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Abstract

We discuss the increasing literature on misspecifying structural breaks or more

general trends as long range dependence� We consider tests on structural breaks

in the long�memory regression model as well as the behaviour of estimators of

the memory parameter when structural breaks or trends are in the data but

long�memory is not� It can be seen that it is hard to distinguish deterministic

trends from long�range dependence�
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� Introduction

Long�memory time series have been a popular area of research in econometrics

and statistics in the recent years because of their applicability in many sciences�

Long�range dependence or long�memory means that the correlation of a time

series decays hyperbolically� not exponentially like for example for ARMA�

processes�

Long�range dependence was �rst observed by the hydrologist Hurst who ana�

lyzed the minimal water �ow of the Nile River when planning the Aswan dam�
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Hurst acknowledged that standard forecasting methods fail for this data� In�

stead of independence or weak correlations between data points far away from

each other� he observed strong dependencies� The phenomenon of long�range

dependence in water �ow data was observed in many other rivers by Mandel�

brot
Wallis ������� Also the Rhine River exhibits long�range dependence �see

Lohre
Sibbertsen ������ and references therein�� Additional geophysical appli�

cations of long�memory are for instance the temperature data of the northern

hemisphere� Other domains of application are Computer Science and Eco�

nomics� Many economic data sets show a persistent behaviour and therefore

it seems natural to apply long�memory models to these economic time series�

Beginning with Granger ������� an intensive discussion about the application

of long�range dependence in Economics and its consequences was initiated� But

in many situations it is not clear whether the observed dependence structure is

real long�memory or an artefact of some other phenomenon such as structural

breaks or deterministic trends� Long�memory in the data would have strong

consequences� As described in section � the valuation of an option on stocks

would be changed entirely� The price of the option can in case of long�range

dependence double the price when long�memory is neglected� Also for fore�

casting future events as high water it is important to know whether the data

exhibits long�range dependence or if it is an artefact of a deterministic trend�

So far there is no acknowledged method to distinguish long range dependence

and structural breaks or more general trends� The purpose of this paper is

to review the literature concerning the in�uences of long�memory to tests on

structural breaks and on the other hand the consequences of trends to the

estimation of the dependence structure of the observed time series�

The paper is organized as follows� In the next section long�range dependence is

de�ned and the most relevant properties of long�memory models are discussed�

In section � a motivating example is considered� Section � discusses the be�

haviour of tests on structural breaks in the presence of long�range dependence�

Section � considers the consequences of trends added to a short�memory noise

for the estimation of the memory parameter�
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� Long�memory time series

��� De�nition of long�memory

Long�memory or long�range dependence means that observations far away from

each other are still strongly correlated� The correlations of a long�memory

process decay slowly that is with a hyperbolic rate� We have the following

de�nition of long�range dependence	

De�nition ��� �Long�memory process� Let Xt be a stationary process

with correlation function ��k� and let H � ����� ��� Furthermore let c� be

a positive constant with

lim
k��

��k�

c�k�H��
� �� �����

Then Xt exhibits long�memory or long range dependence�

It follows from this de�nition that the correlations of a long�memory process

decay with a hyperbolic rate� They are not summable� Instead of the parameter

H we use in this paper also in some situations the parameter d 	� H � ���� H

is called Hurst parameter� The use of the parameter d is standard because it is

commonly used in the ARFIMA modeling of long�memory processes discussed

below�

An equivalent de�nition of long�range dependence can be given by using the

spectral density f��� of the process Xt� Note that the long�term behaviour

of a process is speci�ed by the small frequencies of the periodogram� A long�

memory process has a pole of the spectral density at the origin� We have the

following de�nition	

De�nition ��� Let Xt be a stationary process and H � ����� �� real� Let also

be cf a positive constant such that

lim
���

f���

�cf j�j���H � � �� �����
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Then Xt is called stationary process with long�memory�

These de�nitions are equivalent� The details are omitted here� From these

de�nitions of long�range dependence we obtain important properties of long�

memory time series	

� the covariances behave asymptotically like a constant cH times k�H�� for

��� � H � �


� the correlations are not summable� that is
P�

k��� ��k� ��


� the spectral density f has a pole at the origin and behaves like a constant

cf times ����H near the origin for ��� � H � ��

� the variance of the sample mean behaves asymptotically for t�� like

a constant cvar times t�H�� for ��� � H � ��

Also some qualitative properties of a typical trajectory of a long�memory pro�

cess can be enumerated	

� the trajectory has local trends and cycles


� it is mean stationary� so no overall trends or cycles are observable


� it is mean reverting


� it shows a persistent behaviour�

In �gure � a typical trajectory of a long�memory time series of length N � ����

and memory parameter H � ��� is given�

The process Xt is stationary and exhibits long�range dependence� if ��� �

H � �� For � � H � ��� the process has short�memory� In this situation the

spectral density is zero at the origin and the process is said to be antipersistent�

