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Abstract

In this article we highlight the main differences of available methods for the analysis of regression
functions that are probably additive separable. We first discuss definition and interpretation of the
most common estimators in practice. This is done by explaining the different ideas of modeling
behind each estimator as well as what the procedures are doing to the data. Computational
aspects are mentioned explicitly. The illustrated discussion concludes with a simulation study on
the mean squared error for different marginal integration approaches. Next, various test statistics
for checking additive separability are introduced and accomplished with asymptotic theory. Based
on the asymptotic results under hypothesis as well as under the alternative of non additivity we
compare the tests in a brief discussion. For the various statistics, different smoothing and bootstrap
methods we perform a detailed simulation study. A main focus in the reported results is directed on
the (non-) reliability of the methods when the covariates are strongly correlated among themselves.
Again, a further point are the computational aspects. We found that the most striking differences
lie in the different pre-smoothers that are used, but less in the different constructions of test
statistics. Moreover, although some of the observed differences are strong, they surprisingly can
not be revealed by asymptotic theory.1
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1 Introduction

In the last ten years additive models have attracted an increasing amount of interest in nonparametric
statistics. Also in the econometric literature these methods have a long history and are widely used
today in both, theoretical considerations and empirical research. Deaton and Müllbauer (1980) pro-
vided many examples in microeconomics where the additive structure follows from economic theory
of separable decision making like two step budgeting or optimization. Furthermore, additivity is the
natural structure when production processes have independent substitution rates for separable goods.
In statistics, additivity leads to the circumvention of the curse of dimensionality (see Stone 1985) that
usually affects multidimensional nonparametric regression.

The most common and best known nonparametric estimation approaches in these models can be
divided into three main groups: the backfitting (see Buja, Hastie and Tibshirani 1989, or Hastie and
Tibshirani 1990 for algorithms, and Opsomer and Ruppert 1997 or Mammen, Linton and Nielsen 1999),
series estimators (see Andrews and Whang 1990 or Li 2000), and the marginal integration estimator
(see Tjøstheim and Auestad 1994, Linton and Nielsen 1995, and also Kim, Linton, Hengartner 2000
for an important modification). Certainly, here we have mentioned only the main references respective
basic ideas and theory. Among them, to our knowledge, the series estimator is so far not explored in
practice, i.e. although straightforward implementation and good performance is declared, we could not
find a simulation study or an application of this method. Moreover, usually hardly feasible assumptions
are made on the series and its “smoothing parameters”, e.g. reducing bias and variance simultaneously,
but without giving a correct idea how to choose them in practice. The backfitting of Buja, Hastie and
Tibshirani (1989) is maybe the most studied additive model estimator in practice, and algorithms are
developed for various regression problems. However, the backfitting version of Mammen, Linton and
Nielsen (1999), for which closed theory is provided but no Monte-Carlo studies, differs a lot in definition
and implementation from that one. The marginal integration, finally, has experienced most extensions
in theory but actually a quite different interpretation than the aforementioned estimators. This was
first theoretically highlighted by Nielsen and Linton (1997) and empirically investigated by Sperlich,
Linton and Härdle (1999) in a detailed simulation study. The main point is that backfitting, at least the
version of Mammen et al. (1999), and series estimators are orthogonal projections of the regression
into the additive space whereas the marginal integration estimator always estimates the marginal
impact of the explanatory variables taking into account possible correlation among them. This led
Pinske (2000) to the interpretation of the marginal integration estimator as a consistent estimator of
weak separable components, which, in the case of additivity, coincide with the additive components.
From this it can be expected that the distance between the real regression function and its estimate
increases especially fast when the data generating regression function is not additive but estimated by
the sum of component estimates obtained from marginal integration instead of backfitting or series
estimates. A consequence could be to prefer marginal integration for the construction of additivity
tests. Nevertheless, until now backfitting was not used for testing simply because of the lack of theory
for the estimator.

Due to the mentioned econometric results and statistical advantages there is an increasing interest in
testing the additive structure. Eubank, Hart, Simpson and Stefanski (1995) constructed such a test but
used special series estimates that apply only on data observed on a grid. Gozalo and Linton (2000) as
well as Sperlich, Tjøstheim and Yang (2000) introduced a bootstrap based additivity test applying the
marginal integration. Here, Sperlich et al. (2000) concentrated on the analysis of particular interaction
terms rather than on general separability. Finally, Dette and von Lieres (2000) have summarized the
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test statistics considered by Gozalo and Linton (2000) and compared them theoretically and also in a
small simulation study. Their motivation for using the marginal integration was its direct definition
which allows an asymptotic treatment of the test statistics using central limit theorems for degenerate
U -statistics. They argued that such an approach based on backfitting seems to be intractable, because
their asymptotic analysis does not require the asymptotic properties of the estimators as e.g. derived
by Mammen, Linton and Nielson (1999) but an explicit representation of the residuals. Further, Dette
and Munk (1998) pointed out several drawbacks in the application of Fourier series estimation for
checking model assumptions. For these and the former mentioned reasons we do not consider series
estimators for the construction of tests for additivity in this paper.

For the empirical researcher it would be of essential interest how the different methods perform in
finite samples and which method should be preferred. Therefore the present article is mainly concerned
about the practical performance of the different procedures and for a better understanding of some of
the above mentioned problems in estimating and testing. Hereby, the main part studies performance,
feasibility and technical differences of estimation respectively testing procedures based on different
estimators. We concentrate especially on the differences caused by the use of different (pre-)smoothers
in marginal integration, in particular on the classic approach of Linton and Nielsen (1995) and on the
internalized Nadaraya–Watson estimator (Jones, Davies and Park 1994) as suggested by Kim, Linton
and Hengartner (2000). Notice that this study is not thought as an illustration of the general statement
of consistency and convergence. Our main interest is directed to the investigation and comparison of
finite sample behavior of these procedures.

The marginal integration estimator becomes inefficient with increasing correlation in the regressors,
see Linton (1997). He suggested to combine the marginal integration with a one step backfitting
afterwards to reach efficiency. Unfortunately, this combination destroys any interpretability of the
estimate when the additivity assumption is violated. The same loss of efficiency was also observed
in a simulation study by Sperlich, Linton and Härdle (1999) for the backfitting estimator, although
these results do not reflect the asymptotic theory. In their article it is further demonstrated that with
increasing dimension the additive components are still estimated with a reasonable precision, whereas
the estimation of the regression function becomes problematic. This fact could cause problems for
prediction and for bootstrap tests. We will investigate and explain that the use of the internalized
Nadaraya–Watson estimator for the marginal integration can partly ameliorate this problem. This is
actually not based on theoretical results but more on numerical circumstances respective the handling
of “poor data areas”. Throughout this paper we will call the classical marginal integration estimator
CMIE, and IMIE the one using the internalized Nadaraya–Watson estimator as multidimensional
pre-smoother.

The rest of the paper is organized as follows. In Section 2 we give the definitions of the analyzed
estimators and some more discussion about their advantages and disadvantages. Finally we provide
some simulation results on the Cross-Validation mean squared errors for the different methods of
estimation. In Section 3 we introduce various test statistics based in the IMIE to check the additivity
assumption, present closed form asymptotic theory and a theoretical comparison. Notice that for
the IMIE, at least for testing, little theory has been done until now and hardly empirical studies.
Therefore we provide both in this work, an extensive simulation study but also a closed theory about
the asymptotic properties for any new estimator and test we are considering. Section 4 finally is
dedicated to an intensive simulation study for these test statistics, all using bootstrap methods. The
proofs of the asymptotic results are cumbersome and deferred to the Appendix in Section 5.
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2 Marginal Integration and Additive Models

Let us consider the general regression model

Y = m(X) + σ(X)ε (2.1)

where X = (X1, . . . , Xd)T is a d-dimensional random variable with density f , Y is the real valued
response, and ε the error, independent of X with mean 0 and variance 1. Further, m, σ are unknown
(smooth) functions and the regression function m(·) has to be estimated nonparametrically. As in-
dicated above the marginal integration estimator is constructed to catch the marginal impact of one
or some regressors Xα ∈ IRdα , dα < d. For the ease of notation we will restrict ourselves to the case
dα = 1 for all α. Notice first that in case of additivity, i.e. there exist functions mα, m−α such that

m(X) = mα(Xα) + m−α(X−α) (2.2)

with X−α being the vector X without the component Xα, the marginal impact of Xα corresponds
exactly to the additive component mα. For identification we set E[mα(Xα)] = 0 and consequently
E[Y ] = E[m−α(X−α)] = c. The marginal integration estimator is defined noting that

EX−α [m(xα, X−α)] =
∫

m(xα, x−α)f−α(x−α)dx−α (2.3)

= EX−α [m−α(X−α) + mα(xα)] = c + mα(xα), (2.4)

where f−α denotes the marginal density of X−α, and the second line follows from the first line in the
case of additivity, see equation (2.2). So marginal integration yields the function mα up to a constant
that can easily be estimated by the average over the observations Yi. We estimate the right hand
side of equation (2.3) by replacing the expectation by an average and the unknown mutidimensional
regression function m by a pre-smoother m̃. Certainly, having a completely additive separable model
of the form

m(X) = c +
d∑

α=1

mα(Xα), (2.5)

this method can be applied to estimate all components mα, and finally the regression function m is
estimated by summing up an estimator ĉ of c with the estimates m̂α.

