(Z)‘ = O(%)a

n <
j=0 k=1

(3.2)  supsup
0€Q 2>20

where T,, is an arbitrary statistic in the class U, the functions Py(0) are defined in (3.1) and
uniformly bounded with respect to § € Q and n € N, G, denotes the cumulative distribution
function of the central x2-distribution with v degrees of freedom and the coefficients

)\]k = )\jk(alao@aﬁla o '759)

characterize the specific statistic under consideration and are given in Table 3.1.

Remark 3.2: As indicated in Section 2 the coefficients \j; in the expansion (3.2) can also be
expressed in terms of the virtual parameter my, 79, p1, . . ., p1g. However, these representations are
tedious and omitted for the sake of brevity.
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Remark 3.3: It is worthwhile to mention two remarkable properties of the coefficients in the
expansion (3.2). From Table 3.1 it is easy to see that the coefficients \;; satisfy the equations

3
(3.3) > Nr=0, k=1,...,16
j=0

Consequently, if we denote

16
(3.4) ajn(0) =Y APe0),  j=0,...,3,
k=1

then it follows that

(3.5) Z ajn(6) = 0.

We finally note that these identities can be alternatively obtained by similar arguments as given
in Chandra and Ghosh (1979) and that Theorem 3.1 and Table 3.1 extend the analoguous result
and table given in Grigoriev and Ivanov (1993) and Ivanov (1997) to all statistics with a stochastic
expansion of the form (1.9) and (1.10).

Remark 3.4: If the statistic T}, is u,-representable then the coefficients );; in the asymptotic
expansion (3.2) depend on the structural parameters only through the coefficients ¢y, ..., ¢s in
the expansion (2.7) and are given in Table 3.2. This follows easily from Table 3.1 by substituting
in the equations (2.13) the results from (2.9), which gives

ap = 2, Qs =c; — 3,
pi=1, Bo =3, B3=c1—4,
(3.6)
Ba=2(c1 —4), fs=ps=5—2c,
Br=13(0=2c1) +cs, fg=c2— 1, 59203—;

Recalling the definition of the coefficients aj, = a;,(f) in (3.4) we obtain from Theorem 3.1,
(3.5) and (3.4) the representation

13
(3.7) P;{Tn > t} = Gult) + =Y ja(0)Grnya () + 0o(n 1),

n 4
Jj=0

where G,.(t) = 1 — G,(t). If g, denotes the density of the (central) x2-distribution we can use the
well known identity [see Abramowitz and Stegun (1964)]

(3-8) Gria(t) = Gr(t) + 29r42(t)

11



to express the second term in the expansion (3.7) in terms of the densities g;(¢). To this end we
note that (3.8) implies

(3.9) Creonlt) = Gull) 423 sy (), k20
and obtain from (3.7) and (3.4)
5 3
(3.10) P;”{Tn > t} = Galt) + = 3 Bin(®)gmsi (t) + o(n™").
j=1
k/j 0 1 2 3
L E %
[ % = %
3 —1 i —1 i
4 Zal —%al %al
5 —%al %al
6 —51 %(3011 + ag) —%(3041 + 2a9) %(041 + ag)
7 %011 - — %ag %(al + 052)
8 %(al + ag) —(a1 + ag) %(al + ag)
9 sloa v o) el o )
—5(B3 + Bs) +35(B3 + Bs)
%(Ozl + a2)2 (oq + 042)
10 —(B3 + Bs) +(B3 + Bs) 5(on + ag)?
—2(B2 + B+ Bs) +3(B> + 1+ Bes)
1 2 2
11 2(10” o) (lal o) Loy + a)?
—5(B2 + B1+ Be) +35 (B2 + B1 + Bs)
1 2 1 2
z (a1 + az) —z (a1 + a2)
12 —%a% 8 ) 12 12 ‘11 21 . 2 %(011 + ag)?
+07 — 307 oy + 507
l(al + a2)2 + 12
7} el 1 2 1 9
—zlon +a2)® — 709 1
13 3P | —(B2+Br) f 1l +az)’
3(B2 + Ba+ Bs) + B
—2(Bs + Bs) ol 4 Pat )+
14 1o? —la? — 1p %al 3/
15 | 308 — 35 —5ai + 302 — fs 107 + Bs
16 —3(B1 + Bo) 3(B1+ Bo)

