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Abstract

When predicting the state of a system, we sometimes know that the
succession of states is cyclic. This is for example true for the prediction
of business cycle phases, where an upswing is always followed by upper
turning points, and the subsequent downswing passes via lower turning
points over to the next upswing and so on. We present several ideas how
to implement this background knowledge in popular static classification
methods. Additionally, we present a full dynamic model. The usefulness
for the prediction of business cycles is investigated, revealing pitfalls and
potential benefits of ideas.

1 Introduction

In the literature, business cycles are typically either treated as a univariate phe-
nomenon and tackled by univariate time series methods, or they are modelled as
a multivariate phenomenon and tackled by static multivariate classification meth-
ods [Meyer and Weinberg, 1975; Heilemann and Miinch, 1996]. As a consequence,
either the time-dependency or the interplay of different economic variables is ig-
nored.
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In a preliminary comparative study we showed that multivariate classification
methods (ignoring knowledge about time-dependencies) and a dynamic Bayesian
network that generalizes the Naive Bayes classifier for time-dependencies (ig-
noring dependencies between predictors) obtained about the same, unsatisfying,
average prediction accuracy.

Thus, in that study, some multivariate classification methods generated the
same error rates as the dynamic Bayesian network without using background
knowledge about time dependencies in business cycles. Therefore, there was hope
that in order to improve prediction accuracy for the multivariate classification
methods advantage could be taken of the cyclical structure of business cycle
phases for which the following pattern is true: lower turning points < upswing
— upper turning points < downswing < lower turning points — and so on.

In this paper, we introduce and analyze several ideas on the incorporation of
this background knowledge in different types of classification rules. The general
problem of predicting cycles is formulated in Section 2. In Section 3 ideas on
adapting static classification rules to the above cyclical structure are described.
The data used for learning and testing the prediction models for business cycle
phases and the design of our comparative study are presented in Section 4 and
all the considered classification methods are briefly outlined. In Section 5 we
compare the performance of the implemented ideas. And finally, consequences
are summarized in Section 6.

2 Basic Notations

We consider classification problems that are based on some K-dimensional real-
valued vector Z € M C IR¥ of observations of predictor variables X, ..., Xx on
some object and we want to decide about the class s € S := {1, ...., J} the object
belongs to. Any considered object with # € X has to belong to one and only one
out of these .J classes.

In case of prediction of cycle phases, we classify not really various objects,
but rather one object - called system - at different times ¢ = 1,...,7. And at each
time-point the system is situated in one out of .J possible states s € J := {1, ..., J}.
The chronological order of how the system passes through states is fixed: Given
the system is is state s;_; at time t — 1, it either stays there or moves on to a
certain other state s® so that S; € {s,s%} C S, t=1,...,T. In the following, we
assume a corresponding numbering of states where s =s+1for s =1,2,..., J—1
and s¥=1 for s=.J.

Most classification methods base their assignment of objects into classes on
certain transformations of the respective observations for each of the considered
classes:

m(s,0): X = IR, s €S.

The size of these transformations gives information on the strength of membership



of the object in the classes. Without loss of generality, we assume higher values
to indicate stronger membership. That is, these m(s,Z), s € S, ¥ € X are
interpreted as membership values.

There are many ways and intuitions for the construction of membership values
using examples of observations and classes for some objects in a learning set L :
In discriminant analysis (Linear: LDA, or quadratic: QDA) membership values
are based on some notion of distances to estimated centers of classes, whereas in
Support Vector Machines (SVM) we use distances to learnt class boundaries.

For all Bayes rules, membership values are estimated conditional class prob-
abilities:

pL(x | S)pL(S) (1)

for each class s € S.

Irrespective of the various derivations of membership values, the manner of
assignment is always the same: The rule assigns to the class with highest mem-
bership value. Therefore, we call this type of rules argmaz rules.

For multi-class problems, there are two distinct basic structures to decide on
a certain elementary state s,s € S where the cyclical structure can easily be
implemented: multi-class argmax rules or composition of binary argmax rules.