For H � ��� we have independence or standard short�memory� In the case

� � H � ��� the process is non�stationary but still persistent� For this reason

in the literature it is often called non�stationary long�memory� Every other
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Figure �	 Path of a long�memory time series with N � ���� and H � ���

situation can be reduced to these cases by di�erencing the process� In this

paper we restrict ourselves to the stationary long�memory case because this is

the relevant situation in practise�

��� Modeling long�memory processes

A �rst model for long�memory processes was the fractional Brownian motion

introduced by Mandelbrot
van Ness ������� This approach generalizes stan�

dard Brownian motion by using self�similar processes� Here a process Xt is

called self�similar with parameter d � ������ ���� if Xt
D
� tdX�� Notice that

these equality is only equality in distribution� Self�similarity is not a property

of the paths of the process� For the paths the equality above does not hold in

general� In what follows fractional Brownian motion is denoted by Bd�t��

Another model class are ARFIMA processes introduced by Granger
Joyeux

������ and independently by Hosking ������� They generalize the class of

ARIMA models by allowing for a fractional degree of di�erencing� Denot�

ing with B the Backshift operator� with ��B� and ��B� the AR� and MA�
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polynomials respectively and with �t a white noise process� ARFIMA�models

are de�ned as the solution of

��B���� B�dXt � ��B��t� �����

The operator ��� B�d can be written as

��� B�d �
dX

k��

�
d

k

�
����kBd�k�

The binomial coe�cient is de�ned by terms of the ��function

�
d

k

�
�

��d� ��

��k � ����d� k � ��
�

Near the origin the spectral density of an ARFIMA process behaves like a

constant cf times j�j��d� Thus these processes exhibit long�range dependence

for � � d � ����

��� Estimating the memory parameter

There are several methods for estimating the memory parameter of a long�

memory process� As this is outside the focus of the present paper we con�ne

ourselves to methods used in below�

The results discussed in this paper are mostly based on the R�S�statistic� a

rescaled�range technique� The range of the process Xt is de�ned by

RN 	� max
��u�N

�
uX
i��

�Xi � �XN��� min
��u�N

�
uX
i��

�Xi � �XN��� �����

Let

SN 	�

vuut �

N

NX
i��

�Xi � �XN��� �����
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where �XN 	� �
N

PN
i��Xi be the sample standard deviation� The R�S�statistic

is then de�ned by

QN 	�
RN

SN
� �����

For the R�S�statistic the following holds	

Theorem ��� Let Xt be a stochastic process with X�
t ergodic and �p

N

PN
s��Xs

converges to a Brownian motion� Then �p
N
QN converges to a non�degenerated

random variable�

Thus a plot of lnQ against lnN scatters around a straight line with slope ���

in the case where the central limit theorem holds�

In the case of long�range dependence Mandelbrot ������ showed the following	

Theorem ��� Let Xt again be a stationary process with X�
t ergodic and

N�HPN
s��Xs converges to a fractional Brownian motion� Then N�HQN con�

verges to a non�degenerated random variable�

Thus in the case of long�range dependence a plot of lnQ against lnN scatters

around a straight line with slope H�

Giraitis et al� �����b� derive a test for long�range dependence based on the

R�S�statistic� the so�called V�S�statistic by replacing the range of the par�

tial sums of the process by the estimated variances of the partial sums� This

statistic has good power properties� Denoting with S�k 	�
Pk

i���Xi � �XN� and

 Var�S�� � � � � � S
�
N� 	�

�
N

PN
i���S

�
i � �S�N �

� the V�S�statistic has the form

MN 	� N��  Var�S�� � � � � � S
�
N�

S�
N

� �����

This test statistic will mainly be used in the last section of this paper�

For other estimators of the memory parameter and for tests for long�memory

and further details concerning long�memory processes see for example Beran

������ or Sibbertsen ������ and references therein�
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� A motivating example

