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Summary: The estimator of the variance of the optimal estimator of the overall
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These tests are founded on the convexity arguments similar to Hartung (1976).
Simulation results indicate that the proposed tests attain type I error rates which

are far more acceptable than those of the commonly used tests.
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1. Introduction

Combining results from different experiments (or studies) has become common
in many fields of scientific inquiry. One has, for example, balanced or unbal-
anced, homoscedastic or heteroscedastic samples to assess the overall treatment
effect. With treatment-by-centre interaction in such samples, we get a random
effects model, otherwise we have a fixed effects model.

The possibility of many false positives in meta-analysis due to the underes-
timate of the variance of the estimate of the overall treatment effect cannot
be overemphasized as indicated by Li et al. (1994) and Boeckenhoff and Har-
tung (1998). This observation has also been made elsewhere in the context of
mixed linear models, for example, Kackar and Harville (1984), and Kenward
and Roger (1997). Suggested corrections for the fixed effects model with the
resulting test statistics being normally distributed do not extend naturally to
the random effects model.

As would be expected, there already exists some test procedures for the overall-
treatment effect, for example, those based on the Maximum Likelihood (ML)
as well as on the Restricted Maximum Likelihood (REML), cf: for instance,
Brown and Kempton (1994), and Kenward and Roger (1997). In meta-analysis,
inference is usually based on summary statistics reported from, say, trials in a
multicentre study. Such summaries may be some mean treatment differences
together with their standard errors, see Cochran (1954). In such absence
of original data, efficient estimates of the overall treatment effect and vari-
ance components cannot be obtained via REML analysis, observes Brown and
Kempton (1994). In addition, convergence of the estimates when using REML
(as well as ML) is not assured and one has to change to more time consuming
procedures, Kenward and Roger (1997).

By noting that the estimate of the variance of the estimate of the overall

treatment effect is dominated by a positive semi-definite quadratic form and



approximating its distribution by a y2-distribution by equating its first two
moments, we obtain tests of significance for the overall treatment effect which
are based on the t-distribution. Two related tests, cf. section 2, for the fixed
effects model are suggested and one test, cf. section 3, for the random effects
model. Accompanying simulation results, cf. Tables I and II, indicate that
our suggested test statistics improve greatly the attained type I error rates
compared with the commonly used test.

The procedures we suggest, being non-iterative, will be easier to apply and this
will make them more appealing for practical purposes, especially in medical

and epidemiological applications where meta-analysis is common place.

2. Fixed Effects Model

For K > 2 independent experiments, let y;; be the observation on the j — th

subject of the ¢ — th experiment, : =1,..., K and j =1,...,n,, such that
Yij = /L+€i]',izl,...,K,j:]_,...,TLi, (]_)

where 41 is the common mean for all the K homogeneous experiments, e;; are
error terms which are assumed to be mutually stochastically independent and
normally distributed, that is, e;; ~ N(0,07); i =1,...,K, j=1,...,n;. The
best estimate for p in each study (experiment) is the individual sample mean
fii = Y51, yij/ni = Fi. with variance o7 /n;, @ = 1,..., K. This means that
we have a fixed effects combinations model such that ji; ~ N(u,0?/n;), i =
1,..., K.

Our interest is in testing the hypothesis Hy : u = 0 against Hy : u # 0 at
some type I error rate, a. We emphasize here that in a typical meta-analysis
situation, what is usually available from the 2 — th trial is just the set of values
(7i,02/n5), i=1,... K.

Now, the best linear unbiased estimator of p which traces back to Cochran



(1954) (see also Whitehead and Whitehead, 1991) is:
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with variance o2 = (Efil ni/af) . Under H, the statistic

g ~ N(0,1). (3)
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In most practical situations, however, the individual error variances, o;, are

unknown and are estimated in the ¢ — th trial by their unbiased estimators,

s; = 201 (Yij — §i)?/(ni — 1), so that 67 /n; = s7/n; is made available for a

meta-analysis. Consequently we have the estimate of the overall mean to be

K n; ~

. =152 " i

/‘L = K : 2
i=1 ”i/Uz'

(4)
so that when p = 0, the test statistic

Ty = —— "2 N(0,1), (5)

i
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cf: for example, Normand (1999).
The test in (5) above attains type I error rates which are much greater than

the nominal level, o, see Li et al. (1994) and Boeckenhoff and Hartung (1998).

Now, consider a positive discrete random variable d taking on realizations
d; = 1/x; with probabilities w;, for i = 1,..., K, and the convex function

g(d) = 1/d, then Jensen’s inequality

HEW) = s < Bla(d) = Lo

provides us with the well known inequality between the harmonic and arith-

metic means.