3 Adaption of static classification rules for pre-
diction of cycle phases

3.1 Adapting multi-class argmax rules

Multi-class argmax rules use membership values for each elementary state m(s, o) :
X—=R,s€eS:

§ = pred(7) = arg max m(s, T).
s=1,...,8
For these rules, we can take advantage of the cyclical structure by restricting the
comparison of membership values to admissible transitions. That is, we start in
the last known state of the system sy and predict the next state by

pred (i | sg) = arg max m(s, ).
5=50,5,

For the consequent times t = 2,...,T the predicted state §,_; from the pre-
ceding time is used as if it was the true one:



pred(z; | so, $1,.., 5 1) = pred(Z; | S 1)
= arg max m(s, 7).

s )
s=8¢-1,8;"

This adaption was proposed by Weihs et al [1999] for the prediction of business
cycle phases and is called classification with exact transitions. When classifying
with exact transitions in a first step the information of $;,_; is used to decide on

admissible states §, € {§t_1,§§'il} C {1,2,.....,J}. In a second step we choose
between those two, using the information in ;. In the following, we will drop the
time-index ¢ and denote variables from time-slice ¢ — 1 with a minus: v_ := v;_q,

t=1,...,T, if statements are valid for all t =1, ..., T, and where indexing is not
needed for understanding.

We may gain further improvement of the rules, if we can exploit the informa-
tion in §;_; also for the second decision. For membership values on a ratio scale,
we can do this by weighting membership values with transition weights that tell
us something about the willingness of the system to pass over to state s given
state 5_:

m(s, | 5_) =w(5_,s)m(s,T).

In cyclic systems, w(s_, s) =0 is true for all inadmissible transitions s < s,
s_,s €8S.

How weighting works, and why membership values have to be on a ratio scale,
can be understood best by looking at the following representation of the weighted
rule:

pred(7|5_) = arg rpagc@w(&,s)m(s,f)

—9

<~ pred(Z |5 ) =

5 ” m($_, ) w(s_,5_) [ >1
{ 5% } ' m(§6_9,f)w(§_,§_){ <1 }

We are coding the evidence of Z for S being either 5_ or §% with the ratio
of the corresponding membership values, as well as the (assumed) evidence of
S_=35_ with the ratio of the transition weights. And we combine these evidences
by multiplying and thus giving both evidences same importance.

An intuitive choice of weights are estimated transition probabilities from the
training set, e.g. the observed frequencies:

wi($-,5) = puls|s-)
NL(§7 — S)
Ni(5-)



In case of membership values that use estimates of a-priori class probabilities,
like bayes-rules with unequal class probabilities pr,(s) we use the ratio

pu(s | 5-)

Cpuls)

is chosen as weights. We simply replace pr(s) by pr(s]|$_) in the calculation of
membership values for bayesrules in equation (1):

m(s, )pL(S | S- )

L(5)
_ nlEsplsls ) )

pL(T)

m(s,¥|§.) =

The resulting membership values can be interpreted as estimated conditional
class probability given & and 5 under the additional assumption of conditional
independence of X and S_ given S = s. This is the well-known assumption
in Hidden Markov Models (HMMs) of order one: all relevant past information
S0, Lo, vy St—1, Ty—1 is summarized in the last state s;_; and is propagated solely
through the transition probabilities p(s¢|s; 1) = p(s|s_ ), ss =1,...,J,t =1,...,T.

3.2 Composition of binary elementary argmax rules

Other multi-class rules use membership values not for elementary states but for
various sets out of the product set over {1,...,.J}, m : X — IR*' ~'. This is true,
for example, if the final decision consists of a path of binary argmax decisions.

In the so-called one-against-rest strategy each class is trained against the
other J — 1 classes [Scholkopf et al (1995)]. The class with the highest value in
the decision function is selected. So J argmax rules have to be trained.

An example is the max win strategy of [Friedmann (1996)]. Each class is
trained against every other class with a binary SVM. Thus we get a collection of
J(J-1)/2 membership functions

m(s,s',j:X—>1R,s':1,...,8—1,822,...,,].

The class that obtains the most votes is selected. If this is not unique (i.e. two or
more classes get the most votes) between these classes the one with the highest
value in the membership function gets assigned.

Another strategy uses decision directed acyclic graphs (DDAG) [Platt et al.(2000)].
Classes are listed and the first decision is made between the first and the last el-
ement on the list. The one which is not voted for is eliminated from the list.
This is repeated until only one class is left and the observation gets assigned to
it. The same argmax rules as in the max win strategy have to be learnt, but to



make a decision only J — 1 decision nodes in the DDAG have to be evaluated,
and each is constructed only on the two classes which are examined.