Table 3.1: Coefficients \Aj; in the expansion (3.2) for statistics 7}, € U,,.
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Here the coefficients B;, () are defined by
(3.11) Bjn(6) = — ain(0), 7=123,

and we call these coefficients the Bartlett functions of the statistic 7;,. Note that an inversion of
(3.11) yields

Qop = _Blna aip = By, — B2n7
(3.12)

Aon = By — Bsy, as, = By,

which shows that the functions a;, in the asymptotic expansion (3.7) can be expressed in terms

of the Bartlett functions.

k/j| 0 1 2 3
I 1 8

2 | =% 5 —3 5

3 |15 i —i s

4| 3 -1 i

5 -1 1

6 | -1 (1 +3) —2c1 t(er —1)
7 1 —5(c1 +1) T(er —1)
8 (e —1) —c; +1 T(er —1)
9 2 — ) —ci+ 138 - 1) T(er —1)?
10 $(cd - 1) —Z 4+ Her —1)?
11 (1 —1)2 —(c1 — 1)? er —1)2
12 | =1 | 2(F+4—des) | —3(E—c1+ 5 —2c1) | 5(c1 —1)?
13| & | HF—2—4dey) | —5(F—c1+ 5 —2c1) | $(cr —1)?
14| 1 —2(co +1) e

15 —% —C2 —1—% C2

16 —2(3c5 —1) $(3c3 — 1)

Table 3.2: Coefficients \j; in the representation (3.4) for u,-representable statistics.

Finally, if we recall the definition of the Bartlett adjustment A, = A, (#) by the equations (1.7)
and (1.8), we are able to express the adjustment A, in terms of the Bartlett functions By, Ba,
and Bs,. To this end define a? = x?__(m) as the (1 — a)— quantile of the central x? distribution

with m degrees of freedom and
t=t,=a*(1+A,n"),

13



then a Taylor expansion yields

Glt) = Go(a?) —

Gm+2i(t) = Gmyai(a®) + o(1).
Observing (3.10) this gives

Bp{T > 1) = Ga?) - O, %i%(@%} +o(n™)

and equating coefficients yields for the Bartlett adjustment

(313) 2= 53 2 b 0) = 55 (5) Faeia ).

where I'(+) denotes the Gamma-function and the last equality follows from the representation of
the density of the x2-distribution g,.

4 Statistical invariants

Recall the definition of the expectation surface E™ in (1.4). An invariant of E™ is any object,
which is not changed by a local transformation of the coordinates # = (61,...,0™)T [see Veblen
(1933)]. For example every point A = A(f',...,0™) € E™ is an invariant because a new
parametrization obtained by a diffefomorphism # : © — © does not change the point A but
only its coordinates. Consequently, any system of points in E™ and any function of these points
define invariants of the expectation surface E™. If such a function has the representation 7(6) in
the original coordinate system, it has the form I(f) in the new coordinate system. Throughout
this paper we call a reparametrization § : © — © of the expectation surface regular if the
reparametrizised model

(4.1) y = () +o

satisfies the regularity assumptions I - VI of Grigoriev and Ivanov (1993). Consider the statistical
model {R", B™, Pg”,é € O} generated by the new model (4.1) and let ¥,, denote the analogue
of the class ¥, defined in Section 1. It is easy to see that there is a one-to-one correspon-
dence between the sets of statistics ¥,, and U, : a statistic 7,, € ¥,, with structural coefficients
(a1, an, B, ..., Bg) is simply associated with a statistic T, € ¥,, with the same structural coeffi-
cients.

Definition 4.1: A statistic T,, € V,, is called invariant with respect to a reqular reparametrization
0 : 0 — O of the expectation surface E™ if for every 6y € © and 0y = 0(6))

(4.2) sup P&{Tn < x} - PgO{Tn < x}‘ =o(n ).