In economics long�memory is most important for volatilities of stock returns�

This has important consequences for the valuation of options�

A standard class of models introduced for modeling volatilities of stock returns

consists of the Autoregressive Conditional Heteroscedasticity �ARCH� models

�see Engle �������� These models assume that the conditional variance depends

on the currently known information in a nontrivial way� But they do not al�

low for modeling long�range dependence� because shocks to the conditional

variance decay exponentially and thus have almost no in�uence for long time

optimal forecasts as it is expected due to the persistence property� Empirical

�ndings show for many stock returns that shocks to the conditional variance

have a slowly decaying in�uence to optimal forecasts of the variance� Thus in

the recent years long�memory models were used to model the behaviour of the

conditional variance of stock returns�

Estimating the dependence structure for daily returns� their absolute values

and the squares of daily returns of many German stocks such as BMW� Daim�

ler� Dresdner Bank� Deutsche Bank� Hoechst and BASF show a long�memory

behaviour of the absolute values and the squares of daily returns� Figure

� shows for instance the autocorrelation function of the absolute returns of

Deutsche Bank� It clearly seems to point to long�range dependence�

This has important consequences on the valuation of the price of an asset as

discussed in Bollerslev
Mikkelsen ������� by simulating call option prices for

the Standard and Poor!s ��� composite index� Taking into account a long�

memory structure of the volatilities� the price of the call option becomes much

higher and in some situations it doubles the price compared with the situation

when long�memory is neglected�

A natural question is whether the observed phenomenon is long range depen�

dence or if the estimated dependence structure is an artefact of any other phe�

nomenon as for example structural breaks or trends� Granger
Hyung ������
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Figure �	 Autocorrelations of the absolute returns of Deutsche Bank from ����

� �����

argue that structural breaks cause the long�memory structure of Standard and

Poor!s ��� composite index�

Thus long�range dependence and trends including structural breaks can easily

be confused� This paper is reviewing the increasing literature concerning this

topic� The behaviour of tests on structural breaks in a long�memory model is as

well discussed as the behaviour of tests on long�memory if the true underlying

process is a weakly dependent process plus a small trend� Distinguishing both

of these phenomena is still an open problem�

� Tests for structural breaks in the presence

of long�memory

In this section we consider the behaviour of tests on structural breaks in the

linear regression model with long�memory disturbances� Thus the point of

departure in this section is the linear regression model

y � X� � �� �����
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where y is the N �dimensional dependent variable� X is the N � k matrix of

non�stochastic and �xed regressors� � is the k�dimensional unknown parameter

vector and here � is a long�memory zero mean gaussian time series� For the

regressors we assume the following

�

N

NX
t��

xt � c �� and �����

�

N

NX
t��

xtx
�
t � Q ��nite� nonsingular�� �����

These are standard assumptions in linear regression large sample asymptotics


they exclude trending data� which require separate treatment� But that is not

topic of this paper�

The problem is to test the null hypothesis that the parameter vector � is

constant for all observations�

For the case of a known breakpoint Hidalgo
Robinson ������ obtained that

a Wald test procedure rejects the null hypothesis with probability tending to

one�

Unfortunately in most practical situations the breakpoint is unknown� Thus

we focus here on the CUSUM test for structural change� This test has a lack of

power but other methods like the optimal test by Andrews
Ploberger ������

show a similar behaviour as the CUSUM test in the long�memory model� We

consider here the CUSUM test because of its more intuitive asymptotics� For

an overview about tests on structural change� see for example Stock ������� Let

us �rst introduce the standard CUSUM test� It is based on recursive residuals

and was �rst introduced by Brown et al� ������� In detail the standard CUSUM

test is de�ned by

"et �
yt � x�t  �

�t���

ft
�  ��t��� �

�
X�t����X�t������X�t����y�t��� �����

ft �
�
� � x�t�X

�t����X�t������xt
� �

� �t � K � �� � � � � N�� �����
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where the superscript t� � means that only observations �� � � � � t� � are used�

