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Abstract

A new specification test for homoscedasticity in diffusion processes is proposed, which
does not require specific knowledge of the functional form of the model. The corresponding
test statistic has an asymptotic normal distribution under the null hypothesis of constant
volatility and diverges at an appropriate rate under the alternative. In contrast to recent
work the approach of the present paper does not require the specification of particular
time points at which the hypothesis of homoscedasticity is checked. Moreover, the new
test does not use nonparametric estimation techniques for estimating the variance function
and is therefore independent of the specification of a particular smoothing parameter. The
results are illustrated by a small simulation study and a data example is analyzed.
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1 Introduction

It6 diffusions are commonly used for representing asset prices, because the strong Markov
property and the nondifferentiability of the paths capture the idea of no arbitrage opportunities
[see e.g. Merton (1990)]. In general the diffusion (X;), is a solution of the stochastic differential
equation

(]_]_) dXt = b(t, Xt) dt"‘U(t,Xt) th

where (W,), is a standard Brownian motion. An appropriate pricing of derivative assets requires
a correct specification of the functional form of the drift and variance and different models have
been proposed in the literature for the different types of options [see e.g. Black and Scholes
(1973), Vasicek (1977), Cox, Ingersoll, Ross (1985), Karatzas (1988), Constantinides (1992)



or Duffie and Harrison (1993) among many others|. Parametric models are attractive among
practioners, because they often admit a direct interpretation of the observed effects in terms
of the parameters and the available information of the observations is increased by applying
more efficient methods. However, economic theory typically does not give much information of
the drift and variance and misspecification of such a model may lead to serious errors in the
subsequent data analysis. For these reasons many authors propose to test the goodness-of-fit of
the postulated model [see e.g. Azzalini and Bowman (1993), Ait-Sahalia (1996b), Zheng (1996)
or Dette and Munk (1998a) among many others]. If the assumption of a parametric model
cannot be justified nonparametric estimates for the drift and variance of the diffusion should
be used, which are less efficient from an asymptotic point of view [see e.g. Genon-Catalot,
Laredo and Picard (1992), Ait-Sahalia (1996a), Florens-Zmirou (1993) or Jiang and Knight
(1997)].

It is the purpose of the present paper to develop a test for homoscedasticity or a specific
parametric form of the variance function in a diffusion model of the form (1.1). This prob-
lem is of importance in theoretical finance because several continuous-time financial models
considered in the literature assume a constant volatility [see e.g. Merton (1973) or Vasicek
(1977)] or a specific parametric form of heteroscedasticity [see e.g. Cox, Ingersoll, Ross (1985)
or Constantinides (1992)], and it is reasonable to check this assumption by a statistical test.
Moreover, specific information about the structure of the variance function (for example a con-
stant volatility) allows the application of more efficient procedures for analyzing the observed
data.

We assume discretely observed data on a fixed time span, say [0, 1], with increasing sample
size. As pointed out by Corradi and White (1999) this model is appropriate for analyzing the
pricing of European, American or Asian options. Following Dette and Munk (1998b) we use
an appropriate estimator of the integrated variance function

(1.2) M?:/01{02(15,)(,5)—/01 o*(s, X )ds } di

as a measure of heteroscedasticity in the diffusion model (1.1) and prove its asymptotic nor-
mality under the null hypothesis of homoscedasticity. It is also demonstrated that the method
can be generalized to the problem of testing for a parametric form of the volatility function
and a simulation study is presented which illustrates excellent finite sample properties of “a
bootstrap” version of the proposed test.

We conclude this introduction with a brief discussion of the work of Ait-Sahalia (1996b) and
Corradi and White (1999), which is most similar in spirit with the present paper. In contrast
to the method proposed by Ait-Sahalia (1996b), who compared the density implied by a joint
parametric specification for the drift and variance against a nonparametric estimate of the
density, our approach does not require such a specification of the parametric model. Moreover,
the test of Ait-Sahalia (1996b) requires a time span approaching infinity for an increasing sample
size, while for our method the time span has to be fixed and the length of the discrete sampling
interval converges to zero as the sample size increases. Thus in this sense the two methods are
complementary. Corradi and White (1999) consider a similar model as discussed in this paper
and compare a nonparametric estimator of the variance function [see Florens-Zmirou (1993)]
with an estimator under the null hypothesis of homoscedasticity at a fixed number of specified
points. Consequently, the finite sample size and power of the test of Corradi and White (1999)



depend on the evaluation points and the test proposed by these authors is in fact a test for a
constant variance of the diffusion at a fixed number of specified points in the time scale [see
e.g. Miiller (1992) for a similar method in the context of checking the functional form of the
mean in a nonparametric regression model]. In contrast to this work the test proposed in the
present paper is consistent against any alternative, for which the process (6%(t, X¢))te[0,1] is not
constant. Moreover, our method does neither require the specification of particular evaluation
points at which the variance function has to be estimated, nor uses a smoothing parameter for
a nonparametric estimator of the variance function, because only estimates of the integrated
variance function are required.