TER
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Some invariant statistics will be considered in Section 6. Roughly speaking Definition 4.1 means
that the coefficients a;,(6) in the asymptotic expansions (3.2) and (3.7) can be represented in
terms of differential geometric invariants. To be precise let w; = w;(#) denote a covariant tensor
field on E™ and consider a function I(w, #) depending on a finite number of variables of the form

o O Ot
Y00 ogioei

(note that I(w, #) is a function of the parameter @). Following Grigoriev (1994) and Ivanov (1997)
[see page 267, formula (18.69)] we call I a (scalar) differential invariant of the expectation surface
E™  if for any reparametrization f : © — ©

(4.3) [(w,0) = I(w,)

(note that I(w,6) and I(w, #) are the values of the function I in the different coordinate systems).

Example 4.2: Consider the inner product (-, -) with respect to the matrix n=*o 24, on R" and
the projection
(4.4) P=P"=F'F/\n""

onto the tangent space 7™ (f) defined in (1.5). The field
Vij = (e, (I = P)Fy)

is called a covariant derivative of the tensor field 0; along of the tensor field 0; [see Rashevsky
(1967)], where
(45) 82 = <E, 6> = n_l/Za_sz-

is a stochastic basis of the tangent space 7™ (). The matrix V;; is a differential invariant of the
expectation surface E™ and the quantities

(4.6) VN7, V19,0,

are scalar invariants of the expectation surface E™.

Example 4.3: The Christoffel symbols of the first and second kind

1 ] 116"
(4.7) Lign = 3 Magw,  ie = A @)

are differential invariants of the expectation surface £™. With the notation

Vi
ﬁn(il)...(ik) (k > 2)

wzlzk -
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the tensors of covariance, skewness and excess of the expectation surface E™ can be written as

1
(4.8) wij = 5w,
73
Wijk = En(i)(j)(k%
. 74H
Wijke = 8 OINIGIOE

Because the quantities Py, P», P3 in (3.1) can be represented as

_ s, Jr
(4.9) P = wPw wijps,
s qr, .kt
Py, = w"” W w wikiwsjr,

s qr, .kt
P; = w" W W wijrwert,

it follows that P;, P, and P are scalar invariants of the expectation surface E™. For the subse-
quent discussion in Section 5 and 6 we also introduce the scalar invariant

(410) X(avﬁav):apl_FﬁP?_nyP?n

where «, 3, € R are arbitrary constants.

Example 4.4: A couple of further scalar invariants, which can be expressed in terms of the
constants P, — Pjg in (3.1) have been discussed in the literature and will be used in following
sections. The invariants

(4].].) Q1 = P4—P6,
(412) Q2 = P5 - P7,

have been found by Grigoriev and Ivanov (1993). The quantity
(413) H == P14 - P12

is called Efron’s statistical curvature [see Efron (1975)]. Finally, the Ricci curvature is defined
as
(4.14) R = (Piy — Pi3) — (P15 — P13)

For m = dim E™ = 1 Ricci’s curvature R is always zero. In contrast to Ricci’s curvature Efron’s
curvature H is not necessarily zero in the one-dimensional case. By reason of its definitions
Efron’s curvature is non-negative, i.e. H > 0, but Ricci’s curvature can have both signs. Efron’s
and Ricci’s curvatures of the surface E™ are related by the inequality [see Grigoriev (1994) and
Ivanov (1997)]

(4.15) H > R.

The quantity
(4.16) B =3H - 2R
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is called Beale’s measure of intrinsic nonlinearity of the expectation surface E™ [see Beale (1960)].
From (4.15) and (4.16) we obtain B > 0. Finally, recall the definition of the normal curvature of
McCullagh and Cox (1986)

(4.17) Y = H — 2R,

It will be demonstrated in the following section that the invariants X, @, @2, H and R (or equiv-
alently B and Y') describe the coefficients in the asymptotic expansion (3.7) for the distribution
of an invariant statistic 7,, € ¥,, completely.

5 Invariant and u,-representable statistics

In this section we characterize the properties of invariance and u,-representability of a statistic
T, € ¥,, in terms of its structural coefficients o, as, 31, ..., B.