For the appropriate strategy in a cyclic structure only JJ membership functions
for binary argmax rules have to be learnt, namely m(1,2,0), m(2,3,0),..., and
m(.J,1,0). Dependent on the state sy or respectively the predicted state §_ from
the preceding time slice, we decide on the current state § based on m(s_, §9, o).

4 Design of Comparison

4.1 Data

The data set consists of 13 ”stylized facts” [Lucas (1987)] for the German business
cycle and 157 quarterly observations from 1955/4 to 1994/4 (price index base is
1991). The stylized facts are given in table 4.1.

The experts’ classification of the data into business cycle phases (abbreviated
as PH) was done by Heilemann and Miinch [1996] using a 4-phase scheme. Phases
are called lower turning points (abbreviated ”1tp”), upswing ("up”), upper turning
points ("utp”), and downswing (”down”).

IE real investment in equipment-gr
C real private consumption-gr

Y real gross national product-gr
PC consumer price index-gr

PY | real gross national product price deflator-gr
IC real investment in construction-gr
LC unit labor cost-gr

L wage and salary earners-gr
M1 money supply M1

RL real long term interest rate
RS nominal short term interest rate
GD government deficit

X net exports (X)

Table 1: Our predictors of business cycle phases are based on economic ag-
gregates that cover all important economic fields: real activity (labor market,
supply /demand), prices, and monetary sphere. The abbreviation 'gr’ stands for
growth rates with respect to last year’s corresponding quarter.

4.2 Design

There are six full cycles in the considered quarters. All methods (have to) rely
on some assumption of structural stability over this period, though this is not



really valid. Thus, we decided to perform a leave-one-cycle out analysis for the
comparison of methods.

For a fair comparison, all optimization in order to gain a rule has to be done on
each of the six training sets alone. Rules are then compared with respect to their
prediction accuracy measured as the average prediction error on the validation
sets:

APE = % 3 (% 3 Ist(§t)> ,

=1 v t=1

where T; is the number of time-points in the i-th cycle, i = 1,...,6, and 1; is the
indicator function for state s € S.

This gives an average error on a new cycle, which seems to be more appropriate
as performance criterion than the average error on a single new observation.
Cycles form a natural entity in the given task, and the structural instability
across cycles together with a performance criterion based on single observations
would lead to an unwanted preference of methods that predict well on long cycles.

4.3 Description of static procedures

In the past, mainly static classification methods were used for the multivariate
prediction of business cycles. One reason is the fact that typically the last true
phase is not known (for sure) to do the prediction for the next one. It is only by
observing the continuing evolution of the economy for some more quarters that it
becomes apparent what phase the business cycle was in. Another reason for using
static methods is that we are not only reaching for a good prediction, but also for
a description of phases in terms of the stylized facts. Thus methods were applied
that use as predictors known entities, and for which we want to understand the
connection they have with business cycle phases.

The ideas of modifying static methods outlined in Section 3 now allow for
both, description and prediction: we describe phases using their membership
functions m(s,o0) : X — IR, s € S and we hope to get better predictions when
combining their evidence with the knowledge on the cyclical structure. We do not
base our classification rule on unknown entities, as our predictions are dependent
on the true state of the system at some point in the past and not necessarily on
the last one.

In the following, we give a short description of those static methods that have
already been applied to the problem, and of which we had membership values for
their prediction on the test cycles, so that the ideas could be easily implemented.

e Name: Linear Discriminant Analysis
e Short: LDA



Bayes rule with uniform class prior and equal costs. Equivalent to Fisher Dis-
criminant Analysis. No model selection involved.

e Name: LDA with variable selection

e Short: LDA-VS

Policy as for LDA. Optimization of subset of predictors in terms of lowest leave-
one-observation-out error.

e Name: Quadratic Discriminant Analysis
e Short: QDA

Policy as for LDA. No model selection involved.

e Name: QDA with variable selection
e Short: QDA-VS

Policy as for LDA. Optimization of subset of predictors in terms of lowest leave-
one-observation-out error.

e Name: Minimal Error Classifier of type 1 based on QDA
e Short: Mecl-Q

Bootstrap estimation of errors in projected 2-dimensional spaces. Optimization
of projected space in terms of lowest estimated error with Simulated Annealing
and the Nelder/Mead algorithm.

e Name: Minimal Error Classifier of type 2 based on QDA
e Short: Mec2-Q

Estimation of errors in projected 2-dimensional spaces by the uniformly minimal
variance unbiased estimator on the original space followed by numerical integra-
tion. Optimization of projected space in terms of lowest estimated error with
Simulated Annealing and the Nelder/Mead algorithm.