2 The test statistic and its asymptotic distribution

Let (W, Fi)i>0 denote a standard Brownian motion [F; = o(W,,0 < s < t)] defined on an
appropriate probability space (€2, F, P) and assume that the drift and variance function in the
stochastic differential equation (1.1)

b:[0,1]xR—=R
o:[0,]]xR—=R

are continuous functions satisfying

(2.1) b(t,z) =b(t,y)| +|o(t,x) —o(t,y)| <K |z -y
for all t € [0,1],z,y € R, and

(2.2) b(t,2) ] + o (t,2)]° < K*(1+ |z]”)

for all ¢ € [0,1],2 € R, where K > 0 is a fixed constant. It is well known that for a F
measurable square integrable random variable &, which is independent of the Brownian motion
(Wi)eepo,], the assumptions (2.1) and (2.2) admit a unique strong solution (X;);cfo,1) of the
stochastic differential equation (1.1), with initial conditon X, = &, which is adapted to the
filtration generated by the Brownian motion (W;)scp,1], see e.g. Karatzas and Shreve (1991) p.
289. Moreover, the solution can be represented as

t t
(2.3) Xy =¢ +/ b(s, Xs)ds +/ o(s,Xs)dW; as.,
0 0

X, is F; measurable for all ¢ € [0, 1] and the paths t — X, are almost surely continuous.
Assume that we observe the diffusion only on the time span [0, 1] at discrete points t; = i/n (i =
1,...,n). We are interested in testing the hypothesis of homoscedasticity

(2.4) Hy:o*(t,z) = o> Vtel0,1], Va

in the stochastic differential equation (1.1) under assumptions (2.1) and (2.2). For this purpose
we note that the hypothesis of constant volatility in (2.4) holds if and only if

(2.5) M?*=0 as.,



where the random variable M? is defined in (1.2). Therefore it is reasonable to reject the
hypothesis of homoscedasticity for large values of an appropriate estimator of AM2. In order to
estimate M2 from the observed data we define

n—1
(2.6) T ="' (X = X0)” 5 p=12
i=1
and a test statistic by
1
(2.7) T, = §T2n ~T?.

We assume that the drift and variance function satisfy a Lipschitz condition of order v > %, ie.
(2.8) b(t,2) — b(s,2)| +|o(t,2) — o(s,2)| < LIt — s’

for all s,t € [0, 1] and for some fixed constant L > 0. Moreover, if the initial condition £ has an
existing eighth moment, i.e.
(2.9) E[¢]*] < oo,

then the following theorem shows that the statistic 7, consistently estimates the measure of
heteroscedasticity M?2. The proof is deferred to the appendix.

Theorem 2.1. If the assumptions (2.1), (2.2), (2.8) and (2.9) are satisfied, then the statistic
T, defined in (2.7) is a consistent estimator of M?. More precisely, if n — oo, we have

(2.10) T, — M? = O,(n "?logn),
where the random variable M? is defined in (1.2).

Recall that the variance function o(¢, X;) in the stochastic differential equation (1.1) is a.s.
constant (as a function of t) if and only if (2.5) holds and consequently the hypothesis of
homoscedasticity is rejected for large values of the statistic 7;,. Our second main result specifies
the asymptotic distribution of 7}, under the additional assumption that the variance function
in (1.1) does not depend on X, i.e.

(2.11) o(t,z) =0(t) VzekR

Note that this assumption includes the situation of homoscedasticity (o(t,x) =0 >0 Vit €
[0,1] , Vx) and that (2.11) implies that M? is a nonnegative constant random variable.

Theorem 2.2. If (2.1), (2.2), (2.8), (2.9) and (2.11) are satisfied, then the statistic T,, defined
in (2.7) is asymptotically normal distributed, i.e.