Theorem 5.1: A statistic T,, € V,, is invariant with respect to a reqular reparametrization if its
structural coefficients in the representation (1.9) satisfy

a; +as = 0,
Bi+ By =0
(5.1) P2+ Ps+ P = 0
B3+ 05 = 0,
Br+08s =0

Proof: If the equations in (5.1) are satisfied, then we obtain from Table 3.1 and the represen-
tations (4.11), (4.13) and (4.14) for the coefficients a;j, = a;,,(¢) in the expansion (3.7)

1 1 1
1 1 1
X(= - ——
+ (8’ 8’ 12)7
1, 1 1 1
A1y = (_Zal +§52+ 557)(3]’[—2}%) + gﬁQ(H— 2R)
1 131
— §a1(Q1+Q2)+X(—Z,g71),
1 1 1 1 3 1
Qon = (gaf—557)(3H—2R)+Za1(Q1+2Q2)+X(g,—§,—Z),
1 1
= X(0,=,—).
a3n (07 87 12)
This means that the statistic 7T, is invariant. d
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Remark: Roughly speaking a converse of Theorem 5.1 is available. More precisely if the
representation of the coefficients in the expansion (3.7) is of the form (5.2) it follows that the
system of equations in (5.1) must be satisfied. To prove this inclusion, we note that in general
Table 3.1 gives the same representation for the coefficient ag, and for the remaining coefficients

ay, = —ia%(ﬁiH— 2R) + %BQ(H— R) — %a1(Q1 +Q2) + X ( L2 1)

TEI
1 1 1
+Z(041 + ag) Ps + §(C¥1 + ag) Py + 5[(041 + ) + (Bs + B5)] Py

+[= (a1 4 2)® — (B3 + B5) — %(32 + B4+ B6)] Pro

— N =

+[= (a1 + a2)® = (Bo + Ba+ Bo)| Pt + %(Ch + az)? Py

(\]

—%(57P12 + BsPra) — (BrPi3 + BsPis)
+[i(a1 + as)® — %(52 + B4+ Bs)]| Prs — 2(51 + B9) P,

1 1 1 3 1

1
—§(C¥1 + a9)(Ps + Pr) — (g + ag) Py

+[%(ﬁ3 + 05) — (o1 + a2)*] Py
+[— (o +az)* + %(52 + B1+ Bs) + (B3 + B5)] Pro
+[— (a1 + CY2)2 + %(32 + B4 + Bs)] P11 + 3(51 + B9) Pig

_i(al + a3)* P + [—%(al + a)? + %(52 + Ba + Bs)| Prs

+(BrPi3 + BsPis) + %(57]312 + BsPua),

1 1 1
as, = X 0, —)—|——(Oél+042)P6—|—§(041—|—042)(P7—|—P8)

( 1

812 4

1 , 1 1
§(C¥1+C¥2) (P9+P10+P11+ZP12+§P13)-

Comparing these representations with (5.2) yields the system of equations in (5.1).

_|_

Definition 5.2: A wu,-representable statistic is said to have the c-property if and only if the
c-vector in the representation (2.7) satisfies

o
(53) Z = Cy + C4.
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The class of u,-representable statistics with c-property is quite rich [see Dette and Grigoriev
(2000)] and a couple of examples will be presented in Section 6. The following result gives an al-
ternative representation of the coefficients in the asymptotic expansion (3.7) for u,-representable
statistics with c-property. The proof is an immediate consequence of Definition 5.2 and the rep-
resentation of the coefficients in Table 3.2.