Lemma 1

For 7; >0, w; >0, i=1,...,K, K w; =1, there holds

1 K
Typ = m < ;wi "L = Ty
Next, let
o) == S = X B .

S

=

Using Lemma 1 above and setting w; = n;/N we get

1 1 1 XK
fan(s®) = N m < N ;Wi s7 = fia(s%) (7)

with @; = s7. Clearly f;,(s?) is a positive semi-definite quadratic form in the
random variables, which dominates the function f;(s?). Thus, the approxi-
mate distribution of f;,(s?) can be obtained as follows:

Let
1

E{fun(s”)}
then Q(fan) A7 x2, where according to Patnaik (1949)

Lo B
Var{fun(s?)}

Q(fan) =v - fan(s),

Remember that in our considerations above, we have used Patnaik’s approx-
imation to estimate the degrees of freedom. This approximation is a gen-
eralization of Satterthwaite’s method which requires that the statistic under
consideration be a linear function (or can be expressed as) of mean squares;

the statistic 62 is not an explicit linear function of mean squares.

By convexity arguments similar to those of Hartung (1976, sec. 1), cf: also

Boeckenhoff and Hartung (1998), we have

E{fan(s*)} < o}
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Further, it can be shown that

Varlfun} < B (3%) —(2”—””—) ~ B(7) (9

Var{fun(s*)} < <Z§; Zz J_ri 'n—;>_2 - <§: —— 1 n_;> ) =V (9)

For the estimated degrees of freedom, v, we will make use of Vj, j=1,2, as
given in (8) and (9) above with the parameters o?/n;, i = 1,..., K, in V;

replaced by their estimators, s?/n;, to obtain Vy. That is,

o (&2)12
PP/ Yol Y

J

In the following, however, we propose to introduce some compensation to the
numerator of vj, j = 1,2, which is an upper bound of the variance of f;,(s?),
to avoid adverse underestimation. This can be done by adding some amount
of the standard deviation, say, §; = & - \/XZ, j =12, 0 <k < 1. Thus we
have the modified operational v;, j = 1,2, given by

=y Uaal) L
J

2.

(k) ,

We now summarise the above considerations to formulate the following theo-
rem.
Theorem 1:

The test statistics 174, t = 1,2, under Hy : o = 0, are such that:

a)

7’!171 — /"L - GP%OI tﬁl(ﬁ)
Sun(5%)
b)
Tip = % wR® Lo ()
Sun(5%)



Using T, and 175 with K = 0.5, we now demonstrate through a simulation
study that the two proposed tests attains type I error rates which are closer to
the nominal level than the commonly used test, 7}, which attains levels well
above the prescribed level, a, especially for small sample sizes. For comparison,
we have also considered in our simulations T} = ji/ (XK n;/0?)71/? with the
true o7 in the variance term of 7}, and the critical values are taken from the

standard normal distribution.

Table I: Actual type I error rates (10 000 runs) for K = 3 and K = 6 for the
fixed effects model.

nominal level, a=5% Attained type I error rates, a%
Sample sizes | Error variances K=3 K=6
(1 Replication of K=3)
(nl,nz,n3) (a%’,a%, 032») T1,0 T T1,1 T1,2 T1,0 T T1,1 T1,2
(5,5,5) (1,3,5) 92 182 80 11.7|10.1 234 13.6 10.8
(4,4,4) 83 186 105 8.2 | 114 23.6 13.7 10.9
(10,10,10) (1,3,5) 66 100 54 49 | 70 11.0 6.0 54
(4,4,4) 69 108 6.0 54 | 73 11.7 65 59
(20,20,20) (1,3,5) 57 7.0 45 44 | 60 75 49 47
(4,4,4) 59 72 48 45 | 60 75 48 46
(5,10,15) (1,3,5) 73 133 69 59 | 95 168 9.0 76
(4,4,4) 80 131 72 64 | 88 134 76 68
(5,3,1) 72 101 60 56 | 84 123 6.8 6.3
(10,20,30) (1,3,5) 65 93 52 48 | 65 94 54 50
(4,4,4) 62 76 50 48 | 62 81 50 48
(5,3,1) 59 69 48 47 60 72 50 49

We consider first K = 3 with various combinings of sample sizes and error
variances (see Table I below). In order to see the effect of increasing the
number of experiments with all the other factors held constant, we make one
independent replication of K = 3 to obtain K = 6. The results given are for

testing Hy : ;1 = 0 against a two-sided alternative H; : pu # 0.
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We notice that the attained type I error rates in column 4 and 8 of Table I are
far much greater than the nominal level of 5.0 percent . For small sample sizes,
this liberality of T} is relatively higher for balanced samples and increases with
the number of experiments (studies), that is, the attained levels are greater for
K = 6 than for K = 3. The proposed tests, 17 and T} 5, improve the attained
levels appreciably, despite showing traces of liberality in small sample cases.