2.1 Formal Definition

Although the pre-smoother m̃ could be calculated applying any smoothing method, theory has al-
ways been derived for kernel estimators [note that the same happened to the backfitting (Opsomer
and Ruppert 1997, Mammen, Linton and Nielsen 1999)]. Therefore we will concentrate only on the
kernel based definitions even though spline implementation is known to be computationally more
advantageous. We first give the definition of the classic marginal integration method (CMIE). Let
Ki(·) (i = 1, 2) denote one - and (d− 1) - dimensional Lipschitz - continuous kernels of order p and q,
respectively, with compact support, and define for a bandwidth hi > 0, i = 1, 2, t1 ∈ IR, t2 ∈ IRd−1

K1,h1(t1) =
1
h1

K1(
t1
h1

), K2,h2(t2) =
1

hd−1
2

K2(
t2
h2

). (2.6)

4



For the sample (Xi, Yi)n
i=1, Xi = (Xi1, . . . ,Xid)T the CMIE is defined by

m̂α(xα) =
1
n

n∑
j=1

m̃(xα, Xj,−α) =
1
n2

n∑
k=1

n∑
j=1

K1,h1(Xjα − xα)K2,h2(Xj,−α − Xk,−α)Yj

f̂(xα, Xk,−α)
(2.7)

f̂(xα, x−α) =
1
n

n∑
i=1

K1,h1(Xi,α − xα)K2,h2(Xi,−α − x−α) (2.8)

ĉ =
1
n

n∑
j=1

Yj (2.9)

and Xi,−α denotes the vector Xi without the component Xiα. Note that f̂ is an estimator of the joint
density of X and m̃ denotes the Nadaraya Watson estimator with kernel K1,h1 · K2,h2 .

The modification giving us the internalized marginal integration estimate (IMIE) concerns the defini-
tion of m̂, equation (2.7), where f̂(xα, Xk,−α) is substituted by f̂(Xjα, Xj,−α), see Jones, Davies and
Park (1994) or Kim, Linton and Hengartner (2000) for details. The resulting definition of the IMIE is

m̂I
α(xα) =

1
n2

n∑
k=1

n∑
j=1

K1,h1(Xjα − xα)K2,h2(Xj,−α − Xk,−α)Yj

f̂(Xjα, Xj,−α)
(2.10)

=
1
n

n∑
j=1

K1,h1(Xjα − xα)
f̂−α(Xj,−α)

f̂(Xjα, Xj,−α)
Yj , (2.11)

where f̂−α is an estimate of the marginal density f−α. Notice that the fraction before Yj in (2.11)
is the inverse of the conditional density fα|−α(Xα|X−α). It is well known that under the hypothesis
of an additive model m̂α and m̂I

α are consistent estimates of mα (α = 1, . . . , d) (see Tjøstheim and
Auestad, 1994, and Kim, Linton and Hengartner, 2000).

2.2 On a Better Understanding of Marginal Integration

Although the papers of Nielsen and Linton (1997) and Sperlich, Linton and Härdle (1999) already
emphasized the differences of backfitting and marginal integration, often they are still interpreted as
competing estimators for the same aim. For a better understanding of the difference between orthog-
onal projection into the additive space (backfitting) and measuring the marginal impact (marginal
integration) we give two more examples.

As has been explained in Stone (1994) and Sperlich, Tjøstheim and Yang (2000), any model can be
written in the form

m(x) = c +
d∑

α=1

mα(xα) +
∑

1≤α<β≤d

mαβ(xα, xβ) +
∑

1≤α<β<γ≤d

mαβγ(xα, xβ, xγ) + · · · . (2.12)

The latter mentioned article, even when they worked it out in detail only for second order interactions,
showed that all these components can be identified and consistently estimated by marginal integration
obtaining the optimal convergence rate in smoothing. The main reason for this nice property is, that
definition, algorithm and thus the numerical results for the estimates do not differ whatever the chosen
extension or the true model is. This certainly is different for an orthogonal projection. At first we note
that so far model (2.12) can not be estimated by backfitting. Secondly, Stone (1994) gives (formal)
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algorithms and convergence rates for series estimators to estimate (2.12); but for each interaction
added, the whole procedure changes, i.e. has to be redone and gives different numerical results.

Our second example is a simulation of a by far not additive model. We created a sample of n = 250
observations generated as

X ∼ N




0

0

0

 ,


1.0 0.2 0.4

0.2 1.0 0.6

0.4 0.6 1.0


 ,

Y = X1 exp
(

X2 + X3

4

)
+ X1 |X2 + X3| − 3X3 (2.13)

and applied the backfitting as well as the marginal integration estimate (IMIE), always with quartic
kernels and bandwidth 1.0 for all directions. Notice that we did not add any error term when creating
the observation Y and thus get quite fair projections for both procedures (Figure 1) highlighting some
of the main differences of these estimators. Even if we fade out the boundary effects (in Figure 1 the
estimates on the outer points are omitted) we see clearly that the slopes can even go into contrary
directions although both procedures do what they should. However, summing up the estimated
components, both estimators would give ridiculous predictors for such a non-additive regression model.

-2 -1 0 1 2
X_1

-3
0

3
6

Y

-2 -1 0 1 2
X_2

-2
-1

0

Y

-2 -1 0 1 2
X_3

-3
0

3
6

Y

Figure 1: Backfitting estimates (dashed) and IMIE (solid) using the same data generated according

to equation (2.13).

Recall now the definitions of the CMIE and the IMIE in Section 2.1 and let us discuss their differences.
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Obvious advantages of the IMIE are the possibility of changing the sums and getting rid of the xα in the
density estimates, see (2.11). Camlong-Viot (2000) chose this for the simpler theoretical analysis of this
estimator while Hengartner (1996) showed that the bandwidths conditions for the nuisance corrections
depend only on the smoothness of the densities but not, as for the CMIE, on the smoothness of their
component functions. Kim, Linton and Hengartner (2000), finally, underlined the possibility of fast
implementation. Notice that calculating the regression at all points demands O(n3) steps for the CMIE
whereas only O(n2) for the IMIE. Assuming smart implementation and large memory the IMIE can
thus be pretty fast even in its kernel-smoothing version. This point is of special importance when
statistics for testing additivity have to be calculated and bootstrap must be applied.

A main advantage of the CMIE is the straight forward extension to local polynomial smoothing.
This is not only reducing the bias but also enables us to (efficient) estimation of derivatives, which
is an important problem in economics (e.g. estimation of elasticities, return to scales, substitution
rates, etc.). Such an extension is much harder to find for the IMIE. An important point is that the
asymptotic expressions for both estimators are all the same. Thus, differences can only be found by a
perfect understanding of what each procedure is doing to the data and intensive simulation studies.

So far not investigated are differences in the finite sample performance. The first question is cer-
tainly whether the simplification done in the definition of the IMIE is only negligible asymptotically.
The second question refers to the bad performance of the CMIE when the covariates are strongly
correlated, see discussion above. Let us consider Figure 2 to understand and explain why here the
IMIE performs somehow better. On the left side the points, including the filled circles, represent a
two dimensional normally distributed design with expectation zero, variance one and covariance 0.8,
n = 200 observations. The circle in the upper left (◦) is a combination of the X1-value of the lower
left with the X2-value of the upper right filled circle (•). The point we want to make here is that
the marginal integration estimator tries to predict the pre-smoother ( m̃ ) on all combinations of X1-
and X2- values, e.g. also for the point presented by the circle ◦, and not only on the sample data.
Thus, the more correlated the covariates are, the more this means extrapolation as e.g. in the case
indicated by the circles. Certainly, those extrapolations using smoothing methods often break down
and this explains the bad performance. In the extreme case of having a design as in Figure 2 on the
right hand side, no one of the so far developed additive estimators yields reasonable estimates at all.
The IMIE now is less affected by this problem since the expression f̂(xα, Xk−α) has been substituted
by f̂(Xjα, Xj−α). Thus it does not estimate f on data empty areas but only on sample data. This
gives some hope that the IMIE might perform better when data are sparse, and in particular when
covariates are correlated. A further trial to circumvent the problem would be to integrate (average)
over m̃, equation (2.7), only inside the convex hull formed by the observations {Xi}n

i=1. Let us call
this modification the MMIE in the following. Under these considerations, the simulation results in
the next section are surprising.