It rejects the null hypothesis of no structural break for large values of

SN � sup
�����

WN������ � ���� �����

where

WN��� 	� N� �

�  	���

�N��X
t�K	�

"et� �����

Here  	��� denotes a consistent estimator for the variance of the error term� In

the case of iid or weakly dependent disturbances WN ��� tends to a standard

Brownian motion� The asymptotic behaviour of the test in the long�memory

regression model is given in the following theorem	

Theorem ��� In the regression model ������ with long�memory disturbances

we have

N�dWN ���� Bd���� �����

where Bd��� denotes fractional Brownian Motion with self�similarity parameter

d � ��� �����

Proof	 See Kr�amer
Sibbertsen �������

This theorem shows that the null distribution of the standard CUSUM test

tends to in�nity in the presence of long�memory disturbances� Likewise the

standard CUSUM test has an asymptotic size of unity�

The standard CUSUM test has bad properties in the case of structural

breaks occuring at the end of the observation period� For this reason

Ploberger
Kr�amer ������ modi�ed the standard CUSUM test by replacing

the recursive residuals by standard OLS residuals� This OLS�based CUSUM

test is sensitive to structural breaks at the end of the data� The test statistic

is de�ned by
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TS 	� sup
�����

jCN���j� where �����

CN��� 	� N� �

�  	���

�N��X
t��

et� ������

and where et 	� yt�x�t  � are the OLS#residuals from ������ In the case of iid or

short�memory disturbances CN��� converges to a standard Brownian bridge�

In our situation we obtain the following limiting null distribution	

Theorem ��� In the regression model ������ with long�memory disturbances

we have

N�dCN���� Bd���� c�Q��
���� ������

where Bd��� is fractional Brownian Motion with self�similarity parameter d �
��� ���� and 
��� � N��� �	�

�Q��

Proof	 See Kr�amer
Sibbertsen �������

The process on the right hand side of ������ is called fractional Brownian

bridge� For d � � it is standard Brownian bridge�

Thus also the test statistic of the OLS�based CUSUM test tends in probability

to in�nity under the null hypothesis of no structural break� Both� the standard

CUSUM test as well as the OLS�based CUSUM test is extremely non�robust

to long�memory disturbances� in the sense that long�range dependence is easily

mistaken for structural change when conventional critical values are employed�

The reason for these results is the bad rate of convergence of the OLS�estimator

in the long�memory regression model� In the case of long�range dependent error

terms the least squares estimator has a rate of convergence of N����d� where

d is the memory parameter instead of N��� in the case of independent or

short�memory disturbances� But both types of the CUSUM test depend on

the least�squares estimation of the parameter vector �� Because this is the
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optimal rate of convergence for estimates of � also tests which are optimal in

the case of independent or short�memory regressors have similar properties in

the long�memory regression model�

Sibbertsen ������ generalized these results to robust CUSUM�M tests be�

cause also outlier can cause the size of the test tending to one� Therefore

M �estimation of the parameter vector is used instead of least�squares estima�

tion� The results for robust tests are similar to the non�robust case� Details

are omitted here�

� Long�memory versus trends

A more general problem than distinguishing long�memory and structural

breaks is in a way the question if general trends in the data can cause the Hurst

e�ect� So in this section we consider tests of long�memory and their behaviour

when trends are present in the data generating process� In the next subsection

we restrict the considerations to monotonic trends� Thereafter general trends

are considered� At the end of this section SEMIFAR�models are introduced�

They allow for modeling trends and long�range dependence simultaneously�

��� Long�memory and monotonic trends

The �rst paper dealing with this problem is Bhattacharya et al ������� They

show that adding a deterministic trend to a short memory process can cause

spurious long�memory� They consider the model

Xt � f�t� � Yt� �����

At �rst f�t� is a deterministic trend of the form

f�t� � k�m� t��� �����
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where m is nonnegative and k does not equal zero� The exponent � is assumed