Theorem 5.3: Let T, € V,, denote a u,-representable statistic with c-property, then the coeffi-
cients in the asymptotic representation (3.7) can be represented as follows

1 3 1 1 1 1
5.4 n = —(BH—-2R)— =—(H — 2R - X(=,—=,——),
(54)  ap = S(BH —2R) — S(H —2R) + 5Qu + X (5, —, )
1 1 3 131
n = —— —)(3H — 2 —(H —2 X(——, =, -
tn = (s + DEH —2R) + 2(H ~ 2R) — (@1 + @)+ X(—, 2. 1)
1 1 3 1
+ 5(01_1){§P6+P8+01P9+(Cl+1)P10+(Cl_1)P11}_§(03_§)P167
1 1 1 3 1
= Z H -2 — 2 X(=,—=,—=
Aap, 202(3 R)+2(Q1+ Q2)+ (87 87 4)

1
— §(C1—1){P6—|—P7+2P8—|—(201—1)P9+201P10

1 1 3 1
+ (01 — 1)(2P11 + ZPH + §P13) + 5(03 — g)Plg},

1 1
n = X(0,=,
s 0.3 %)
1 1 1
+ 2 Cl— ){ P6+P7+P8 (01—1)(P9+P10+P11+4P12+2P13)}

It is worthwhile to mention that for a u,-representable statistic the coefficient ay,, is always invari-
ant [see equation (5.4)]. In the next definition we introduce a further concept to classify quadratic
statistics of the form T, = T},(0,0,) [see for example the statistic of Kullback Leibler or Wald].
To this end we call two statistics V,,, W,, € ¥,, equivalent if the coefficients («, s, 51, ..., [9)
in the asymptotic expansion (1.9) and (1.10) coincide and denote this property by W, ~ V, as
n— 0o.

Definition 5.4: Let T, = Tn(H,én) denote a u,-representable statistic, then the statistic TY =
T.(0,,0) is called conjugate statistic of T,. If T, ~ T}, then the statistic T, is called self-
conjugate.

Theorem 5.5: Let T,,,T, denote u,-representable and conjugate statistics with structural coef-
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ficients (¢;)}_, and (c})i_,, respectively, then the following properties are satisfied
(1)

cf =2—-¢

(5.5) cy = 1—c1+co,
c; = 1—c +cs,
cy = ¢4,

(i1) T, is an invariant statistic if and only if

c1 = ]_,

1

(5.6) cot+cy = —,
4

1

C3 — g

(1ii) T, is self-conjugate if and only if ¢; = 1.

(iv) If T,, is invariant, then T, is self-conjugate and has the c-property.

Proof: The proof of (i) is obtained from the expansion (2.7) observing that v = —u,. The
equation (5.6) is necessary and sufficient for the invariance of the statistic 7;, by Theorem 5.1
and the equations (3.6) which express the structural coefficients («, s, 51,..., ) in terms
of the vector (¢;)i_, of a u,-representable statistic. Finally, part (iii) and (iv) are immediate
consequences of Definition 5.2 and 5.4.

(]

6 Applications

In this section we discuss a couple of quadratic statistics in the class W¥,,, which are well known
from the literature. We start with several statistics in the subset ¥y, C ¥, of invariant statis-
tics. To this end recall the definition of the projection P onto the tangent space T™(6) of the
expectation surface at the point € © in (4.4) and let P denote the corresponding projection

~

onto the tangent space 7™ (6,). We introduce the matrices

(6.1) Hij = M;; —((I — P)e, F)

(6.2) Qij = M —((I = P)( —n), Fyj)
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and define five quadratic statistics by

(6.3) TV = le|* — [|é]f?,
(6.4) o’T = A9bb; = || Pe|)?,
(6.5) o*T® = Hbb,,

(6.6) T = [l =l

(6.7) o’ = ||P(i) — )|

These statistics have been discussed by several authors in the case of a Gaussian error. The
statistics 70" and T.® appear in the likelihood ratio test and in Rao’s test [see Rao (1965),
Section 6e.2] for testing the hypothesis Hy : # = 6y, respectively. Similary, T,£4) is proportional
to the Kullback-Leibler distance between the Gaussian measures Pg and P and the statistic

n

T¥ has been proposed by Hamilton, Watts and Bates (1982) in the context of inference regions
in nonlinear regression models. Finally, Grigoriev (1994) introduced the statistic 7”. The
structural coefficients of the corresponding statistics (1.9) and (1.10) are presented in Table 6.1
and yield the second order asymptotic expansion (3.2). From the discussion in Section 2 and
this table it follows that the asymptotic expansion used by Grigoriev and Ivanov (1993) is not
applicable for the statistic of Hamilton, Watts and Bates (TS”) and Grigoriev (T7§5)) because
Bs+ PBe # 437. Morover, a straightforward application of Theorem 5.1 yields the following result.