Finally, for the sake of completeness, we have to mention the inclusion of variance minimizing weights
in the integration, introduced by Fan, Härdle, Mammen (1998). However, since those weights consist
only of nontrivial unknown parametric and nonparametric expressions, these weights first have to be
estimated appropriately. Moreover, their estimation algorithm already needs O(n4) calculation steps
and is thus out of discussion for the construction of test statistics, bootstrap or detailed simulation
studies.
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Figure 2: Problematic designs for additive modeling. left side: •, · are sample data, and ◦ is a cross

combination of the two •.

2.3 Some Simulation Results

Since asymptotically all methods are consistent, differences and problems can better be observed for
small samples. Consequently we did simulations only with n = 100 and 200 observations and report
mainly the results for n = 100. The conclusions for n = 200 are all the same. In these samples the
functional forms of the components can still be estimated with reasonable precision. The comparison
was done by calculating the Cross-Validation value for all estimators over a wide range of bandwidths,
where the CV-value was calculated on the whole support as well as on trimmed ones in order to get
an idea about the importance of boundary effects. For a better comparison and to see the advantages
of additive modeling we always give additionally the CV-values for the multi dimensional Nadaraya-
Watson Smoother (NWS). We averaged the CV-values of 100 runs for all bandwidth combinations.
The results in the tables below refer to the smallest (average) CV-value obtained for the particular
estimation method. For each run we draw a new sample since it is demonstrated in Sperlich, Linton,
Härdle (1999) that in small samples the mean squared error varies substantially with the design even
if the design is drawn from the same distribution. Thus a comparison of methods based on just one
fixed design could be biased by chance in favor of one of the considered methods. The bandwidths
were chosen from h = 0.25std(X) to 1.6std(X) where std(X) is the vector of the empirical standard
deviations of the particular design. Since the IMIE allows for oversmoothing in the nuisance directions
we chose h1 = h but h2 = Nh with N ∈ IN from 1 to 8 knowing that this can lead to suboptimal
results. For the NWS, CMIE, and MMIE we set h1 = h2 = h. In all calculations the quartic kernel
was applied.

As a first example consider the two dimensional model

Y = X2
1 + 2 sin(0.5πX2) + ε, (2.14)

with ε ∼ N(0, 1), (X1, X2)T ∼ N {0, Σγ}, γ = 1, 2, 3, where the covariance matrices are given by

Σ1 =

(
1 0

0 1

)
, Σ2 =

(
1 0.4

0.4 1

)
, Σ3 =

(
1 0.8

0.8 1

)
. (2.15)
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The CV-values were calculated on the whole (tr0) and on the trimmed supports cutting at 1.96 (tr5),
respectively 1.645 (tr10) in each direction. This corresponds approximately to a trimming of 5%,
respectively 10% of the support. The results for n = 100 observations are given in Table 1.

Mean Squared Errors by Cross Validation, dimension d = 2

used Σ1 Σ2 Σ3

estimator tr0 tr5 tr10 tr0 tr5 tr10 tr0 tr5 tr10

NWS 1.976 1.296 1.214 1.907 1.295 1.214 1.694 1.280 1.218

CMIE 1.715 1.196 1.147 1.701 1.205 1.150 1.678 1.254 1.185

MMIE 1.826 1.212 1.156 1.821 1.222 1.161 1.824 1.288 1.201

IMIE 1.893 1.219 1.173 1.857 1.223 1.177 1.751 1.276 1.211

Table 1: Average CV-value of the different estimators over 100 runs for optimal (i.e. CV-minimizing)

bandwidths. The data were drawn from model (2.14), n = 100, with covariances Σγ from (2.15). The

CV-values were calculated on the whole support (tr0), and on trimmed ranges ( 5% trimming: tr5,

respectively 10%: tr10).

Obviously, all estimators are very close. Surprisingly, the modification in the MMIE leads to a worse
performance.

We increase now the data sparseness by increasing the dimension keeping n = 100 observations.
Consider the model

Y = X1 + X2
2 + 2 sin(πX3) + ε, (2.16)

with ε ∼ N(0, 1), (X1, X2)T ∼ N {0, Σγ},

Σγ =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 , (2.17)

where we set for γ = 1: ρ12 = ρ13 = ρ23 = 0, γ = 2: ρ12 = 0.2, ρ13 = 0.4, ρ23 = 0.6, and γ = 3:
ρ12 = 0.4, ρ13 = 0.6, ρ23 = 0.8. For the calculation of the CV-values we used the same trimming at
1.96 (tr5), respectively 1.645 (tr10) in each direction. The results are given in Table 2.

It can be observed from these results that now all the above mentioned problems have appeared.
Due to the sparseness of data the IMIE substantially outperforms the other methods, especially in
the presence of high correlation. Moreover, in this case even the multidimensional NWS is better
than CMIE and MMIE. Further, the boundary effects are substantial in both cases now (compare the
trimmed with the untrimmed results, i.e. tr0 with tr5 or tr10). We can conclude that our heuristical
arguments in favor of the the IMIE for increasing dimension and correlation in relatively small samples
have been confirmed by this empirical study.

3 Testing Additivity

As discussed in the introduction, the additivity of the regression function is important in terms of
interpretability and its ability to deliver fast rates of convergence in estimating the regression. For
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Mean Squared Errors by Cross Validation, dimension d = 3

used Σ1 Σ2 Σ3

estimator tr0 tr5 tr10 tr0 tr5 tr10 tr0 tr5 tr10

NWS 3.743 2.538 2.314 3.378 2.346 2.169 3.112 2.147 2.023

CMIE 2.641 1.781 1.699 2.781 1.994 1.881 3.158 2.378 2.242

MMIE 3.136 2.032 1.873 3.630 2.406 2.173 4.511 3.049 2.678

IMIE 2.477 1.606 1.522 2.540 1.777 1.667 2.477 1.606 1.522

Table 2: Average CV-value of the different estimators over 100 runs for optimal (i.e. CV-minimizing)

bandwidths. The data were drawn from model (2.16), n = 100, with covariances Σγ from (2.17). The

CV-values were calculated on the whole support (tr0), and on trimmed ranges ( 5% trimming: tr5,

respectively 10%: tr10).

these reasons the additive model should be accompanied by an adequate model check. Tests for the
hypothesis of additivity have recently found considerable interest in the literature, see the references
in Section 1. In this section we investigate several tests but will only concentrate on statistics based
on residuals from an internal marginal integration fit. For asymptotic properties of tests based on
residuals from the classical marginal integration fit we refer to Gozalo and Linton (2000) and Dette
and von Lieres (2000). We prove asymptotic normality of the corresponding test statistics under the
null hypothesis of additivity and fixed alternatives with different rates of convergence corresponding
to both cases. Note that we are able to find the asymptotic properties of the tests under any fixed
alternative of non-additivity. These results can be used for the calculation of the probability of the
type II error of the corresponding tests and for the construction of tests for precise hypotheses as
proposed in Berger and Delampady (1987) or Staudte and Sheather (1990). These authors point out
that often it is preferable to reformulate the hypothesis

H0 : m(x) = c +
d∑

α=1

mα(xα), (3.1)

into

Hη : M2 > η , H1 : M2 ≤ η , (3.2)

where M2 is a nonnegative measure of additivity, which is equal to 0, if and only if the hypothesis
(3.1) holds. In equation (3.2) the quantity η is a given, sufficiently small constant such that the
experimenter agrees to analyze the data under the assumption of additivity, whenever M2 ≤ η.

¿From a mathematical point of view this approach requires the determination of the distribution of
an appropriate estimator for M2 not only under the classical null hypothesis (3.1) (M2 = 0) but also
at any point of the alternative (M2 > 0).

The regression estimator based on the internalized marginal integration is defined by

m̂I
0(x) =

d∑
α=1

m̂I
α(xα) − (d − 1)ĉ, (3.3)
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where mI
α is given in (2.11), and the residuals from this fit are denoted by ej = Yj − mI

0(Xj) (j =
1, . . . , n). The test statistics we consider are

T1n =
1
n

∑
i

[
m̂I(Xi) − m̂I

0(Xi)
]2

(3.4)

T2n =
1
n

∑
i

êi

[
m̂I(Xi) − m̂I

0(Xi)
]

(3.5)

T3n =
1
n

∑
i

[
(êi)2 − (ûi)2

]
(3.6)

T4n =
1

n(n − 1)

∑
j �=i

Lg(xi − xj)êiêj (3.7)

where L is a bounded d-dimensional symmetric kernel of order r with compact support, Lg(·) =
1
gd Lg( ·

g ), g > 0. In (3.4) m̂I is the internalized Nadaraya - Watson estimator with kernel L and
bandwidth h, and the random variables ûi = Yi − m̂I(Xi) in (3.6) denote the corresponding residuals.
The estimate T1n compares the completely nonparametric fit with the marginal integration estimate
and extends concepts of González Manteiga and Cao (1993) and Härdle and Mammen (1993) to the
problem of testing additivity. The statistic T2n was introduced by Gozalo and Linton (2000) and
was motivated by Lagrange multiplier tests of classical statistics. T3n is essentially a difference of
estimators for the integrated variance function in the additive and nonrestricted model. This concept
was firstly proposed by Dette (1999) in the context of testing for parametric structures of the regression
function. Statistics like T4n were originally introduced by Zheng (1996) and independently discussed
by Fan and Li (1996, 1999) and Gozalo and Linton (2000) in the problem of testing additivity. In the
following section we investigate the asymptotic behavior of these statistics under the null hypothesis
and fixed alternatives. It is demonstrated that the asymptotic behavior of the statistics T1n to T4n

under fixed alternatives is rather different and we will indicate potential applications of such results.