to be in the interval ������ ��� The parameter m can be interpreted as a

location parameter� Notice that the trend is decreasing for k positive and

increasing for negative values of k�

The process Yt in ����� is assumed to have short�memory in the following

sense� We say a stationary process Yt has short�memory� if the covariances are

absolutely summable� that is

�X
k���

jCov�Yk� Y��j ��

and the functional central limit theorem holds� that is

N����
�nt�X
j��

Yj �� 	B�t��

Here 	 denotes the variance of the process and B�t� denotes the standard

Brownian motion� This is a quite general de�nition of short�memory following

Giraitis et al� �����a�� It includes standard models like ARMA�p�q��models as

well as GARCH�p�q��processes� Using rescaled�range techniques Bhattacharya

et al� ������ show that a trend of type ����� produce long�range dependence of

order � � �� Thus a weak monotonic trend of form ����� can be confused with

long�range dependence of order �� �� Following the notation of Bhattacharya

et al� ������ we denote

pt �
�

t

tX
n��

f�n�� p� 	� �� t � �� �� � � � � N

and

�N�t� � t�pt � pN �� t � �� �� � � � � N�

Using this notation and RN as de�ned in ����� the following holds	

��



Theorem 
�� Let �Xn�n�IN be a sequence of random variables of the form

������ Let

�N 	�
�p
N
�max

t
�N�t��min

t
�N�t���

Then ���NH�RN converges in distribution as N �� to a limit almost surely

not � with H � ��� if and only if

�N � cNH�����

where � denotes asymptotic equality as N � � and c denotes a positive

constant�

Proof	 See Bhattacharya et al� �������

Thus the theorem says that RN�N
H converges in probability to the positive

constant c� So this theorem gives a necessary and su�cient condition for trends

to produce spurious long�memory�

We also have the following result	

Theorem 
�� Let again �Xn�n�IN be a sequence of random variables of the

form ������ If�N � o��� as N �� then ���
p
N�RN converges in distribution

to a limit which is almost surely not ��

Proof	 See Bhattacharya et al� �������

Note that these results of course depend strongly on the use of R�S methodo�

logy� As we see in the following other methods lead to di�erent results�

K�unsch ������ proposed a method for distinguishing monotonic trends

and long�memory by considering the periodogram instead of rescaled�range

methodology� He proved that the periodogram behaves di�erent in case of a

deterministic monotonic trend function compared to long�memory� De�ne the

periodogram of the process X as usual by

IX�j� �
�


N
j

NX
n��

Xn exp��in�
j�N�j�� � � j �
N

�
� �����

��



He obtained the following result concerning the periodogram	

Theorem 
�� Under model ����� �
IX�j� has a non�central ��
��distribution

with non�centrality parameter

��j� N�� �
�

N
j

NX
n��

f�n� exp��in�
j�N�j��

Proof	 See K�unsch �������

Note that for di�erent indices j the periodogram values are independent�

In comparison with the results of Bhattacharya et al� ������ we consider for

example the speci�c trend

f�t� � kt�� � � � � �

and k is a constant� Following Bhattacharya et al� ������ this trend produces a

Hurst e�ect of order �� �� On the other hand it can be shown that for such a

trend the non�centrality parameter ��j� N�� tends uniformly to zero in regions

�N� 	 j 	 N
�
for any � � � and � �

�

�
��

��� � This means that the proportion of

frequencies of the periodogram e�ected by such a trend tends to zero fast�

If we consider a process exhibiting real long�range dependence its spectral

density is of the form

g��� � kj�j���� � � � � � �����

as mentioned in the introduction� Such a process has long�memory with mem�

ory parameter H � �� �
�
� The spectral density of a long�memory process has

a pole at the origin and thus standard results concerning the periodogram do

not hold in this situation� K�unsch ������ proves that the periodogram of a

long�memory process follows a multiple of a ��
� distributed random variable�

In detail we have	
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Theorem 
�� Let Xt be a Gaussian process with long�range dependence and