All these algorithms were programmed in R and C' with Numerical Recipes
[Press et al. (1993)]. Details can be found in [R6hl and Weihs (1999)].

e Name: Neural Networks
e Short: NN

Multi-Layer Perceptron with one hidden layer and sigmoid activation function.
Conjugate gradient method for change of weights. Neural Connection(©) 2.0 [1997]
was used. Optimization of weights and number of nodes in hidden layer in terms
of errors on 10% test set.



e Name: Binary linear Support Vector Machines with one-against-rest strat-
egy
e Short: SVM-OR

Quadratic optimization problem solved with active set algorithm [Fletcher (1981)]
in SAS/IML. Leave-one-observation-out optimization of error-penalty parameter

e Name: Binary linear Support Vector Machines with max-win strategy
based on one-against-one comparisons

e Short: SVM-OO

Quadratic optimization as for SVM-OR. Leave-one-observation-out optimization
of error-penalty parameter

e Name: Binary linear Support Vector Machines using a Decision Directed
Acyclic Graph

e Short: SVM-DD

Quadratic optimization as for SVM-OR. Leave-one-observation out optimization
of error-penalty parameter.

4.4 Description of dynamic procedures

In our study, there is one classification method that is based on multivariate
time-series model: the so-called rake-model [Sondhauss and Weihs (1999)] . This
is a dynamic Bayesian network with two time-slices, where the multivariate dis-
tribution of predictors and state in a time-slice is dependent on their realization
in the preceding time-slice in a certain way. The assumed stochastic indepen-
dencies within a time-slice reflect those of the Naive-Bayes classifier. The inde-
pendence assumptions between time-slices broaden those of HMMs to allow for
time-dependencies between predictor variables. The rake model is a multivari-
ate version of so-called Markov regime switching models introduced by Hamilton
[1989] that goes beyond their typical application for predicting switches between
two regimes based on one observational variable modeled as conditional Gaussian
variable [Diebold and Rudebusch (1996)].

The distribution of each predictor variable X, is modeled to be dependent
not only on the current state s; (like in HMMs), but also on its predecessor X;_; x,
k=1,..,K,t=1,..,T. But it is assumed to be conditionally independent of
all other past and current variables (like in the Naive Bayes classifier), given the
current state and the predecessor:

P (Xk,t|5t7 {xl,ta ey l"K,t} \l"k,t, St—1y T_1y ey 50)



= P(Xk,t|3t,l']€,t_1,),t == ]_, ...,T,k == ]_, LK.

The current state S; is conditionally independent of the past Sy, Xo, St, )Z'l, - Xt_l
given the preceding state S; ;=s; 1:

P(St|8t,1,ft,1,...,80) = P(St|8t,1),t:1,...,T.

This is different from the Naive Bayes classifier, where (non-conditional) inde-
pendence of S; and the past is assumed, t = 1,..., T
The conditional independence assumptions in the rake-model lead to

e a decomposition of the joint probabilities of state variable and predictor
variables in time-slice ¢ given s, ; and &;_;, so that the conditional class
probabilities can be calculated as follows:

p (St | ft|5tflaft71)
p(ft | Ty_1, St)
p(ft | Ty, 3t—1)

= p(s|si-1) ,t=1,..1T.

e a decomposition of the conditional probability of predictor variables given
current state and predecessor, so that it resolves into:

K

p(ft|ft7175t) = Hp(l'k,t
k=1

Tk it—1, St),t = 1, ,T

For the given problem, we discretized the observed values of stylized facts:
Tk = Qe qr € {1,...,Qr},k =1,..., K. There were either two or three intervals
defining the discretization , that is Qp € {2,3}, k=1, ..., K.

For the estimation of transition probabilities we used observed frequencies
on the training sets. This maximum likelihood estimation would not have been
a good choice for the estimation of the probabilities p(qx|q, ,s~), because for
some specifications of s € {1,...,J} and ¢, € {1,...,Qx} there are only very few
observations or even none in the training sets. Thus we used bayesian parameter
learning with uniform dirichlet priors. For further details, see Sondhauss and
Weihs [1999]. The equivalent sample sizes for the dirichlet priors were optimized
using a leave-one-observation-out analysis.