32
(2.12) Vn(T, — M?) 25 N(0, 5 88— 16555 + 8s354),
where )
(2.13) Soj = / o¥(t)dt, j=1,2,3 4.
0
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Especially, if (Xy)ep,) is o diffusion defined by (1.1) with constant variance o*(t, z) = 0® > 0,
then g
(2.14) vnT, 25 N(0, 57

Note that Theorem 2.2 provides a simple test for the hypothesis of homoscedasticity, by rejecting
the hypothesis (2.4) whenever

[3n T,
2.15 < 7y 2 Ul-a;

where u;_, is the (1 — @) quantile of the standard normal distribution and T3, is used as an
estimator of ¢® in (2.14). By Theroem 2.2 this test has asymptotic level a and its consistency
follows directly from Theorem 2.1. The performance of the test will be illustrated in the
following section.

Remark 2.3. It is worthwhile to mention that the approach for testing homoscedasticity
can easily be extended to the problem of testing for a more general structure of the variance
function. For the sake of simple notation we assume (2.11) and only consider the problem of
testing the hypothesis

d
(2.16) Hy:o®(t,w) =) ajoi(t) Vte[0,1]Va
j=1
in the stochastic differential equation (1.1), where o7,...,02 are given nonnegative, linearly

independent functions [note that the hypothesis of homoscedasticity corresponds to the case
d =1,0%(t) = 1]. Define pseudo residuals

(2.17) Aj=n(Xw —X:)> i=1,...,n—1,

A= (A, A )T a=(ay,...,0aq9)T and a design matrix

Consider the least squares problem

& = argmin(A — Xa)T(A - Xa) = (XTX) ' XTA

acR4

(note that the linear independence of the functions 0%, ...,02 implies that X has rank d) and
define a test statistic for the hypothesis in (2.16) by

T, = l{%ATA — ATX(XTX)'XTA}
n

Observing the definition of the pseudo residuals A; in (2.17) it follows from the arguments
given in the appendix that

E[%ATA] N Bl - X0~ /0 o ()t



Similary, we have for the j-th component of the vector X7 A

BLL(XT8)] = B (D) (X — X = [ oot

and continuity properties of the variance function imply

d

Lixrx) ~ (/01 AWend) =%

2,7=1

These approximations motivate (a rigorous proof follows by a straightforward but tedious ex-
tension of the arguments given in the appendix)

1
(2.18) BT ~ / (1)t — sTS s
0

1 d

where
s:(/o af(t)UZ(t)dt,...,/O o300 (1)dt)

and the last equality follows by a standard calculation from Hilbert space theory. Note that the
right hand side vanishes if the hypothesis Hj is valid and consequently this hypothesis should
be rejected for large values of the statistic 7},. It can be shown by similar arguments as given
in the proof of Theorem 2.2 that under the null hypothesis (2.16) we have

(2.19) VT, iw\/(o,g/o o (t)dt)

and an estimator of the asymptotic variance is obtained from the observation that
i+1
E[(Xi+1 — XL)S] ~ 105(/

o2(s)ds)t ~ 10268 ( 1)

nt n

[see formula (4.40) in the proof of Theorem 2.2 in the appendix], which gives

as a consistent estimator for fol o®(t)dt. Consequently the hypothesis of the parametric structure

is rejected if
3nT, S
o ~ U1 —as
Vez "

where u;_, denotes the (1 — ) quantile of the standard normal distribution.



3 Finite sample properties

In order to study the finite sample properties of the new test consider at first the stochastic
differential equation (1.1) with b(¢,z) = 0 and assume that the hypothesis of homoscedasticity
o?(t,r) = 0? > 0 is valid. In this case the pseudo residuals Xix1 — X, are independent
identically distributed with " "

2

(3.1) Xion — X: ~N(0, D) i=1,...,n— 1.
n n ’]’L

The distribution of the test statistic \/3n /8T, /T?, is in this case equal to the distribution of
the random variable . 2 . 1 2
v oo [ Ay

8 (Ximt 27)?
where 7y, ..., Z, ; are independent identically standard normally distributed random variables.
Note that the random variable on the right hand side is essentially an estimate of the kurtosis
of a random variable with zero mean and it is well know that the normal approximation for
this distribution is rather poor. Obviously, because bias is present for a nonvanishing drift, this
observation carries over to the normal approximation for the statistic 7}, defined in (2.7). For
this reason we propose an alternative method for obtaining quantiles for the distribution of 7;,.
At first note that due to the assumptions (2.1) and (2.8) the pseudo residuals Xi+1 — X are
approximately unbiased. Secondly, if this bias is neglected, it follows from the above discussion
that under the hypothesis of homoscedasticity the distribution of T,,/T%, is scale invariant and
we may assume without loss of generality 02 = 1. Now Theorem 2.1 shows that