Corollary 6.1: The statistics T -7 defined by (6.3) - (6.7), respectively, are invariant, i.e.
" e Wy, r=1,2,3,4,5.

For a supplementary discussion of the invariance properties of these statistic we use a geometric
point of view and present in Figure 6.1 the points

A=n(), B=q=n(0,), Y =y,
C =Py, D=P(H—n).

Recalling the definitions (6.3) - (6.7) we obtain

T = |[A-Y|? - |B-Y|?,
T = |A-C|P,
T = ||A-BJ|P,
T\ = ||[A—DJ?,

n
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and the discussion in Section 4 shows that the Tél), Ty?), T#) and Té‘r’) are invariant with respect
to regular reparametrizations, because they are functions of specific points of the expectation
surface (and its tangent spaces). The invariance of the statistic T,£3) cannot be obtained by such

a simple geometric argument but follows from the representation
Tég) = nH“@l@] y

where 81 is defined in (45) Now (6].) shows Hij = Mij - Vij and Mij and vij = <(I - P)e, E]>
are differential invariants. Therefore it follows that Tn3) is invariant.

T,§’") statistic n~1/2 n-!

T ar | oo | B | Ba| B3| Ba|Bs | Bs| Br| Ps| DBo
1 Neyman-Pearson 1] -1 % 1(-1]-2] 1 1 i —i —%
2 | Rao

3 | Hamilton-Watts-Bates | 1| -1 1 -2 1

4 | Kullback-Leibler 202 1| 3[-3|-6| 3| 3| 2|21 -1
5 | Grigoriev 21 -2 1| 3|-3|-6| 3| 3 1 -1] -1
6 | Wald, modif. 2130 1| 3|48 5|5 3| -1]-3%
7 | Wald 20 -1 1| 3]-2|-4| 1] 1| ; -1
8 | Pazman, modif. 21 3| 1| 3] -4|-8| 5] 5| 2|-1]|-3
9 | Pazman 20 -1 1| 3] -2 4| 1| 1|—-3| 3| 3

Table 6.1: Structural coefficients in the expansion (6.1) for various quadratic statistics proposed
in the literature.

Corollary 6.2: The statistics T7§4),T,£5) are up-representable, while T,gl) — T,£3’ are not u,-
representable.

Proof: The proof follows by a careful comparison of the system (3.6) with the structural coeffi-
cients in the expansion (1.9) given in Table 6.1 and is left to the reader.
(]

The second subset ¥y, of ¥, is the class of u, -representable statistics. By the above Corollary
T and T are un-representable and additionally we introduce the statistics

(6.8) o’ T = Ty (0)upus,
0'2T7§7) = H(i)(j)(ﬁn)u;uil,
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(6.10) o*T® = Qij(0)ulnf

(6.11) o?T = Qi;(0,)ulul,

where the matrix @);; is defined in (6.2). Note that T is the statistic introduced by Wald see
Rao (1965)] and that T.” Pazman’s statistic [see Pazman (1992)]. We will call 7¥ and Y
modified Wald and Pazman statistic, respectively. The structural coefficients of the correspond-
ing statistics (1.9) and (1.10) are presented in Table 6.1 and yield the second order asymptotic
expansion (3.2). From the discussion in Section 2 and Table 6.1 it follows that the asymptotic
expansion used by Grigoriev and Ivanov (1993) is not applicable for the statistics of Pazman
(T,ES), Tég)) because 35 + B # 4/7. From Table 6.1 and the equations (3.6) it also follows that
the statistics T.® — T are up-representable and the corresponding c-vectors are given in Table
6.2.

A=n E

Figure 6.1. The geometry of the statistics 7" , 1,2,4,5
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Statistic n

&1

Q
[N}

o)
w

)
o

7Y, Kullback-Leibler
T, 755), Grigoriev

7%, modified Wald
7", Wald

Tég), modified Pazman

Tég), Pazman

S| O |rIm| O

N[OOI || ==
NIW (N=] = O | O |
— O = O (Wi |w=
N [N —=

Table 6.2: c-vectors of wu,-representable statistics.