3.1 Theoretical Results

For the ease of notation we suppose that h1 = h2 = h, K1 = K and K2 = K⊗(d−1), where K is a
bounded Lipschitz - continuous kernel of order r > d with compact support. We assume that the
following assumptions are satisfied.

(A1) The explanatory variable X has a density f supported on the cube Q = [0, 1]d. f is bounded from
below by a positive constant c > 0 and has continuous partial derivatives of order r.

(A2) m ∈ Cr
b (Q), where Cr

b (Q) denotes the class of bounded functions (defined on Q) with continuous
partial derivatives of order r.

(A3) σ ∈ Cb(Q), where Cb(Q) denotes the class of bounded continuous functions (defined on Q).
Furthermore, σ is bounded from below by a positive constant c > 0.

(A4) The distribution of the error has a finite fourth moment, i.e. E[ε4] < ∞.

(A5) The bandwidths g, h > 0 satisfy

lim
n→∞nh2r < ∞, lim

n→∞
log n

nhd+r
= 0, lim

n→∞
1

ngd
= 0, lim

n→∞ng2r = 0, lim
n→∞

gd

h2
= 0
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Notice that with the last condition, it is sufficient to express all convergence rates only in terms of
bandwidth g.

Theorem 1 Assume that assumptions (A1) - (A5) are satisfied and T1n, . . . , T4n are defined in (3.4)
- (3.7) and define

m0(x) :=
d∑

α=1

∫
m(xα, y−α)f−α(y−α)dy−α + (d − 1)

∫
m(y)f(y)dy. (3.8)

(i) Under the null hypothesis of additivity, i.e. m = m0, we have, as n → ∞:

ng
d
2 (Tjn − βjn) D−→ N

(
0, λ2

j

)
(j = 1, . . . , 4) (3.9)

where

β1n = E[H0](T1n) =
1

ngd

∫
σ2(x)dx

∫
L2(x)dx + o(

1
ngd

),

β2n = E[H0](T2n) =
1

ngd

∫
σ2(x)dx L(0) + o(

1
ngd

),

β3n = E[H0](T3n) =
1

ngd

∫
σ2(x)dx {2L(0) −

∫
L2(x)dx} + o(

1
ngd

),

β4n = 0 and the asymptotic variances are given by

λ2
1 = 2

∫
σ4(x)dx

∫
(L ∗ L)2(x)dx,

λ2
2 = 2

∫
σ4(x)dx

∫
L2(x)dx,

λ2
3 = 2

∫
σ4(x)dx

∫
(2L − L ∗ L)2(x)dx

λ2
4 = 2

∫
σ4 (x) f2 (x) dx

∫
L2 (x) dx. (3.10)

(ii) If the regression function is not additive, i.e. ∆ = m − m0 > 0, then we have
√

n
(
Tjn − M2

j − βjn

) D−→ N
(
0, µ2

j

)
(j = 1, . . . , 4), (3.11)

where

M2
j =

∫
(∆2f)(x)dx (j = 1, . . . , 3), M2

4 =
∫

(∆2f2)(x)dx. (3.12)

The asymptotic variances are given by

µ2
j = 4

∫
σ2 (x) {∆ (x) − p(∆) (x)}2 f (x) dx

+
∫ {

∆2 (x) − qj(∆) (x)
}2

f (x) dx −
(∫ {

∆2 (x) − qj(∆) (x)
}

f (x) dx

)2

(j=1,. . . ,3),

µ2
4 = 4

∫
σ2 (x) {(∆f) (x) − p(∆f) (x)}2 f (x) dx

+
∫ {

2
(
∆2f

)
(x) − q4(∆f) (x)

}2
f (x) dx −

(∫ {
2

(
∆2f

)
(x) − q4(∆f) (x)

}
f (x) dx

)2

,
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where p, qj (j = 1, . . . , 4) denote mappings defined by

p (g) (x) : =
d∑

α=1

f−1 (x) f−α (x−α)
∫

(gf) (xα, y−α) dy−α − (d − 1)
∫

(gf) (y) dy,

(3.13)

qj(g)(x) : = (2p(g) (x) − kj∆(x))m(x) + 2
d∑

α=1

∫
(gf)(y)m(yα, x−α)dy

(j = 1, . . . , 4) and the constants kj are given by k1 = 2, k2 = 1, k3 = 0 and k4 = 0, respectively.

Note that the first part of Theorem 1 shows that a test of additivity with asymptotic level α can be
obtained by rejecting the null hypothesis of additivity, if

ng
d
2
Tjn − βjn

λj
> z1−α, j = 1, . . . , 4

where z1−α denotes the (1 − α) quantile of the standard normal distribution and βjn λj have to be
replaced by appropriate estimators. It should be mentioned that all these tests serve in practice for
small samples only when the critical values are determined by bootstrap methods. We will come back
to this point in the next section. Note further that Gozalo and Linton (2000) and Dette and von
Lieres (2000) considered weight functions in the definition of the corresponding test statistics based
on residuals from the classical marginal integration fit. However, the latter authors found out that,
if trimming is not necessary for numerical reasons, the optimal weights are the uniform ones. That
is why we skipped them here. Again, a comparison with the asymptotic theory for these statistics
when using the CMIE reveals that under the null hypothesis the asymptotics are all the same except
the smoothness and bandwidths conditions (see Gozalo and Linton, 2000, or Dette and von Lieres,
2000). However, under fixed alternatives we find substantial differences in the asymptotic variances
(see Dette and von Lieres, 2000).

What can we get out from Theorem 1 about the different quality of the proposed test statistics?
Obviously it depends on many factors like the density of the covariates, kernel choice, error variance
function, and the functional ∆ = m − m0 which test has more power. We can mainly detect three
points. Assuming a sufficiently smooth regression function m, so that we get under the alternative H1

the bias

E[H0][Tjn] = M2
j + βjn + o

(
1√
n

)
, j = 1, . . . , 4 ,

the probability of rejection (if the hypothesis of additivity is not valid) is approximately equal to

Φ
(√n

µj

{
M2

j − z1−αλj

n
√

gd

})
,

where Φ is the cumulated standard normal distribution function, and µj , Mj , λj are defined in Theorem
1. Here, an appropriate weighting in T4n (see Dette and von Lieres 2000) would lead to M4 = Mj ,
j = 1, 2, 3 with µ4 > µj . But as that particular weighting is not optimal we can not conclude a
uniform inferiority of T4n to the others. In contrast, if we next look at the biases βjn, j = 1, . . . , 4
which can be rather influential in samples of common size, we notice that only β4n is equal to zero.
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Consequently, T4n might give more reliable results in such cases. Finally, coming back to variance
considerations: Since ∫

(L ∗ L)2 (x)dx ≤
∫

L2(x)dx ≤
∫

(2L − L ∗ L)2 (x)dx,

see Dette and von Lieres (2000), it can be seen from Theorem 1 that λ2
1 ≤ λ2

2 ≤ λ2
3. But again, all in

all there are to many factors that have to be taken into account for making a theory based statement
about possible superiority of one of the considered tests. Therefore we will include them all in the
simulation study of the next section.

4 Simulation Comparison of Additivity Tests

In this section we continue the considerations of the last part of Section 2 but extend them to the
various (bootstrap) tests for checking additivity. We concentrate especially on the differences caused
by the use of different pre-smoothers, i.e. we compare CMIE with IMIE, but certainly also consider
differences between T1n to T4n. Finally, we compare the difference in performance between tests using
the bootstrap based on residuals taken from Y − m̂0 (B0), as e.g. Gozalo and Linton (2000) or Härdle
and Mammen (1993), versus bootstrap based on residuals taken from Y − m̂ (B1) as e.g. Dette and
von Lieres (2000). For the sake of simplicity we omit the index n in the definition of the statistics in
this section and write Ti = Tin, i = 1, . . . , 4. Notice that this section is not thought as an illustration
of the general statement of consistency and convergence for the former presented tests. Our interest
is directed to the investigation and comparison of feasibility and finite sample performance.