Ty, 251
and for this reason we propose to use the quantiles of the statistic 7, which is obtained if
3n/8-T,

is evaluated with data generated by the standard Brownian motion (note that we do not
estimate the variance). The quantiles of this distribution can easily be obtained via simulation
and are listed for various values of n in Table 3.0. These results are based on 100000 simulation
runs.

n 80% 90% 95% | 97.5%
25 | 0.2148 | 0.6823 | 1.2645 | 1.9514
50 | 0.3846 | 0.9055 | 1.4810 | 2.1311
100 | 0.5098 | 1.0609 | 1.6303 | 2.448
200 | 0.6237 | 1.1642 | 1.6831 | 2.2119

Table 3.0. Simulated quantiles of the statistic \/3n/8T, for data generated from a standard
Brownian motion.



The normalized statistic y/3n /8T, /T, obtained from the observed data is then compared with
the quantiles of the simulated distribution and the hypothesis of homoscedasticity is rejected if

3n T,
3.3 Vo > 2
(33 8T,

where z;_, denotes the (1 — a) quantile of the simulated distribution (see Table 3.0).

Example 3.1. Our first example investigates the approximation of the level of the test defined
in (3.3). Because of the scale invariance we restrict ourselves to the case 0? = 1 and considered
the functions

T

sin(5x)

r+ax !
tx

x sin(t)

xe!

\

for the drift. The diffusion was usually “normalized” by X, = 0 a.s., except in the case
b(t,z) = x +x !, where Xy =1 a.s. was used as initial value. Table 3.1 shows the simulated
level of the test (3.3) for various sample sizes. The numbers in brackets denote the level obtained
by the normal approximation. We observe a nonsatisfactory performance of the test using the
quantiles of the standard normal distribution and a reasonable approximation of the level of
the test (3.3) for all drift functions under consideration. It is remarkable that the quality of
approximation does not change if an additional time parameter is included in the drift function.

c=1 n = 50 n = 100 n = 200
b(t,z) | 20% | 10% | 5% | 20% | 10% | 5% | 20% | 10% | 5%
0 19.94 | 10.02 | 4.68 | 20.14 | 9.98 | 4.32 | 19.93 | 9.46 | 4.61

z  |2029| 959 | 4.14 | 19.76 | 9.47 | 4.24 | 20.40 | 9.69 | .476
sin(5z) | 20.74 | 10.02 | 4.42 | 20.63 | 10.45 | 4.93 | 20.41 | 10.42 | 5.00
z+L | 17.78 | 8.64 | 3.76 | 19.84 | 9.77 | 4.34 | 20.12 | 9.65 | 4.71
t-z |20.55| 9.94 | 4.61]21.26 | 10.48 | 4.94 | 19.92 | 9.85 | 4.94
zsin(t) | 20.37 | 10.31 | 4.64 | 20.80 | 9.81 | 4.73 | 20.50 | 10.10 | 4.67
zet [ 19.67 | 9.40 | 4.34 | 20.13 | 9.78 | 4.60 | 19.72 | 9.82 | 4.94

Table 3.1: Simulated rejection probabilities of the test (3.3) for various sample sizes and drift
functions (0> = 1). The critical values z,_, are obtained from Table 3.0. The numbers in
brackets show the simulated level of the test using a normal approximation.

Example 3.2. In this example we investigate the power of the proposed test (3.3). To this
end we consider the drift functions b(t,z) = = (Table 3.2) and b(t,x) = xt (Table 3.3) as

8



representative examples. For the heteroscedastic alternative we used the functions

([ 1+

1 + sin(5z)
o(t,r) =¢ 1+ xet

1 + zsin(5t)
| 1+t

for the variance in the stochastic differential equation (1.1). The corresponding results are listed
in Table 3.2 and 3.3 and show that the test detects heteroscedasticity in all considered cases. It
is worthwhile to mention that the size of the power depends on the nonnegative random variable
M? defined in (1.2), but not directly on the variance function. Note also (comparing the the
first with the fifth and third alternative) that the inclusion of an additional time dependence
in the variance function can yield a decrease or increase in power. However, comparing Table
3.2 with 3.3 we observe a decrease with respect to power in all cases, if the drift term contains
an additional time component.
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b(t,z) =z n = 50 n =100 n = 200
o(t,z) 20% | 10% | 5% | 20% | 10% | 5% | 20% | 10% | 5%
1+z 75.45 | 64.79 | 53.26 | 86.11 | 78.41 | 70.63 | 92.59 | 87.97 | 83.26