thus having a spectral density g��� of the form ����� and let jN��� � � � � �

jN�k� be a sequence of frequencies with jN ���N
���� ��� and jN �k�N

�� ��
�� Then for � 	 i 	 k the IX�jN�i���

jN �i�
N

���� are asymptotically iid� each being

distributed like a constant multiple of a ��
� distributed random variable�

Proof	 See K�unsch �������

Hence it can be seen that the periodogram converges to di�erent distributions

in case of trends and long�range dependence� This enables us to distinguish

between monotonic trends and long�range dependence�

��� Long�range dependence and non�monotonic trends

Unfortunately in most practical situations trends are not monotonic� A natural

question is which shapes of non�monotonic trends added to a short�memory

process cannot be distinguished from long�memory� This problem is considered

for example by Giraitis et al� �����a�� Teverovsky
Taqqu ������ considered the

behaviour of a variance�type estimator of the memory parameter by adding a

model with shifts in the mean or a slowly decaying trend of the same type as

in Bhattacharya et al� ������ and K�unsch ������ to the noise process� These

trends are special cases of the model of Giraitis et al� �����a� and thus of the

considerations below� Again the point of departure is model ������ But from

now on f�t� is a general deterministic trend ful�lling only some weak regularity

conditions� Assume for the trend the following	

Assumption T�	 �f �N��k��k��	


	N � N 
 �� is an array of real numbers for

which there exists a positive sequence pN and a function h on ��� ��� which is

not identically zero� such that for N ��

p��N

�Nt�X
k��

f �N��k�� h�t�

and

pN
N���

� a�

��



where a � ������ We further on assume for the trend

Assumption T�	 There exists a positive sequence rN � � and a number

� � b ��� such that as N ��

r��N

NX
k��

�f �N��k��� � b�

N��X
k��

jf �N��k�� f �N��k � ��jk��� � O�r
���
N ��

qNX
k��

jf �N��k�j� � o�rN�

for any qN � o�N��

jf �N��k�j� � O�rN�N�

for k � N and

p�N
NrN

� b� ���

Note that these trends include as well the change point model considered in

the previous section as monotonic trends� Giraitis et al� �����a� use for their

analysis the V�S�statistic� It turns out that the V�S�statistic rejects the null

hypothesis of a short�memory structure of the data with a probability tending

to one� if the trend decreases with a rate higher than N� �

� � Otherwise the

added trend has no in�uence to the test statistic� This again shows that R�S�

based methods are not able to distinguish between long�range dependence

and $large$ trends independently of their shape� They detect spurious long�

memory�

Denote in what follows � 	� a � b�h����� h��t� 	� h�t� � th��� and B��t� �

B�t�� tB��� is a standard Brownian Bridge� De�ne

 s�N	q �
�

N

NX
j��

�Xj � �XN �
� � �

qNX
j��

��� j

�qN � ��
 �j��

��



where  �j denote the empirical covariances�

We have the following theorem describing the behaviour of the V�S statistic	

Theorem 
�
 Suppose the process �Xn�n�IN is given by model ����� and as�

sumptions �T�� and �T	� for the trend hold� Let rN ��� qN ��� qN�N � �

and there exists the limit qNrNN
�� � c � ������ Then

�TNUN�
�� VN

 s�N	q

d�
R �
� �Za�t��

�dt� �
R �
� Za�t�dt�

�

V �c�
�

where

Za�t� �

��
� 	B��t� � ah��t� if a ��

h��t� if a ��

V �c� �

��
� �c� 	� if c ��

� if c ��

TN �

��
� � if a ��

p�NN
�� if a ��

UN �

��
� � if c ��

N
qNrN

if c ��

Proof	 See Giraitis et al� �����a��

In case that the random term in ����� exhibits long�range dependence and

a deterministic trend is present the V�S�statistic tends to in�nity with the

same rate as in the short�memory case with trend� This rate is faster than

in the case of long�range dependence without deterministic trend� For the

following considerations denote with Bd�t� the fractional Brownian motion

with parameter d� In the case of long�range dependence Giraitis et al� �����b�

obtain the following behaviour for the V�S�statistic	

�
qN
N

��d
VN
 s�N	q

d�
Z �

�
�B�

d�t��
�dt� �

Z �

�
B�
d�t�dt�

�� �����

��



This means that under the alternative of long�memory VN� s
�
N	q

P�� with the

rate �N�qN �
�d�

Considering now the situation where also trends are present that is consider�

ing model ����� with Yt exhibiting long�range dependence the following result

holds�

Theorem 
�� Suppose that again the series �Xn�n�IN is given by model �����

but now the Yn exhibit long�range dependence� The trend f �N��n� is assumed

to ful
ll assumptions �T�� and �T	�� Let in addition rN � �� qN � ��

qN�N � � and there exists the limit q���dN rNN
�� � c� � ������ Then

�TNUN�
�� VN

 s�N	q

d�
R �
� �Za�t��

�dt� �
R �
� Za�t�dt�

�

V �c��
�

where

Za�t� �

��
� cdB

�
d�t� � ah��t� if a ��

h��t� if a ��

V �c�� �

��
� �c� � c�d if c� ��

� if c� ��

TN �

��
� N�d if a ��

p�NN
�� if a ��

UN �

��
� q��dN if c� ��

N
qNrN

if c� ��

and cd is a positive number�

Proof	 See Giraitis et al� �����a��

Note that TN � UN � Za and V are di�erent than in Theorem ��� and here depend

on the memory parameter d�

��



These results generalize also the �ndings of Diebold
Inoue ������� They show

the behaviour of the variance of a process generated as in ����� under var�

ious models of structural breaks that is of shifts in the mean� The work of

Diebold
Inoue ������ in a way initialized the discussion about confusing long

range dependence and trends� But their �ndings are special cases of the more

general work of Giraitis et al� �����a�� Thus we decided to discuss only the

results of Giraitis et al� �����a� here in detail�

��� Modeling long�memory and trends

To model long�memory and deterministic trends Beran et al� ������ �schon

erschienen %%%%� introduced so called SEMIFAR�models� SEMIFAR�models

extend ARFIMA�models by allowing for a non�constant deterministic mean

function� In detail a SEMIFAR model is a Gaussian process Yi ful�lling the

following equation	

��B���� B��f��� B�mYi � g�ti�g � �i� �����

where B denotes again the Backshift operator� m � f�� �g� � � ������ �����
g�t� is a smooth function on ��� ��� ti � i