We took always the bandwidths minimizing the average of the CV values for trimming tr5 and covari-
ance Σ2. Again, we report simulations only for n = 100 and n = 200 observations when the functional
forms of the additive components seem still to be estimated reasonably well. However, since now
the estimation of the regression function is crucial the bootstrap tests can already give ridiculous
results. Due to computational restrictions we did the simulations only for 500 bootstrap replications.
The results refer to 1000 simulation runs with a randomly drawn design for each run, see above for
explanation.

4.1 The case d = 2

As a first example we consider the two dimensional model (2.14), (2.15) but adding the interaction
term aX1X2 with a being a scalar, i.e.

Y = X2
1 + 2 sin(0.5πX2) + aX1X2 + ε. (4.1)

Our bandwidth selection yields for the Nadaraya-Watson estimator a bandwidth h = 0.85std(X), for
the CMIE h1 = h2 = 0.7std(X), and for the IMIE h1 = 0.85std(X). As for the IMIE the optimal
k = h2/h1 was either 2 or 3, depending on the correlation of the regressors and trimming, we set
h2 = 2.5∗h1. Finally, since results for the test statistic T4 depend strongly on the choice of bandwidth
g, we tried out various bandwidths and report the results for 0.1std(X) (g1), and 0.2std(X) (g2).

Note that for the ease of presentation all tables will have the same structure. We give the percentage
of rejections for the one and the five percent level for all test statistics, without trimming (tr0 = ∞),
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and at the approximate 95% quantile (tr5 = 1.96), respectively the 90% (tr10 = 1.645). In the left
part of each Table the results are given under the null hypothesis of additivity, i.e. for scalar a = 0.0;
in the right part we present results under some alternative (a = 1.0). Tables for independent and
correlated designs are separated. Our first finding is that tests using the bootstrap based on residuals
Yi−m̂0(Xi) under the null hypothesis of additivity work much better than the application of residuals
from the general model, i.e. Yi − m̂(Xi). On the one hand these tests are more reliable with respect
to the accuracy of the approximation of the level, on the other hand they yield the same power as the
bootstrap test obtained from general residuals. For these reasons all results presented here and in the
following are based on bootstrap taking residuals under the null hypothesis. In Table 3 we give the
first results for the CMIE, independent design, in Table 4 the corresponding ones for the IMIE.

CMIE, classic marginal integration estimator, cov(X1, X2) = 0.0, d = 2

under the null model, a = 0.0 under the alternative, a = 1.0

α T4(g1) T4(g2) T1 T2 T3 T4(g1) T4(g2) T1 T2 T3

without trimming:

5% 0.05 0.082 0.04 0.03 0.026 0.098 0.29 0.562 0.53 0.462

1% 0.002 0.008 0.008 0.006 0.002 0.008 0.052 0.304 0.232 0.146

with trimming at 1.96:

5% 0.048 0.080 0.118 0.074 0.05 0.09 0.278 0.926 0.89 0.782

1% 0.002 0.008 0.014 0.012 0.01 0.006 0.046 0.714 0.58 0.416

with trimming at 1.645:

5% 0.046 0.07 0.126 0.084 0.062 0.084 0.224 0.944 0.9 0.784

1% 0.002 0.008 0.018 0.012 0.004 0.006 0.038 0.774 0.648 0.438

Table 3: Percentage of rejection of 1000 repetitions applying the various tests on model (4.1) with

n = 100 and independent regressors. α gives the wanted significance level. Results are given for 500
bootstrap replications using the CMIE.

We see that all methods seem to work, though if not perfectly for such small samples. Obviously the
test based on T4 has the worst power as could be expected from Theorem 1. A difference between the
use of CMIE and IMIE can not be detected so far. Trimming has quite different effects for the various
methods but does not uniformly improve the performance what might surprise thinking of the strong
boundary effects in estimation. We now turn to the (highly) correlated design, when the covariance
between the components X1, X2 is 0.8 keeping the variances at 1.0. The results are given in Tables
5, 6.

In general we can see that all methods work much worse for correlated designs. Especially bad performs
the test based on T1, and for trimmed statistics also T2 whereas the test based on T3 is the most reliable
one. This is rather interesting since from the theoretical results it would have been expected the other
way around. These findings hold independently from the used estimator CMIE or IMIE. They mainly
differ in the sense that the IMIE produces more conservative tests, but it performs a little bit better
when looking at the null model. Summarizing over the various situations none of the test statistics
and estimators outperforms significantly all the other ones. However, it is notable that the IMIE is
preferable due to its computational advantages being much (exponentially) faster than the CMIE.
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IMIE, marginal integration using internalized pre-estimator, cov(X1, X2) = 0.0, d = 2

under the null model, a = 0.0 under the alternative, a = 1.0

α T4(g1) T4(g2) T1 T2 T3 T4(g1) T4(g2) T1 T2 T3

without trimming:

5% 0.03 0.076 0.07 0.047 0.042 0.078 0.289 0.759 0.743 0.696

1% 0.0 0.009 0.007 0.004 0.002 0.005 0.056 0.479 0.392 0.281

with trimming at 1.96:

5% 0.028 0.071 0.086 0.068 0.056 0.073 0.272 0.929 0.886 0.781

1% 0 0.009 0.014 0.008 0.004 0.005 0.051 0.727 0.587 0.401

with trimming at 1.645:

5% 0.03 0.074 0.078 0.073 0.071 0.069 0.235 0.94 0.868 0.767

1% 0 0.007 0.013 0.01 0.005 0.004 0.036 0.761 0.603 0.376

Table 4: Percentage of rejection of 1000 repetitions applying the various tests on model (4.1) with

n = 100 and independent regressors. α gives the wanted significance level. Results are given for 500
bootstrap replications using the IMIE.

CMIE, classic marginal integration estimator, cov(X1, X2) = .8, d = 2

under the null model, a = 0.0 under the alternative, a = 1.0

α T4(g1) T4(g2) T1 T2 T3 T4(g1) T4(g2) T1 T2 T3

without trimming:

5% 0.043 0.101 0.045 0.024 0.022 0.177 0.633 0.438 0.379 0.305

1% 0 0.012 0.003 0.001 0.001 0.014 0.215 0.204 0.133 0.082

with trimming at 1.96:

5% 0.041 0.096 0.174 0.115 0.076 0.179 0.638 0.952 0.917 0.856

1% 0 0.008 0.029 0.018 0.012 0.013 0.213 0.773 0.654 0.498

with trimming at 1.645:

5% 0.04 0.088 0.188 0.153 0.099 0.16 0.577 0.992 0.982 0.938

1% 0 0.008 0.04 0.024 0.016 0.012 0.192 0.912 0.82 0.674

Table 5: Percentage of rejection of 1000 repetitions applying the various tests on model (4.1) with

n = 100 and covariance Σ3 (2.15), i.e. correlated regressors with δ = .8 . α gives the wanted significance

level. Results are given for 500 bootstrap replications using the CMIE.

4.2 The case d = 3

As for estimation, also for testing the results change significantly when we increase the dimension of
the model. Indeed, even the increase from d = 2 to d = 3 changes things dramatically. In order to
illustrate these effects we consider the model (2.16),(2.17), Section 2, but adding the interaction term
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IMIE, marginal integration using internalized pre-estimator, cov(X1, X2) = .8, d = 2

under the null model, a = 0.0 under the alternative, a = 1.0

α T4(g1) T4(g2) T1 T2 T3 T4(g1) T4(g2) T1 T2 T3

without trimming:

5% 0.035 0.093 0.08 0.058 0.043 0.091 0.355 0.403 0.337 0.255

1% 0.001 0.008 0.009 0.004 0 0.002 0.084 0.173 0.103 0.052

with trimming at 1.96:

5% 0.035 0.089 0.158 0.092 0.065 0.085 0.347 0.881 0.802 0.65

1% 0.001 0.007 0.017 0.009 0.005 0.004 0.075 0.626 0.422 0.204

with trimming at 1.645:

5% 0.033 0.081 0.131 0.102 0.085 0.081 0.333 0.935 0.873 0.724

1% 0.001 0.006 0.016 0.008 0.004 0.004 0.067 0.733 0.549 0.332

Table 6: Percentage of rejection of 1000 repetitions applying the various tests on model (4.1) with

n = 100 and covariance Σ3 (2.15), i.e. correlated regressors with δ = .8 . α gives the wanted significance

level. Results are given for 500 bootstrap replications using the IMIE.

aX2X3, i.e.