1 +sin(bz) | 99.93 | 99.75 | 99.09 | 100 100 | 99.99 | 100 100 100
1+ ze 91.30 | 83.80 | 73.69 | 97.39 | 94.97 | 90.99 | 99.48 | 98.91 | 97.84

1+ xsin(5t) | 71.59 | 59.11 | 47.33 | 82.39 | 72.76 | 63.44 | 88.72 | 83.13 | 77.49
14tz 61.97 | 47.65 | 35.11 | 73.84 | 62.96 | 52.21 | 82.28 | 74.53 | 67.95

Table 3.2: Simulated power of the test (3.3) for various sample sizes, drift function b(t,z) = x
and different variance functions.

b(t,z) =tz n =50 n = 100 n = 200
o(t,z) 20% | 10% | 5% | 20% | 10% | 5% | 20% | 10% | 5%
1+=z 72.88 | 60.69 | 48.93 | 81.76 | 73.39 | 64.30 | 90.12 | 84.67 | 78.69
1 +sin(5z) | 99.90 | 99.65 | 99.29 | 99.99 | 99.98 | 99.92 | 100 100 100
1+ ze 90.71 | 83.43 | 73.85 | 97.24 | 94.46 | 90.46 | 99.42 | 98.72 | 97.66
1+ zsin(bt) | 67.32 | 53.87 | 42.00 | 78.03 | 67.71 | 57.29 | 86.65 | 79.78 | 73.06
1+t 58.52 | 44.64 | 31.98 | 69.56 | 58.17 | 47.34 | 79.06 | 70.11 | 62.37

Table 3.3. Simulated power of the test (3.3) for various sample sizes, drift function b(t,z) = tz
and different variance functions.



4 Appendix: Proofs.

We begin with a decomposition of the diffusion (X;);cp

where the processes (A;)icpo,1) and (My)ieo,) are defined by
t t

(4.2) A = / b(s,Xs)ds und M,;:= / o(s,X5)dW, (0<t<1),
0 0

respectively. Our first auxiliary result gives estimates for the the moments of the increments
Agpn — Ap and My — M.

Lemma 4.1. If assumption (2.1) and (2.2) are satisfied and the solution (Xi)ico1) of the
stochastic differential equation (1.1) is decomposed as in (4.1) with

(4.3) E[|X*] < 0

for some p € N, then the following estimate holds for all m > p

(4.4) sup E[|Avn — Adf” [ Mypn, — My|™ "] = O (B )/2)  (n ] 0).
<t<

Proof. Recall from Karatzas and Shreve (1991) p. 306, that there exists a constant Cy, x > 0
such that the solution of the stochastic differential equation (1.1) satisfies

(4.5) E(sup |X,[") < Cpp (14 E(|Xo[*™)) emrct
0<s<t

for all t € [0, 1], provided that for some m € N

(4.6) E(|Xo)"™) < 00 .

Under the same assumption it also follows that

(4.7) E(1X; = X,|"™) < Co e (14 E(|1 X)) (¢ — 5)™

holds for all s,¢ € [0, 1] with s < ¢. Now an application of the Cauchy Schwarz inequality yields
(48) B [|Aven = A" | My — M| 7] < {E[|Avss = A"} {E[| My — M 7]}z,

where the factors of the right hand side can be estimated as follows. Using the definition (4.2)
and the estimate (4.5) we obtain by assumption (2.2)

EllAca — Af) = B

t+h 2
[ v xaaf"] < wrRmE+ s )7
t

0<s<1

(4.9) < PRPETY (?)E[ sup | X,|*] = O(h?*)

o 0<s<1

10



A further application of (4.7) for the process (M;);c[o,1] defined in (4.2) yields
(410) Bl|Myan — MP"P] < Copy s 77

(note that My = 0) and a combination of (4.8) - (4.10) proves the assertion of Lemma 4.1.
|

Proof of Theorem 2.1. Recalling the definition of the random variables T,,, T, Ty, in (2.6),
(2.7) and the decomposition (4.1) we obtain

(4.11) Ty =T + 2T + T
where the statistics T1(:L) (i = 1,2, 3) are defined by
n—1
T8 =3 (M — M. )?
i=1
n—1
(4.12) T2 = (A — A )(Miss — M)
i=1
n—1
T =) (Am — Ai)2
i=1
Similary, we have
(4.13) Ty = TV + 4T + 6T + 4TS + 1)

with statistics 70" (i = 1,2, 3,4, 5) defined by

T3 = n (M — M. )*
=1
n—1
T3 =0 (A — As)(Maa — M. )?
=1
n—1
(4.14) T3 =0y (A — As ) (M — M,)?
=1
n—1
T3 =0y (Am — A (Min — M)
=1
n—1
TZ(E) RZ(AHA —A1)4
=1

11



A straightforward application of Lemma 4.1 gives (using assumption (2.9))

T = Op(n~?)