Exact forward propagation of evidence in dynamic Bayesian networks was
used to predict the phase of the cycle at time-points ¢ given the evidence of the
last known state sq and observations &y, ..., 7, t = 1,...,1"

§t = argmaXpL(8|ft7"'aflaso)
seS

10



5 Results

In general, the performance of classification rules for the prediction of business
cycle phases is pretty low, as it can be seen in the first column of Table 2: at
best we get an error rate of 37%. This is not surprising, given the difficulties of
the problem, namely the complex and changing dependencies. Quite a surprise,
though, is the even poorer performance, when classifying with exact transitions.

To see how this can happen, we looked at the classifiers predictions for cycles.
Typical for the pitfall we ran into is the following course of predictions of the
modified NN* classifier for the third cycle, compared to the static classifier NN
and the true phases in Table 3.

Average Prediction Error
Static Exact

Method equal  estimated
LDA 0.52 0.60 0.55
QDA 0.53 0.60 0.61
LDA-VS 0.52 0.63 0.52
QDA-VS 0.51 0.52 0.53
Mec1-Q 0.46 0.55 0.52
Mec2-Q 0.37 0.44 0.44
NN 0.37 0.53 -
SVM-OR | 0.55 0.56 -
SVM-0O0 0.50 0.55 -

Table 2: Average Prediction Errors Using Exact Transitions

NN 3111211212323333
NN+ 3341222222333333
True 4111111222333333

Table 3: Predictions of the NN classifier with and without exact transitions on
the third cycle compared to the true phases coded as LTP=4, Up=1, UTP=2
and Down=3

Once the classifier has mispredicted, it had big difficulty to predict the phase
for the consequent quarters, because it is only allowed to compare for example
upper turning points (2) with downswing (3), where the evidence in the predictor
variables potentially indicates the true upswing (1), and might be no real help.
After an error, either the classifier 'waits’ in the mispredicted state for the cycle
to pass that state (like in the example), or it passes through all states, until
prediction and true state meet again.
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The importance of this risky behaviour of the classification with exact transi-
tion is emphasized by the average local error rates given in Table 4 calculated for
the various methods for the four phases: the turning point phases are particularly
hard to identify, thus the probability that we get trapped is very high.

Local Error Rate

Method LTP Up UTP Down
LDA 0.72  0.32 0.81 0.51
QDA 0.97 0.26 0.92 0.33
LDA-VS 0.74  0.36 0.69 0.46
QDA-VS 0.90 0.40 0.86 0.16
Mec1-Q 0.56 0.38 0.84 0.46
Mec2-Q 0.38 0.31 0.82 0.30
NN 0.76  0.24 0.41 0.35
SVM-OR | 0.82 0.39 0.67 0.49
SVM-OO | 0.66 0.40 0.73 0.47

Table 4: Local Errors Rates

For example, when we "help” the classifiers to identify the beginning of a
new cycle, by correctly starting in a lower turning point instead of a downswing,
the difficulty to identify this transition is circumvented, and all of a sudden the
results change quite a lot, as you can see in Table 5.

Average Prediction Error

Static Exact
Method equal  estimated
LDA 0.52 0.41 0.48
QDA 0.53 0.70 0.70
LDA-VS 0.52 0.55 0.49
QDA-VS 0.51 0.41 0.40
Mec1-Q 0.46 0.44 0.41
Mec2-Q 0.37 0.35 0.29
NN 0.37 0.34 -
SVM-OR 0.55 0.56 -
SVM-O0 0.50 0.xy -

Table 5: Average Prediction Errors Using Exact Transitions Given True First
Phase

For the "good” methods Mec2-(Q and NN we now observe an improvement

in the APE. But of course, changing the starting value in a leave-one-cycle-out
analysis so that a certain phase transition no longer needs to be identified, is
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cheating: in real life we are highly interested in identifying phase transitions
correctly.