Y = X1 + X2
2 + 2 sin(πX3) + aX2X3 + ε. (4.2)

The Cross Validation yields for the Nadaraya-Watson an optimal bandwidth h1 = 0.9std(X), for the
CMIE h1 = 0.85std(X), and for the IMIE h = 0.7std(X), but h2 = 6.0 ∗ h1 for the IMIE. Results
for T4 now refer to bandwidth g1 = 0.5std(X), and g2 = 1.0std(X). We skipped the presentation of
the results under alternatives in the case of a correlated design because all methods fail for the highly
correlated design already under the null when a = 0.0. Thus, a power statement or comparison would
not make much sense. We will restrict ourselves on some remarks. In Table 7 we give our results for
the CMIE, independent design, in Table 8 the corresponding ones for the IMIE.

Comparing the H0 with the H1 case, we see that all methods seem to work when using the IMIE
(although the approximation of the nominal level is not too accurate), but they clearly fail applying
the CMIE. Note that to emphasize our points we simulated here extreme situations of data sparseness
due to dimensionality. Having in mind the size of the sample compared to the complexity of the model,
it might be more surprising how well the IMIE works than the bad performance of the CMIE. When
we tried the same simulation with n = 200 observations the results slightly improved but it seems to
us that much bigger samples are needed to reach reliable results when using the CMIE. In this case
one kicks in another finding from a computational point of view: Although we had implemented all
methods using (n × n) weighting-matrices to avoid many loops, for sample sizes bigger than n = 150
the simulations with the CMIE took about 10 times longer than with the IMIE (measured in days).
This is an almost striking argument in favor of the IMIE when it additionally even performs at least
equally well. Finally, it is remarkable that the bandwidth g in the test based on the statistic T4 plays
a really important rule. Since there does not really exist a practical rule how to choose the bandwidth,
this is a crucial argument against its practical use.

We turn to highly correlated designs, i.e. using Σ3. The results are given in Table 9. In general we
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CMIE, classic marginal integration estimator, Σ1, d = 3

under the null model, a = 0.0 under the alternative, a = 2.0

α T4(g1) T4(g2) T1 T2 T3 T4(g1) T4(g2) T1 T2 T3

without trimming:

5% 0.561 0.635 0.002 0.001 0 0.242 0.286 0.246 0.128 0.051

1% 0.185 0.245 0 0 0 0.066 0.082 0.058 0.014 0.001

with trimming at 1.96:

5% 0.446 0.551 0.039 0.008 0.002 0.228 0.307 0.631 0.413 0.181

1% 0.127 0.217 0.004 0 0 0.061 0.103 0.235 0.09 0.013

with trimming at 1.645:

5% 0.323 0.479 0.073 0.014 0.003 0.196 0.308 0.777 0.521 0.242

1% 0.086 0.167 0.007 0.001 0 0.052 0.111 0.38 0.137 0.028

Table 7: Percentage of rejection of 1000 repetitions applying the various tests on model (4.2) with

n = 100 and uncorrelated regressors. α gives the wanted significance level. Results are given for 500
bootstrap replications using the CMIE.

IMIE, marginal integration using internalized pre-estimator, Σ1, d = 3

under the null model, a = 0.0 under the alternative, a = 2.0

α T4(g1) T4(g2) T1 T2 T3 T4(g1) T4(g2) T1 T2 T3

without trimming:

5% 0.078 0.125 0.023 0.01 0.006 0.125 0.176 0.844 0.826 0.768

1% 0.011 0.031 0 0 0 0.034 0.054 0.365 0.259 0.135

with trimming at 1.96:

5% 0.055 0.099 0.006 0.002 0 0.101 0.178 0.775 0.712 0.556

1% 0.005 0.022 0 0 0 0.025 0.054 0.374 0.23 0.081

with trimming at 1.645:

5% 0.044 0.091 0.012 0.002 0.002 0.096 0.222 0.69 0.599 0.407

1% 0.009 0.018 0.001 0 0 0.016 0.071 0.365 0.188 0.051

Table 8: Percentage of rejection of 1000 repetitions applying the various tests on model (4.2) with

n = 100 and uncorrelated regressors. α gives the wanted significance level. Results are given for 500
bootstrap replications using the IMIE.

can see that all methods do hardly work anymore. The tests based on the CMIE performs particulary
bad. It is interesting and not easy to explain why the effects are contrary, i.e. the tests using the
CMIE reject too often whereas the IMIE produces too conservative tests. In any case our results show
that when data are sparse and correlation is high, these tests even under the use of bootstrap are little
helpful.
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Highly correlated design (Σ3), d = 3

using the CMIE using the IMIE

α T4(g1) T4(g2) T1 T2 T3 T4(g1) T4(g2) T1 T2 T3

without trimming:

5% 0.88 0.917 0.18 0.097 0.035 0.03 0.054 0.005 0.001 0.001

1% 0.562 0.623 0.025 0.009 0.003 0.004 0.005 0 0 0

with trimming at 1.96:

5% 0.829 0.887 0.589 0.408 0.256 0.02 0.037 0.004 0.002 0.001

1% 0.499 0.572 0.232 0.102 0.035 0.004 0.002 0 0 0

with trimming at 1.645:

5% 0.754 0.856 0.655 0.496 0.297 0.016 0.027 0 0 0

1% 0.403 0.507 0.29 0.151 0.056 0.001 0.005 0 0 0

Table 9: Percentage of rejection of 1000 repetitions applying the various tests with both, IMIE and

CMIE, on model (4.2) with n = 100 and covariance Σ3 from (2.17). α gives the wanted significance

level. Results are given for 500 bootstrap replications.

Finally let us study the impact of increasing correlation when the explanatory variables are still in
three dimensions but transformed to an almost unique cube partially ameliorating the data sparseness.
For this purpose consider the model as above but transform the regressors to

X → (atan(X) · 2.4/π + 1.0) · 0.5 (4.3)

before they enter in the model (4.2), still with Σγ , γ = 1, 2, 3 defined as in (2.17). Notice that in this
case all points are contained in a cube with values between −0.1 and 1.1. Further we increased the
sample size to n = 150. We again did first a CV study to find the optimal bandwidths. For the test
based on T4 we tried several values for g and give results for g1 = 0.25std(X) and g2 = 0.5std(X).
First, for Σ1, i.e. uncorrelated design, we compare once again IMIE and CMIE in Table 10. The
trimming boundaries correspond approximately to cutting the outer 5%, respectively 10% of the data.

Looking at Table 10 we see advantages also in performance (not only computational time) for the
IMIE, even though not strong ones. An analysis of the power shows that both test behave similar but
poor, especially the tests based on T4, but also the tests obtained from T1. In the last table, Table
11, we only give results for the better behaving IMIE to show how much the IMIE is affected by the
correlation of the regressors if the data are not too sparse (due to transformation and having n = 150
what is still not much for the underlying problem). Again, a study of the power reveals that the tests
based on T4 and T1 break down completely. The best performing test is always obtained from the
statistic T3 but this could maybe depend on our particular model even if it should not, see Theorem
1 with discussion.
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Uncorrelated transformed designs, d = 3

using the CMIE using the IMIE

α T4(g1) T4(g2) T1 T2 T3 T4(g1) T4(g2) T1 T2 T3

without trimming:

5% 0.082 0.09 0.044 0.03 0.026 0.066 0.066 0.046 0.058 0.052

1% 0.006 0.016 0.006 0.006 0.002 0.016 0.014 0.012 0.006 0.004

trimming about 5%:

5% 0.078 0.098 0.044 0.042 0.03 0.068 0.064 0.052 0.06 0.048

1% 0.008 0.016 0.012 0.006 0.006 0.014 0.014 0.01 0.008 0.008

trimming about 10%:

5% 0.07 0.072 0.046 0.046 0.032 0.062 0.062 0.05 0.078 0.074

1% 0.008 0.016 0.006 0.008 0.006 0.018 0.02 0.008 0.006 0.004

Table 10: Percentage of rejection of 500 repetitions applying the various tests with both, IMIE and

CMIE, on the null model [a = 0.0 in (4.2)] with n = 150 and transformed (4.3), uncorrelated regressors.

α gives the wanted significance level. Results are given for 500 bootstrap replications.

Correlated transformed designs, IMIE, d = 3

Covariance Σ2 Σ3

α T4(g1) T4(g2) T1 T2 T3 T4(g1) T4(g2) T1 T2 T3

without trimming:

5% 0.08 0.092 0.058 0.07 0.066 0.074 0.13 0.044 0.064 0.082

1% 0.016 0.032 0.014 0.01 0.01 0.012 0.016 0.004 0.014 0.012

trimming about 5%:

5% 0.07 0.068 0.056 0.072 0.064 0.07 0.084 0.036 0.058 0.078

1% 0.018 0.018 0.014 0.01 0.012 0.01 0.008 0.006 0.008 0.008

trimming about 10%:

5% 0.066 0.064 0.058 0.068 0.054 0.06 0.068 0.038 0.052 0.066

1% 0.012 0.014 0.01 0.006 0.008 0.01 0.004 0.006 0.008 0.01

Table 11: Percentage of rejection of 500 repetitions applying the various tests, using IMIE, on the

null model [a = 0.0 in (4.2)] with n = 150. Regressors are correlated according Σγ , γ = 1, 2, see

(2.17), and transformed according (4.3). α gives the wanted significance level. Results are given for

500 bootstrap replications.