For balanced samples greater than 10, the proposed tests attain reasonable
stability with respect to increase in the number of experiments. This is also
conspicuous for unbalanced samples in cases where the smallest sample size is

equal to 10.

3 Random Effects Model

For the one-way random effects model we add a random effect a; ~ N(0,02), i =

1,..., K, to model (1), see section 2 above, to obtain

Yij=p+a; +ey i=1,..., K, j=1,...,n,,

with a1,...,ak,€11,...,€exn, being mutually stochastically independent, so
that fi; ~ N(p, 02 4+ 02/n;). Then the estimator of p equivalent to (4) is given
by

R e
S T "
where v; = 62462 /n; = 62+&;, i = 1,..., K. Therefore, we have the commonly
used test statistic
T] = " PR N(0,1) (11)

(S5 1/ve) =72

This test suffers from the same weaknesses as its fixed effects counterpart, with
the situation here being compounded by the estimation of the variance of the

random effect, o2.



Let 77 = 02+07 /n;, and define the quadratic form Q = 315, hi(f—Y 1, b; 1),
where h; > 0 and b; > 0 with XX, b; = 1, i = 1,..., K. By a somewhat
lengthy derivation, it can be shown that, Hartung (1999), (cf: also Hartung,
1981; Mathai and Provost, 1992)

K K

Zh L= 2b)7 + (3 h) QU bi7y), (12)

i=1 =1 =1

Var(Q (Z h:D? + Z Z hih;C ) , (13)

i=1i#£j=1

where

Cij = Zbkrk 2 bﬂ;, i,j=1,...,K, (15)

which are also estimated by replacing parameters by their estimates. Set

e = XK 4, v = n;/c?. Then for fixed weights

b= =l

w1 E b
we obtain the so-called DerSimonian-Laird estimator for meta-analysis, cf:
DerSimonian and Laird (1986), and Whitehead and Whitehead (1991),

K K
62=%{Z%%—Z@W—KH}, (16)

Ve T 2i=1" =1 j=1
which is an unbiased estimator of o2 with variance, Var(52) = Var(Q). As in
section 2 above, Var(&) = 2- 0} /{n?(n; — 1)} and its best invariant unbiased
estimator is given by Var (&) = 2-€2/(n;+ 1), Hartung and Voet (1986). Note
that 62 has a positive probability of taking negative values. For a realization

the parameter o?/n; in b; is replaced by &; so that 62 becomes the estimator



52
lopt

Making use now of Lemma 1 again, we have

L <o > . . §Kﬁ(~2+§) (17)
—_— — — -V, = —= o, i),
Yis v T K S K K? =
and therefore,
: A-(E2 4 ié)
g T i)
1/?}7; ¢ Ki:l

where A is a positive random variable. Next,

y.{E<__L_)}”.__L____V_ A @2+ 4 TE &)
USR] R e T T R{a @ shie)

2
a

~ K
g L >ie 1§z) appror. _ 2

( 2+ Y &)
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Q

(
E
and by the independence of Q and &, 1 =1,..., K, v, is given by

[B{a-@+izf o))
Var {A- (82 + % XK, &)}

{Bp@+iska)
Var (52 + 28, fz')

Q

. {EE+iyEa)
Var(Q) + & Siy of/{n2(ni — 1)}

With all parameters replaced by their suitable estimates, v, can be estimated
by

~9 15K ¢ 2
_ A(U + Ez 1 gz) (18)
Var(Q) + K2 YK &/(n;i+1)

Up =2

if 62 > 0 and for 62 < 0,

o (zKe)
= SR 1) 19)
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So, for testing the hypothesis Hy : u = 0 against H; : p # 0, we have the

following theorem
Theorem 2

Under H, there is

i
T/, = 20
e SVIRE 2

distributed approximately as a central t-variable with 7. degrees of freedom.

Now, by a simulation study (see Table II) we compare the attained type I error
rates for the commonly used statistic, 77, and the proposed test T7 ;. For com-
parison, we have also included the statistic 75 = /(XK 1/72)7Y/? with the
true values 77 in the variance term of 77 and the critical values are obtained
from the standard normal distribution. To obtain K = 6 we independently
replicated K = 3 once for o2 = 0, 0.5, 5, 25.

For 02 = 0.0, (cf: Table II), the proposed test 77 attains acceptable type I
error rates, despite being a liberal for K = 6, especially, for sample sizes of 5
per experiment. Also for unbalanced samples, when relatively large individual
error variances are paired with relatively small sample sizes, the test is too
conservative for K = 3.