So we have to find another way to help classifiers out of the trap: we no longer
propagate the predicted state as the true one, but we propagate the probability
that a certain state is true, given the state sy at time-point ¢y, := 0 and the past
observations of predictor variables. Of course, we can only hope this strategy to be
useful for probabilistic rules, where membership values have some interpretation
as conditional class probabilities. The first step is the same as before. We predict
$1 using ¥y and sq:

pred(; | sp) = arg ma%p[,(s | Z1, s0)-
550,85

The prediction of §, is different. Instead of assuming §; =pred(7; | so) to be the
true state, we propagate to be in state sy with probability pr(so | 71, o) and in
state s; with probability (1—py(so | 71, s0))-

Thus, the probability to be in state s§ now is the sum of the probabilities of
the two paths that can lead from sq to s§: so— so— sy and so— 55 — 5 :

pL(52 | 552751,30)

= Z pL(S2 | 52,5)pL(8 | tho)-

s:so,sg)

Later, more than two states are possible and the general rule for prediction use
conditional state probabilities recursively calculated by:

pL(St | fta tey fla SO)

= Y pu(sels, &4 ..., 1, $0)pL(8| T 1, .., T4, S0)
sES

Actually, we add-on the structure of a HMM on classification rules (lets denote
this by HMM-CR) and predict phases using the forward procedure for finding
the next state. The parameters of the distribution of the HMM-CR are defined
separately for the transition probabilities and the so-called emission probabilities
of HMMs, the p(Z|s), & € X, s € S. The transition probabilities are either
set to be equal for admissible states (non-weighted comparison) or estimated as
observed frequencies on the training set (weighted comparison). The emission
probabilities comply with the estimated conditional probabilities on the training
set that were used to build the rule (see equation 1).

The average prediction errors in Table 6 show that the classification with
forward propagation leads to an improvement of results for most classifiers, though
the size of improvement is disappointing:
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Average Prediction Error

Static Propagated
Method equal  estimated
LDA 0.52 0.54 0.50
QDA 0.53 0.50 0.50
LDA-VS 0.52 0.54 0.52
QDA-VS 0.51 0.51 0.52
Mecl-Q 0.46 0.45 0.45
Mec2-Q 0.37 0.34 0.38
NN 0.37 0.37 -
SVM-OR | 0.55 0.56 -
Rake - - 0.36

Table 6: Average Prediction Errors Using Forward Propagation

Whether or not a weighting of membership values with estimated transition
probabilities leads to better predictions, can not finally be decided upon by our
results: for LDA, QDA and QDA-VS we observed a superiority of predicting
with weighting, but for QDA-VS and Mec2-Q a superiority of predicting without
weighting. Theoretically we would assume a superiority for the weighted strategy,
but these considerations depend on the additional assumptions

e that transition probabilities are stable over time, and
e that they are only dependent on the last state, and
e that they are as important for the prediction as the observation vector.

Thus, it is not very surprising that the results do not confirm the theoretical
considerations.

6 Conclusions

Summarizing, from the analysis of the results one might deduce the following gen-
eral conclusions on the incorporation of background knowledge about a cyclical
class structure into classification rules:

e Incorporation of cyclic structure by weighting membership values is only
useful for membership values on a ratio scale.

e Prediction based on classification with exact transitions is risky, because one
false prediction might entail many succeeding errors. In domains, where one
phase is particularly difficult to detect it is very likely that this might cause
bad classification results.
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e A promising method for state prediction is forward propagation of state-
probabilities as in hidden Markov models.

For the prediction of business cycle phases none of the implemented ideas has
lead to a major improvement of average prediction accuracy, though. This might
have been caused by two reasons:

e The minimum average prediction error that can be obtained when predict-
ing the four phases of business cycles based on the given data and the design
of comparison is about 33%. This high error rate might be caused by the
known structural instability of all dependencies - those between past, cur-
rent and future economic entities as well as those between economic entities
at the same time. The resemblance of the average prediction errors of the
best methods (NN, Mec2-Q, and Rake) - taking into account their totally
different model assumptions - might suggest this explanation. Moreover,
in Weihs, R6hl, and Theis [1999] it was found that a-priori restricting one-
self to a certain group of only two predictors leads to best forecasts on
the sixth cycle based on exact transitions. This might indicate that the
other so-called ’stylized facts’ of the German economy are unstable in their
relationship to business cycle phases. Therefore, our next step will be to
analyze the adapted methods for this group of two predictors.

e All compared multivariate classification methods are based on resampling
methods to identify the best classification rule that ignore the cycle struc-
ture of the data. Therefore, these methods might be improved by using
the leave-one-cycle-out idea together with our ideas for predicting the next
state also for model identification. This might possibly lead to better clas-
sification results, too.
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