1n

T = 0p(n?)

1n

1

T3 = Op(n2)
(4.15) 173 = Op (n7")
Ty = Op(n?)

T,) = Op(n ?)

and observing the definition (2.7) the assertion of Theorem 2.1 can be established by proving
the estimates

1
(4.16) R, = TV —/ o2(s,X,)ds = Op(n"/?)
0
1 1
(4.17) Sn = §T2(i) —/ ot(s, X,)ds = O,(n Y*logn).
0

In order to prove these estimates we note that It6’s formula [see Karatzas and Shreve (1991)]
gives the representation

t+h t+h
(4.18) (Myyp — My)* = / 2(M, — My)o(u, X,,)dW, + / o?(u, X,)du,
t t

which shows

n—1 itl

(4.19) R, = Z{ (Moss —ML-)Z—/ ' aQ(S,XS)ds}JrO(n’l) = U +omn™),

n i

=1 n

where the random variable Uf}l) is defined by
1 H—l
(4.20) Ul Z/ 2(M, — M:)o(u, X,)dW,.

The martingale properties of the Ito integral show that the terms in the above sum are uncor-
related and Ito’s isometry allows an explicit calculation of the L?-norm of Ul(rll), i.e.

i+1

(4.21) ZE / A(M, = M. Yo (u, X,.)du]

12



n—1 i+l

< Z/_ AB[(M, — M, )]} Elo* (u, X)) du

" - —)(1+E[|X )7d

VAN
©
'M

1

< Dy(1+ E[sup |X;|"] Z/ u—— ydu = O(nt),

0<t<1

where we used Cauchy’s inequality, the estimates (4.5), (4.7) and the constants D;, Dy are
independent of n. A combination of this estimate with (4.19) proves (4.16).

For the proof of the remaining estimate (4.17) we note that a twofold application of It6’s formula
yields

t+h
(4.22) (M, — My)* = / 4(M, — My)?o(u, X,)dW,
t

t+h
+ / 6(M, — My)*0*(u, X, )du
t

t+h
= / 4(My — My)?o(u, X,)dW,
1tt—l—h
+ / / 12(M, — My)o (s, Xs)dW, 0% (u, X, )du
t t

t+h u
+ / / 60%(s, X,)ds o*(u, X,)du,
t t

which gives for the left hand side of (4.17) the representation
1
(4.23) 35, — T — 3 / M5, X,)ds = UD 4+ U2 4 U 4 0w
0

where the quantities Uz(;) (¢ =1,2,3) are defined by

i1
Ul = nZ/ A4(M, — M:)?o(u, X,)dW,

(4.24) UY ;:nnzi/ /12M M:)o(s, X,)dW, 0” (u, X,,)du

i

i+1

i1 Tl
U2(i) = / /60 (s, Xs) dsa(uX)du—?)/n (sX)ds}

The first term is treated similar as the statistic Ul(rll) in (4.2) and gives

E[(UY))?] = 0m™),

13



which implies
(4.25) U = Op(n7).

For the estimation of the second term we use integration by parts for the Itd integral [see
Karatzes and Shreve (1991), p. 155] and obtain by a straightforward calculation

(4.26) U = 12[UEN + UL + UE?)

where the terms US> (i = 1,2,3) are defined as follows

i1
Ut = Z/ / (s, Xs)ds (M, — M )o(u, X,)dW,,

n—1 . i+l
4.27) UZY .= 2L x, / M, — M; X,)dW,
( ) 2n ;O— (TL, E) i ( E)O’(S, ) )
i1 i+1 Z
Ul = nZ/ (M, — M:)o(s, X,)dW, / —0%(—, X1))du.
n n

For the random variable UQ(Z'D we have

BE[UEY)?] = +/ (5, X.)ds (M, — M1 )o(u, X )dW)Z]

‘@\

=

:+3

n—

:nQZE[/

- i
=1

(/ (s, X)ds) (M, — M. )P0 (u, X, )du| = O™,

where we used similar arguments as in derivation of (4.21). This yields
(4.28) Uy = 0y(n 12,

and an analog argument for the second term in (4.26) shows

(4.29) UL = 0,(n?).