Obviously the statistics 7" and T are self-conjugate (which follows either by definition or by
Theorem 5.5 (iii) and Table 6.2). Similary, T and T and T.¥ and T\") are conjugate statistics.
Note that T,E‘” and T,E5) are invariant and u,-representable and therefore self-conjugate (see part
(iv) of Theorem 5.5). Moreover,

(see Figure 6.1) but

10 470"
because T = ||A — D||> and T\"* = |4 — E||.

We conclude this section presenting the Bartlett functions (see Section 3) for the statistics under

consideration. For the invariant statistics Tél), e ,T7§5) we obtain
By, = —%(OK% — 32) B + %523/ - ia1Q1 + X(—%, éa %):
By, = é(a% —457)B + 301(621 +2Q) + X(é, _ia _é)a
By = X(0,5,15)

where the differential invariants B, Y, @1, ()2 and X have been defined in (4.16), (4.17), (4.11) ,
(4.12) and (4.10), respectively. The statistics 7V and T are u,, -representable with c-property
and we obtain a further simplification

1 1 111
B, = ——R— = X(—=. = —
n 2R 2Q1+ ( 8’8’12)’

1 1 1 1 1
By, = —coB + = 2 X(=, -2, —=),
2 52 +2(Q1+ Q2) + (8 1 6)

11

B, = X(0 ),

'8’ 12
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where R has been defined in (4.14). Finally, the Bartlett functions for the non-invariant but
up-representable (with c-property) statistics 79 — 7 are given by

1 1 11 1
Bn:__ -5 X__a_a_a
! =@t ( 8’8 12)
1 1 1 1 1 3 1
By, = §C2B+§(Q1+2Q2)+X(§,—Z,—6)+§(C3—§)P16
1 1
— 5(01—1){§P6+P8+01P9+(01+1)P10+(01—l)PH},

1 1 1 1 1
Bs, = X(O,—,E) +§(C1 — 1){§P6+P7+P8+ (o = D[Py + Pro + Py +1P12+§P13]}-
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7 Appendix
The polynomials M, (+), Ma,(-) in the asymptotic expansion (2.14) are given by:
My, (0;y) = {211 ! 672)T1 By
n(03y) = g s M@Em) T —5(m +6m)agm) 1y°y7y

606
Y

3 o
— {1+ 8m) iy 50y + (m1 + 472) i) + 251 H@)(E)() fAy,

9 37 53
Mo (059) = > miM; + Y miMiapy®y” + > miM;apysy®y’y"y’

56
+ Z my; Mi,aﬁfyéal/yayﬂ y'yy(SysyV .
1=54

Here the coefficients m; and M; are defined by:

—4 irAJS
mi = oy M= 0T AT A TG Gy,
1 —6_2Aij ANkl ATS
mg = —g, My =0 Py AYATAT LG gy iy ) o),
1 —6_ 2715 Akl ATS
my = =75 My =0 g AT ARAT Ty TGy )

25



1 . .
my = =my, My =0’y NT A T )(s),s

2
1 _ . .
ms = —gm,  Ms =0 AT AN Tl () ey ey
1 . .
me = 57%7 Mg = oAy AT iry is),
1 . .
mr = —gmi, My =0 A"AP A 0 i),

1 . .
ms = S = pa, My = 0" ATA I,

my = — (%w? - pz)’ My = 0 A" AP ATy 09 sy o

mi = _%’ Mig,as = 0~ %A TLi)j)(a)(B)

mi = % . Mias = 0 ST AT 6y ey a)(9):

——— i, Mizap = 0~ 3 AT AL 0y T ) 08)

miz = é . Migas = 0~ B AV A LG )@ L)

miy = %(m +8m),  Misap =0 "3 AT A oy o s)
1

mis = (M +2m),  Misas = 0~ 1A A Tlag) () i),

mig = T, Mg = 0 1 ATA T iy )6).
1

miz = om, Mizas = 0 9AT A sy o i o),

mig = —7m1, Migag = 0_473Ain(ia)(j)(ﬁ)’

myg = —%m, Mg ap :07473/\”1_[(046)@)(9')’