For values of 02 = 0.5, 5.0 and 25.0, the proposed test attains levels far more
acceptable than those of the commonly used statistic 77, save for some small

traces of liberality especially for small sample size combinations.
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Table II: Actual type I error rates (10 000 runs) for K = 3 and 6 for the

random effects model.

Nominal level, a=5% Attained type I error rates, &%
Sample sizes | Error variances K=3 K=6
(1 Replication of K=3)
oa | (n1,m2,n3) (0f,03,03) g 177 T, | 79 T7 17,
0.0 (5,5,5) (1,3,5) 9.0 101 55 | 93 9.7 6.5
(4,4,4) 6.7 104 57 | 7.2 101 7.0
(20,20,20) (1,3,5) 69 46 36 | 64 4.9 4.0
(4,4,4) 54 47 35 | 55 49 3.7
(5,10,15) (1,3,5) 58 74 51 | 64 79 6.2
(4,4,4) 67 67 39|72 71 4.6
(5,3,1) 120 55 28 | 105 54 34
(10,20,30) (1,3,5) 56 5.2 40 | 58 5.6 44
(4,4,4) 58 46 34 | 62 5.1 3.6
(5,3,1) 105 44 28 | 82 46 3.5
0.5 (5,5,5) (1,3,5) 6.3 164 9.1 | 59 122 8.5
(4,4,4) 56 13.8 7.5 | 6.3 115 7.6
(20,20,20) (1,3,5) 53 183 9.7 | 49 115 6.5
(4,4,4) 51 143 7.6 | 50 10.2 5.4
(5,10,15) (1,3,5) 53 149 83 | 56 113 6.9
(4,4,4) 54 133 7.2 | 57 10.8 6.5
(5,3,1) 57 199 116 | 6.1 13.7 94
(10,20,30) (1,3,5) 46 154 7.8 | 50 10.6 5.4
(4,4,4) 49 153 81 | 48 104 5.8
(5,3,1) 58 21.0 134 53 13.2 8.8
1.0 (5,5,5) (1,3,5) 55 184 100 | 54 128 8.0
(4,4,4) 56 146 74 | 54 11.2 6.7
(20,20,20) (1,3,5) 49 193 86 | 53 126 5.9
(4,4,4) 51 159 72 | 55 104 5.1
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Table I1

: Cont.

Nominal level, a=5%

Attained type I error rates, &%

Sample sizes | Error variances K=3 K=6
(1 Replication of K=3)

o2 | (mynans) | (ohodod) | Ty Ty TI | Ty Ty TI
1.0 (5,10,15) (1,3,5) 56 169 84 |52 114 6.1
(4,4,4) 52 156 76 |53 114 6.7

(5,3,1) 6.0 21.0 11.8| 5.7 138 8.7

(10,20,30) (1,3,5) 48 173 6.8 |50 10.7 5.4
(4,4,4) 50 170 79 |52 113 6.0

(5,3,1) 5.5 21.2 118 | 5.0 128 6.8

5.0 (5,5,5) (1,3,5) 54 201 81 |48 11.8 5.2
(4,4,4) 50 189 74 |50 111 5.2

(20,20,20) (1,3,5) 50 191 55 |54 123 4.8
(4,4,4) 4.7 192 57 |45 104 5.0

(5,10,15) (1,3,5) 50 189 5.7 |54 110 4.7

(4,4,4) 53 193 7.0 |49 109 5.2

(5,3,1) 51 21.2 9.0 |52 128 5.8

(10,20,30) (1,3,5) 50 194 58 |53 114 5.0
(4,4,4) 49 190 6.0 |53 114 5.0

(5,3,1) 51 215 73 |51 131 4.7

25 (5,5,5) (1,3,5) 48 199 53 |53 121 4.1
(4,4,4) 49 193 50 |49 120 4.5

(20,20,20) (1,3,5) 49 209 46 |49 118 4.1
(4,4,4) 5.1 194 51 |49 111 4.8

(5,10,15) (1,3,5) 51 194 51 |50 119 4.6

(4,4,4) 51 195 52 |50 11.8 4.7

(5,3,1) 49 20.7 55 |48 13.5 4.2

(10,20,30) (1,3,5) 48 191 48 |49 11.0 4.6
(4,4,4) 49 194 50 |50 11.2 4.8

(5,3,1) 5.1 215 46 |45 131 4.0
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4. Conclusion

The problem of frequent liberal decisions is very common in meta-analysis. In
comparison with the commonly used test in meta-analysis, the proposed tests
greatly improve the attained type I error rates for both the fixed and random
effects model. In the absence of original data from the individual trials, most
of the procedures, for example, REML analysis, cannot be efficiently used.
The proposed approximate tests being non-iterative, are easier to apply and
require no specialist knowledge in programming. We would recommend the

use of these tests, especially, in place of the commonly used method.
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