For the remaining term Uéz'g) we apply Cauchy’s inequality

(4.30) E[Ued) < nz_iE[/_(M M. )20, X)ds]l
x E[(/_+ o2 (u, X,) — 02(%,X%)du>2];

and note that it follows from (2.2), (4.5) and (4.7) for the first factor

i+1 1

(M, — M % (s, X)ds] = 0(n™Y),

)

elf;

14



where the bound is independent of i. For the second factor we have from (2.1) and (2.8)
(uniformly in 7)

/" 102 (u, Xa) — 02(~, X3)| du = / o/ (u, X)) — o du

7X)

i
n

o/ (u, X)) + (2, X2
n

X
n

)

|~
3| .

i
i n n

i+1

< 2 sup |a(t,Xt)|/ ' (L(u—i)7+K|XU—Xi)du
i n n

0<t<1 i
L K
<2sup ot X)| (5 +— s X - X))
0<t<1 n N 0<s<it<1, [t—s|<n—!

M

= O™ +n % (logn)?) a.s.,

where the last line follows from the well known estimate for the modulus of continuity of the
diffusion (Xt)te[O,l}

Xy — X
(4.31) lim sup sup X=X = 0O(1) a.s.
hl0 0<s<t<1, |t—s|<h v/ 2hlog(h~T)

[see McKean (1969) p. 57] and the fact that the (almost surely) continuous function t — o(¢, X;)
is bounded on the compact interval [0, 1]. A combination of these estimates with (4.30) yields

),

M

E[UY ] = O(n~%(log n)

which implies observing the estimates (4.28) and (4.29)

(4.32) U = 0,(n " ?\/logn).

For the third term in (4.23) we use integration by parts and obtain

A = 2 o
US| = ‘23{71(/ az(s,Xs)ds> —/ 04(3,X5)ds}‘
i=1 " .
S - i I i
< ;S{n(/_ |0%(5, X,) = 0*(£, X, ) | ds) +/ 0%(5, X,) — o' (4, X1) | ds
{ o i
+ 202(—,XL‘) / |02(S,Xs)—02(—,XL‘)|ds}
n n 4 n n
— o 0 i 2
< Sa{n ([T 1ol X0) — o) ot X0 oL x ) ds)
i n n n n
=1 n
+ |o(s, Xs) — o(—, i)||a(s,Xs)+U(ﬁ,Xi-)||02(5,Xs)+02(—,X1)|d5
i = i
+ 2025, Xe) [ " Jo(s,X) o5, Xo) | o(s, X)) + 0 (=, Xe) |ds |
n i n



2

§CIZ{n(/.n (L(s——) L) ds- sup [o(t, X,)|

i 0<t<1

+ /n(L(S—i)’Y+K|XS—Xi|)dS' sup |o® tXt|}
i n n

0<t<1
n—1
L K 2
< C {nsu o%(t, X ( + — su X
a 2; 0§t£1| XIS 3, 0<s<t<l, |f—s\§n =X
L K
+ sup [PEX) (= s (N - X))
0<t<1 n T o<s<t<1, [t—s|<n—1

with constants C,Cy independent of n. Using again the estimate (4.31) for the modulus of
continuity it follows that . .
(4.33) U = Op(n~2(logn)?).

and a combination with (4.32) and (4.25) yields the estimate (4.17), i.e
Sp = O,(n"*1ogn).

The assertion of the theorem now follows from the estimates (4.16) and (4.17).

Proof of Theorem 2.2. Recalling the definition of s9; in (2.13) and of T5,,T}, in (2.6) the
assertion of Theorem 2.2 follows from Cramér’s rule if the weak convergence

Ty, —
(4.34) ol 2T ) 2o N(0,V) (n— oo)
Top — 354
with
(4.35) poo | 25 128
1255 9655

can be established. To this end we use the decomposition (4.11) and (4.13) introduced in the
proof of Theorem 2.1. From the estimates (4.15) it is clear that (4.34) follows from the weak
convergence of

T + 2T — s,

4.36 n
(4.56) VF_(T£)4—4Tﬁ)—3&

) Ly N0, V).