5 Appendix: Proof of Theorem 1

Proof of Theorem 1 (i) [the case of the null hypothesis]:

For the sake of brevity we restrict ourselves to a consideration of the statistic T4n and a two dimensional
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explanatory variable, i.e. d = 2. Throughout this proof the marginal densities of X1 and X2 are
denoted by f1 and f2, respectively (i.e. f1 = f−2, f2 = f−1). Note that under the null hypothesis of
additivity we have m = m0, where m0 is defined in (3.8). Introducing the notation

δ (x) := m̂I
0 (x) − m (x) (A.1)

we obtain êi = σ (Xi) εi − δ (Xi). This yields the following decomposition of the test statistic T4n:

T4n = V1n − 2V2n + V3n, (A.2)

where

V1n :=
1

n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) σ (Xi) σ (Xj) εiεj

V2n :=
1

n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) σ (Xi) εiδ (Xj) (A.3)

V3n :=
1

n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) δ (Xi) δ (Xj) .

The term V1n can be treated by similar arguments as given in Zheng (1996) and we obtain

ng
d
2 V1n

D−→ N
(
0, λ2

4

)
(A.4)

as n → ∞, where λ2
4 is defined in (3.10). For the remaining terms in (A.2) we will prove

V2n = oP (n−1g−
d
2 ), V3n = oP (n−1g−

d
2 ),

which yields the assertion of Theorem 1 under the null hypothesis of additivity. For the estimation of
the term V2n we introduce

δα (xα) := m̂I
α (xα) −

∫
m (xα, y−α) f−α (y−α) dy−α , α = 1, . . . , d ,

δ0 := ĉ − c, (A.5)

and obtain

δ (x) =
d∑

α=1

δα (xα) − (d − 1) δ0,

which yields the decomposition

V2n =
d∑

α=1

V
(α)
2n − (d − 1) V

(0)
2n , (A.6)

where

V
(α)
2n :=

1
n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) σ (Xi) εi δα (Xj) , α = 1, . . . , d, (A.7)

V
(0)
2n :=

1
n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) σ (Xi) εi δ0. (A.8)
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We prove in a first step the estimate

V
(α)
2n = oP (n−1g−

d
2 ) , α = 1, . . . , d (A.9)

but obviously it is sufficient to consider the case α = 1. Recall the definition (2.10) of m̂I
1 for the case

d = 2 with equal kernels and bandwidths, i.e.

m̂I
1 (x1) =

1
n2

n∑
k=1

n∑
l=1

Kh (Xl1 − x1) Kh (Xl2 − Xk2)

f̂ (Xl)
Yl

with

f̂ (x) =
1
n

n∑
s=1

Kh (Xs1 − x1) Kh (Xs2 − x2) .

Then it follows that

δ1 (x1) =
1
n2

n∑
k=1

n∑
l=1

Kh (Xl1 − x1) Kh (Xl2 − Xk2) f̂−1 (Xl) σ (Xl) εl

+
1
n2

n∑
k=1

{
n∑

l=1

Kh (Xl1 − x1) Kh (Xl2 − Xk2) f̂−1 (Xl) m (Xl) − m (x1, Xk2)}

+
1
n

n∑
k=1

m (x1, Xk2) −
∫

m (x1, x2) f2 (x2) dx2.

Consequently, we obtain the following decomposition for the term V
(1)
2n :

V
(1)
2n = V

(1.1)
2n + V

(1.2)
2n + V

(1.3)
2n , (A.10)

where

V
(1.1)
2n :=

1
n3 (n − 1)

n∑
i,k,l=1

∑
j �=i

Lg (Xi − Xj) σ (Xi) εi

×Kh (Xl1 − Xj1) Kh (Xl2 − Xk2) f̂−1 (Xl) σ (Xl) εl,

V
(1.2)
2n :=

1
n3 (n − 1)

n∑
i,k,l=1

∑
j �=i

Lg (Xi − Xj) σ (Xi) εi

×{ Kh (Xl1 − Xj1) Kh (Xl2 − Xk2) f̂−1 (Xl) m (Xl) − m (Xj1, Xk2) } ,

V
(1.3)
2n :=

1
n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) σ (Xi) εi

×{ 1
n

n∑
k=1

m (Xj1, Xk2) −
∫

m (Xj1, x2) f2 (x2) dx2 } .

For the expectation of the first term on the right hand side of (A.10) this yields

E(V (1.1)
2n ) =

1
n3 (n − 1)

n∑
i,k=1

∑
j �=i

E[Lg (Xi − Xj) Kh (Xi1 − Xj1) Kh (Xi2 − Xk2) f̂−1 (Xi) σ2 (Xi)].

The strong uniform convergence of the kernel density estimate f̂ gives (see Collomb and Härdle, 1986)

sup
x

f̂−1(x) ≤ C1 (A.11)
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for some constant C1. Observing that the kernel is bounded we therefore obtain

E(V (1.1)
2n ) = O(n−1h−1 + n−2h−2) = O(n−1h−1). (A.12)

In a second step we give an estimate of the variance of the statistic V
(1.1)
2n . To be precise we note that

V ar(V (1.1)
2n ) ≤ E[(V (1.1)

2n )2] =
1

n6 (n − 1)2

n∑
i=1

∑
j �=i

n∑
k=1

n∑
l=1

n∑
i′=1

∑
j′ �=i′

n∑
k′=1

n∑
l′=1

(A.13)

E [ G1 (Xi, Xj , Xk, Xl) f̂−1 (Xl) G1(Xi′ , Xj′ , Xk′ , Xl′)f̂−1(Xl′)σ (Xi) σ(Xi′)σ (Xl) σ(Xl′)εiεi′εlεl′ ] ,

where we introduce the notation

G1 (Xi, Xj , Xk, Xl) := Lg (Xi − Xj) Kh (Xl1 − Xj1) Kh (Xl2 − Xk2) .

Note that only summation over the pairs (i′ = i 	= l′ = l), (i′ = l 	= l′ = i), (i = l 	= i′ = l′) or
(i′ = i = l′ = l) yields a non-negligible contribution to the expectation of (V (1.1)

2n )2. For pairwise
different indices i, j, j′, k, k′, l it follows that

E
(∣∣G1 (Xi, Xj , Xk, Xl) G1(Xi, Xj′ , Xk′ , Xl)

∣∣ | Xi, Xl

)
= E (|G1 (Xi, Xj , Xk, Xl)| | Xi, Xl)

2

(A.14)

= E (|Lg (Xi − Xj) Kh (Xl1 − Xj1)| | Xi, Xl)
2 E (|Kh (Xl2 − Xk2)| | Xl)

2 = O
(
h−2

)
(uniformly with respect i and l). Therefore the part of the sum with i′ = i, l′ = l and pairwise different
indices i, j, j′, k, k′, l in (A.13) is of order O

(
n−2h−2

)
(note (A.11) and (A.14)). The remaining part

of the sum on the right hand side of (A.13) is treated similarly, which gives for the variance of V
(1.1)
2n

V ar(V (1.1)
2n ) = O(n−2h−2). (A.15)

Now a combination of (A.12) and (A.15) yields

V
(1.1)
2n = OP (n−1h−1) = oP (n−1g−

d
2 ), (A.16)

where the last equality is a consequence of the assumption(A5), that is gd = o
(
h2

)
.

For the second term in the decomposition (A.10) it obviously follows that E(V (1.2)
2n ) = 0. For the

calculation of the variance we consider the sum

E[(V (1.2)
2n )2] =

1
n6 (n − 1)2

∑
i

∑
j �=i

∑
j′ �=i

∑
k

∑
k′

∑
l

∑
l′

E
[
Lg (Xi − Xj) Lg

(
Xi − Xj′

)
σ2 (Xi)

×{ Kh (Xl1 − Xj1) Kh (Xl2 − Xk2) f̂−1 (Xl) m (Xl1, Xl2) − m (Xj1, Xk2) }
×{ Kh(Xl′1 − Xj′1)Kh(Xl′2 − Xk′2)f̂−1(Xl′)m(Xl′1, Xl′2) − m(Xj′1, Xk′2) }

]
, (A.17)

where the expectation is determined by conditioning, that is

G2 (Xi, Xj , Xk, Xl) := E ( Lg (Xi − Xj) { Kh (Xl1 − Xj1) Kh (Xl2 − Xk2) f̂−1 (Xl) m (Xl)

−m (Xj1, Xk2) } | Xi, Xj , Xk, Xl )

= Lg (Xi − Xj) { Kh (Xl1 − Xj1) Kh (Xl2 − Xk2) f−1 (Xl) m (Xl) (1 + O(hr))

−m (Xj1, Xk2) } .