n
� ��x� is a polynomial with roots

outside the unit circle de�ning the autoregressive part of the model and the

�i � N��� 	�
�� are iid random variables� This model includes long�memory�

short�memory� deterministic trends and no trends that is a constant mean� We

have short�memory if m � � and � � ������ ��� Long�memory can be modeled

by m � � and � � ��� ���� and for m � � we have di�erence stationary

processes that is the �rst di�erences Yi � Yi�� exhibit short� or long�memory

respectively for � � ������ �� and � � ��� ����� To each of these processes a

deterministic trend can be added� For a constant mean function we obtain a

standard ARFIMA�p� d� ���model� Note� that SEMIFAR�models consists only

of an autoregressive part for modeling the short�term behaviour of the series

because of simplicity�

To �t a SEMIFAR�model to a series the order p of the autoregressive model�

the memory parameter d � m� � and the trend function have to be estimated

��



simultaneously� Thus before considering properties of SEMIFAR�models in de�

tail we focus on the problem of estimating the trend function� Nonparametric

trend estimation has been considered by many authors in several situations�

For an overview in the case of short�memory or independent errors see for ex�

ample Fan
Gijbels ������� In the case of long�memory errors see for example

Cs�org�o
Mielniczuk ������ or Beran
Feng ������� For our purpose we describe

only the results of Beran et al� ������ ������ Here robust kernel estimators are

considered but the results include also standard kernel smoothers� Because ro�

bustness is not the purpose of this paper we give the results for the non�robust

case� To de�ne a local polynomial estimator let K be a positive symmetric

kernel with support ���� �� and R ���K�u�du � �� In addition let t � ��� �� and

b � ��� �� be a positive bandwidth� and denote by p � IN the degree of the local

polynomial� Then a local polynomial estimator of the trend function f �N��t�

is de�ned by  f �N��t� � zT �t�  ��t�� where z�t� � ��� t� t�� � � � � tp� � IR
p	�� and

 ��t� � IR
p	� solves the system of p� � equations

�

Nb

NX
i��

K�
ti � t

b
��Yi � zT  ��t��zj�t� � �� j � �� �� � � � � p� �����

Notice that ti � i�N � In case of p � �� that is local constant estimation� �����

is the standard Nadaraya�Watson type kernel estimator� For the consideration

of the asymptotic bias and variance of local polynomials we use for simplicity

only the rectangular kernel K�u� � �
�
�f���u��g� We have the following result	

Theorem 
�
 Let  � be the solution of ������ De
ne the following �p � �� �
�p� �� matrices� MN � �mij�i	j��	