The proof of the lastnamed statement is performed in two steps. At first we show that T1(¢2L) and

TQ(Z) are of order 0,(n~/2) and therefore neglectible in (4.36) and secondly we prove asymptotic
convergence of the “remaining” random vector. For the first part we use the decomposition

2
n n n

(4.37) T = nf ™'Y (A = As)(Min — M) =10V 4107 4109 5 k=12,

16



where [recall the definition of the process (A4;);cp,1 in (4.2)]

Tk(i.l) — nk- QZb ]\L+1 _ML)2k_1,
n—1 i+l
4.38 T2 — pk-t b(s. X,) —b(s. X)) ds (Mg — M;)%!
( ) kn . ) S ) )
7/21 a4 n n n
n—1 i+l i
T2 = nf Yy (s, X5) = b, X)) ds (M — M),
i=1 " 7n

A straightforward application of 1t6’s formula shows for £ > 1

(4.39) E [(Myy, — M)* ' | F] =0,
t+h k
(4.40) B (M~ M)* | 7] = di| / o (s) ds|
t
where d, =1-3-...-(2k — 1). This gives for the expectation and variance of the first term on

the right hand side of (4.37)

E [T,ﬁi'”] —0:k=1,2

) il 2k
_ (4 _
Var [T“)] = o 2t §.1jE {bz(ﬁ,Xi-)] [/ o2 (s) ds] —0n?) k=12

n

where we used (2.2) and (4.5) for the last estimate. This implies
(4.41) TCY = Op(n ) = op(n2); k=1,2.
For the second term Tk(i'Q) in (4.37) we use Cauchy’s inequality, (2.1), (4.7) [applied to the

process (My)cjo,17) and obtain with constants Fy, F5, F3 independent of n

n—1 i+l

>] < nkIZ{E[(/ " (b(s, X,) —b(s,X%))ds)Q]}% {E[(M% —Mi-)‘l“]}%

7 n
=1

e[

,_.
-

VAN

:q

M

tq
Q

2k—1

|X X |ds) ]}2 o

I/\
.
——
\
'—l
+
iso!
&
|
=
Va)
——
N



which proves
(4.42) Téia) =O0p(n7") =op(n72); k=1,2.

Finally, a similar argument shows
(4.43) Tygiﬁ) =O0p(n')=op(nz) , k=12

and combining (4.41) — (4.43) with (4.36) shows that the weak convergence of (4.36) can be
established by proving

(1) So > .
(4.44) \/ﬁ(aT(?{f)>—aT<3 )) — N (0,a"Va) (n—o00).

Sq

for all vectors a = (ay,az)” € R*\{0}. To this and let

n—1
)+ aoTV =57 4y (Misr — M) + asn(Mew — M),

(4.45) Y i1
=1

n 2
n n

then it follows from (4.40) by a straightforward calculation

il it1

(4.46) E [TO(,IL)] = ”zzl a [[T o (s) ds] +az3n [[T o (s) ds]2

n

n—1

= Z ain to?(=) + ax 3n tot(

1
- n
=1

1 1
= al/ 02(t)dt—|—a23/ ot (t)dt+ O (n™")
0 0

)+ O (nﬂ)

l
n

= 159 + 3as54 + 0 (n’l/Q)

For the variance we obtain by similar arguments (observing that the terms in the sum (4.45)
are uncorrelated)

n

(4.47) S2 = Var [Téi’]

n—1
N [(Mﬂ M )4] + 24,050 E [(Mﬂ - ML-)G]
=1

i
n

n n

2
+ an’E [(Mi+1 ~ M. )8] — a’E [(Mﬂ ~ M, )2]

n

— 2a1a2nE |:(Mi+l — M

n—1 itl i+l

= 2203 [/ "ol (1) dt]2 + 24ajasm [[ "2 () dt]

- i
=1

3
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i+l

+ 96a3n? [/ o2 (t) dt]4

2

1 1
= Qafnl/ ot (1) dt+24a1a2n1/ of (t) dt
0 0
1
+ 96a§n‘1/ o®(t)ydt + O (n™"77) + O (n™?)
0

=n ' Va+o (n_l) .

Moreover, (4.39) and (4.40) also imply

n n

n—1
St ZE[(al(M% ~ M:)? — ay E[(Mis — M )?]
i=1

tapn(Muss — M) — anE[(Men — M;)‘*])Al] = 0(n™).

n

and the weak convergence in (4.44) follows from the central limit theorem which completes the
proof of Theorem 2.2.
|
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