Moy = —%m, Mo, :U_4V3Aijn(z‘j)(a)(ﬁ)’

my = %(m +4my),  Myyap =0 "y ATA Tl o) iy 8)
Mgy = %(m +4my), Mo ap = 0 3 AT A Ty ) (s)i)r)
Moz = %(m + 87?2)2, Ma3 o5 = AirAjsH(r)(ia)H(S)(jﬁ)v

Moy = (1 + 4my) (M1 + 8m2),  Masas = A" AT (5 (jay iy (8)

N

Mas = = (1 +47m2)%  Masap = AN Tl o) sys)s

Mag = 2mmy + 1675 — (p3 + ps + pro),  Mas,as = A"A° Ty sy as)
Myy = (w1 + 4my) (7 + 8ma) — (p2 + 2p3 + pa + ps + ps + p7 + po + 2p10 + p11 + p12)
Marap = NN s ia) gy (s)
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Mas = (m1 + 4ma)(m + 8m2) — (p2 + p5 + ps + pr + p11 + pi2)
Msap = AN"ATLi5) 05 Hray(s)
Mag = (M1 +4m2)" = (ps + po),  Magap = A" ATy () (aa ()

1 o
may = (11 +4m2)* — (2 + po + p1r + p12), Maoap = AN Ty s sy,

2
3 .
my = —om 2= 2pus Maias = A Tla)),
my = — (7 + pua), Mazap = A T(in)(ap),
1 -
myy = 5 (37 +8mmy +3213) = (P2 + p5 + p11+2p13), Magas = AN T iy Hir) )
My = (7 + 2m T + 873) — 13, Magas = AN Ty Iy (as)
; ,.
mas = (M +8mm +3275) — (pa+ 2ps + po)s Mis.ap = AN Ty oy T(sy i),
mas = —(p1 +3p15 + p16),  Msgep = AirH(i)(mﬂ)’
mar = —2(p1 + pi6),  Mazrap = N (a)irp),
1 _
mas = o1 Misaps = 0 nllme)me).
B 1 Y — o 102 AT I
mag = =25 Mag.agys = 0~ AT o) Ty )
1 M — 5102 AT 1
mao = —2, Minags = 0 G A g 0)) TG 0)0)
1 B
ma = 5, Mg = 0 *9laye)00)
. o
mip = —(m +8m),  Misaps = 0 1A i)y g (o)
1 o
mag = —5(M +6m2),  Migaps = 0 1A ag)) Me)o)
1 )
may = =5 (T +2m),  Misasss = 0 A a5 Ty
. o
mus = —o(m+ M), Masaps = 0 %A 0 s 0)0)
1 6., pif
mig = =5 (T +4m),  Misaps =0 "3 A I oy iy 6))
My = — (72 +12m7 4+ 4072), Mz aprs = 0 2N Ty s L 5)(10)
mag = —(m + 4my) (11 + 8m3),  Migaprs = 0 A iy rs) L sy)(0)
myg = —(m} + 10mymy + 32m3) + (ps + ps + ps + po + p1o), Myg apys = UﬁZATSH(r)(a,B)H(sv)(é)
1
msy = _5(71 + 4ma) (3m1 + 28m2) + (p2 + ps + po + pr + p11 + pr2)
Mso,apys = 0 A Iay(s) (s ()
1 _
msy = §7r% +pu, Msiaps =0 21'[(&5)(75)
1 _
may = =5 (M +473) + prs, Miaps = 07 A iy is)00)
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Mss = p1+ P15+ Per Mssasye =0 Tiaysye)

1 )
mss = =, Masapser = 0 295 )y o))
1 _
Mgy = 6(71'1 + 67'('2), M55,aﬁ755u =0 8731_[(&)(/37)1_[(5)(5)(’/)

1 _
mss = 5(m+67m)°,  Migagyse = 0 Ty Hoy(en)-
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