	p	� with mij � Cov�  �i���t��  �j���t��� P �

�pij�i	j��	


	p	� with pij � � for i� j odd and pij �

p
��j�����l���
�j	l��� for i� j even�

�ij�d� �
q
��i� ����l � �� 
����d�

�
�d�
���d�� � Q � �qij�i	j��	


	p	� with

qij � �ij�d�
Z �

��

Z �

��
xi��yi��jx� yj�d��dxdy�

DN � �dij�N��i	j��	


	p	� with dij � � for i �� j and djj � ��Nb�j

��j��� � Then as

N ��� b� �� Nb���

��Nb���dDNMNDN � �
cfP
��QP���

��



Proof	 See Beran et al� �������

For the bias we obtain	

Theorem 
�� Denote with J�K� �
R �
�� x

�p	��K�
��	p��x�dx� where K�

��	p��x� is

the so�called equivalent kernel �see Beran
Feng �������� Let � � � � �
�
be a

small positive number� Then

E�  f �N��t�� f �N��t�� � bp	�f
�N��p	���t�J�K�

k&
� o�bp	��

uniformly in � � t � ����

Proof	 See Beran et al� �������

Using these results we have for the asymptotic integrated mean squared error

�IMSE�

Z �

�
Ef�  f �N��t��f �N��t���gdt � b��p	�� �f

�N��p	���t���J��K�

��p� ��&��
��Nb��d��

Z �

�
v�t�dt������

Here v�t� denotes the limit of the variance of the local polynomial estimator�

For an explicit formula see Beran
Feng ������� The bandwidth that minimizes

the asymptotic IMSE is thus given by

bopt � CoptN
��d������p	���d��

where

Copt �

�
��� �d���p� ��&��

R �
� v�t�dt

��p� ��J�f �N��p	���I��K�

	����p	���d�
�

Here J�f �N��p	��� �
R �
� �f

�N��p	���t���dt�

Note that the formula of the asymptotic IMSE is given on the interval ��� ���

since a local polynomial estimator adapts automatically at the boundary� For

further details concerning kernel estimators in the long�memory setup see also

Beran et al� �������

��



The memory parameter as well as the parameters of the autoregressive part in

SEMIFAR�models are estimated by Maximum Likelihood estimation� In the

case of a constant mean function Maximum Likelihood estimation of the pa�

rameters is considered in Beran ������� The same methodology can be used

also in the case of non�constant trend functions� Starting with model ����� de�

note with �� � �	�
�	�� d

�� ���� � � � � �
�
p�

T � �	�
�	�� �

��T the true unknown parameter

vector� The process Yi in ����� admits the in�nite autoregressive representation

�X
j��

aj��
���cj��

��Yi�j � g�ti�j�� � �i� �����

Let now �bn�n�IN be a sequence of positive bandwidths with bn � � and Nbn �
� and denote withKb
y�N� 	� �

Nb

PN
i��K� t�ti

b
�Yi� where y�N� � �Y�� � � � � YN�

and K is a kernel� De�ne

 g�ti� �� � Kbn 
 y�N�

and

 g�ti� �� � Kbn 
Dy�N�

with Dy�N� � �Y� � Y�� Y� � Y�� � � � � YN � YN���� For a chosen value of � �

�	�
� � ��

T denote by

ei��� �
i�m��X
j��

aj����cj���Yi�j �  g�ti�j� m��

the residuals and by ri��� � ei����
p
�� the standardized residuals�

Note that ��i��
��� are independent zero mean normal with variance 	�

�	�� an

approximate Maximum Likelihood estimator of �� is obtained by maximizing

the approximate log�likelihood

l�Y�� � � � � YN � �� � �N
�
log �
 � N

�
log	�

� �
�

�
N��

NX
i�m	�

r�i

��



with respect to �� Denote with f�x� the spectral density of the process ������

The speci�c form of the spectral density is not of interest here� It is only needed

for the asymptotic properties of the estimator� We have in detail

Theorem 
�� Let  � be the Maximum Likelihood estimator of � and de
ne

��� 	� �	�
�	�� �

�
��

T � �	�
�	�� �

�� ���� � � � � �
�
p	��

T � This means that ��� � d � m� � ��

is replaced by ���	� � ��� Then for N ��

���  � converges in probability to the true value ���

�	� N���� � � ��� converges in distribution to a normal random vector with

mean zero and covariance matrix

' � �D��

where

Dij � ��
���

Z 


�

�

��i
log f�x�

�

��j
log f�x�dx

�
j����

�

�

Proof	 see Beran et al� �������

To obtain an appropriate �t also the degree of the autoregressive polynomial

has to be estimated� Thus the behaviour of model choice criteria such as the

AIC has to be considered� Here the following holds	

Theorem 
��� Under the assumptions of the above theorem let p� denote the

true order of � in ����� and de
ne

 p 	� argmin�AIC��p�� p � �� �� � � � � L��

where L is a 
xed integer� AIC��p� � N log  	�
� �p� � �p and  	�

� �p� is the Max�

imum Likelihood estimate of the innovation variance 	�
�	� using a SEMIFAR

model with autoregressive order p� Moreover  � is the Maximum Likelihood es�

timator as de
ned above with p set equal to  p� Suppose furthermore that � is

at least of the order O��c log logN� for some c � �� Then the results of the

above theorem hold�

��



Proof	 See Beran et al� �������

This theorem says that consistency and asymptotic normality of the Maximum

Likelihood estimator still hold when the autoregressive order is estimated� An

algorithm for �tting SEMIFAR models to a time series can be found in Beran

et al� �������
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