23



Observing this result we obtain from (A.17)

E[(V (1.2)
2n )2] =

1
n6 (n − 1)2

∑
i,k,k′,l,l′

∑
j �=i

∑
j′ �=i

E
[
σ2(Xi)

×E
[
G2(Xi, Xj , Xk, Xl)G2(Xi, Xj′ , Xk′ , Xl′) | Xi

]]
. (A.18)

If i, j, k, l are pairwise different we have

E (G2 (Xi, Xj , Xk, Xl) | Xi, Xj , Xk) = Lg (Xi − Xj)

×
{

E
(
Kh (Xl1 − Xj1) Kh (Xl2 − Xk2) f−1 (Xl) m (Xl) | Xi, Xj , Xk

)
(1 + O(hr)) − m (Xj1, Xk2)

}
= Lg (Xi − Xj) {

∫
Kh (x1 − Xj1) Kh (x2 − Xk2) m (x) dx (1 + O(hr)) − m (Xj1, Xk2) }

= Lg (Xi − Xj) O(hr)

and integration with respect to Xj and Xk yields

E (G2 (Xi, Xj , Xk, Xl) | Xi) = O (hr) .

This implies for pairwise different indices i, j, j′, k, k′, l, l′

E
[
G2 (Xi, Xj , Xk, Xl) G2(Xi, Xj′ , Xk′ , Xl′) | Xi

]
= E [G2 (Xi, Xj , Xk, Xl) | Xi]

2 = O
(
h2r

)
.

Consequently, the part of the sum with pairwise different indices in (A.18) is of order O(n−1h2r) =
o(n−2g−d), where we used the assumption (A5) in the last step. The remaining part of the sum on
the right hand side of (A.18) is treated similarly and also of order o

(
n−2g−d

)
, which yields

V
(1.2)
2n = oP (n−1g−

d
2 ). (A.19)

For the term V
(1.3)
2n we note that E(V (1.3)

2n ) = 0 and

E[(V (1.3)
2n )2] =

1
n2 (n − 1)2

∑
i

∑
j �=i

∑
j′ �=i

∑
k

∑
k′

E[σ2 (Xi) G3 (Xi, Xj , Xk) G3(Xi, Xj′ , Xk′)], (A.20)

where
G3 (Xi, Xj , Xk) := Lg (Xi − Xj)

{
m (Xj1, Xk2) −

∫
m (Xj1, x2) f2 (x2) dx2

}
.

If i, j, j′, k, k′ are pairwise different we have

E
(
G3 (Xi, Xj , Xk) G3(Xi, Xj′ , Xk′) | Xi

)
= E (G3 (Xi, Xj , Xk) | Xi)

2

= E
(
Lg (Xi − Xj) E

(
m (Xj1, Xk2) −

∫
m (Xj1, x2) f2 (x2) dx2 | Xj

)
| Xi

)2
= 0

and the corresponding terms in the sum (A.20) vanish. The remaining part of (A.20) is of order
O

(
n−2

)
= o

(
n−2g−d

)
, which follows by a straightforward argument. Consequently, the variance of

V
(1.3)
2n is of order o(n−1gd), which yields

V
(1.3)
2n = oP (n−1g−

d
2 ). (A.21)

Observing (A.10), (A.16), (A.19) and (A.21) we obtain V
(1)
2n = oP

(
n−1g−d/2

)
, that is (A.9) for α = 1.

Finally, we introduce the decomposition

V
(0)
2n = V

(0.1)
2n + V

(0.2)
2n
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where

V
(0.1)
2n : =

1
n2 (n − 1)

n∑
i=1

∑
j �=i

n∑
k=1

Lg (Xi − Xj) σ(Xi)σ(Xk)εiεk,

V
(0.2)
2n : =

1
n2 (n − 1)

n∑
i=1

∑
j �=i

n∑
k=1

Lg (Xi − Xj) σ(Xi)εi(m(Xk) − c).

Note that E(V (0.1)
2n ) = O(n−1), E(V (0.2)

2n ) = 0, and that the second moments of these statistics can be
estimated as follows

E[(V (0.1)
2n )2] =

1
n4 (n − 1)2

n∑
i=1

∑
j �=i

n∑
k=1

n∑
i′=1

∑
j′ �=i′

n∑
k′=1

E[Lg (Xi − Xj) Lg(Xi′ − Xj′)σ(Xi)σ(Xi′)σ(Xk)σ(Xk′)εiεi′εkεk′ ]

= O(n−2),

E[(V (0.2)
2n )2] =

1
n4 (n − 1)2

n∑
k,i,i′=1

∑
j �=i

∑
j′ �=i′

E[(m(Xk) − c)2Lg (Xi − Xj) Lg(Xi′ − Xj′)σ(Xi)σ(Xi′)εiεi′ ]

= O
(
n−2

)
,

which yields
V

(0)
2n = OP

(
n−1

)
= oP (n−1g−d).

Observing the decomposition (A.6) it follows that

V2n = oP (n−1g−
d
2 ). (A.22)

Using similar arguments we obtain for the term V3n in (A.3)

V3n = oP (n−1g−
d
2 ), (A.23)

which yields the assertion of Theorem 1 under the null hypothesis observing the equations (A.2),
(A.4), (A.22) and (A.23).

Proof of Theorem 1 (ii) [the case of fixed alternatives]:

In the case of non-additivity we introduce the decomposition

êi = σ (Xi) εi − δ (Xi) + ∆ (Xi)

where ∆ = m − m0 	= 0 and m0 and δ are defined in (3.8) and (A.1), respectively. This yields to a
more detailed decomposition of the statistic T4n, i.e.

T4n = V1n − 2V2n + V3n + 2V4n − 2V5n + V6n (A.24)

where V1n, V2n and V3n are defined in (A.3) and

V4n :=
1

n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) ∆ (Xj) σ (Xi) εi,

V5n :=
1

n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) ∆ (Xj) δ (Xi) ,

V6n :=
1

n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) ∆ (Xi) ∆ (Xj) .
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Observing the arguments in the first part of the proof we have

Vin = oP (n− 1
2 ), i = 1, 2, 3 (A.25)

and it remains to consider the statistics V4n, V5n and V6n. We prove the following three assertions:

(a) E(V4n) = 0 and

V4n =
1
n

n∑
i=1

σ (Xi) εi (∆f) (Xi) + oP (n− 1
2 ). (A.26)

(b) E (V5n) = o(n− 1
2 ) and

V5n − E (V5n) =
1
n

n∑
i=1

{σ (Xi) εi p(∆f)(Xi) +
1
2
q4(∆f)(Xi) − E[

1
2
q4(∆f)(Xi)]} + oP (n− 1

2 ),

where the mappings p and q4 are defined in (3.13).

(c) Finally,

V6n − E (V6n) =
2
n

n∑
i=1

(
∆2f

)
(Xi) −

∫
(∆f)2 (x) dx + oP (n− 1

2 ) (A.27)

and

E (V6n) =
∫

(∆f)2 (x) dx + o(n− 1
2 ). (A.28)

If (a), (b), (c) have been established, then a combination of these results with (A.24) and (A.25) yields

T4n − E(T4n) =
1
n

n∑
i=1

{
σ (Xi) εi2((∆f)(Xi) − p(∆f) (Xi)) +

[
2(∆2f)(Xi) − q4(∆f) (Xi)

−E
(
2(∆2f)(Xi) − q4(∆f) (Xi)

)]}
+ oP (n− 1

2 ),

and

E(T4n) =
∫

(∆f)2 (x) dx + o(n
−1
2 ). (A.29)

The assertion of part (ii) of Theorem 1 (for the statistic T4n) now follows from (A.29) and an application
of the central limit theorem.

Proof of (a): Obviously we have E(V4n) = 0 and with the notation

Z
(1)
in :=

1
(n − 1)

n∑
j=1, j �=i

Lg (Xi − Xj) ∆ (Xj)

we obtain the following representation for the statistic V4n:

V4n =
1
n

n∑
i=1

σ (Xi) εi Z
(1)
in (A.30)

=
1
n

n∑
i=1

σ (Xi) εi

{
(∆f)(Xi) +

[
E(Z(1)

in | Xi) − (∆f)(Xi)
]
+

[
Z

(1)
in − E(Z(1)

in | Xi)
]}

.
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A straightforward Taylor expansion gives (a.s)

sup
1≤i≤n

[
E

(
Z

(1)
in | Xi

)
− (∆f) (Xi)

]
= O

(
g2

)
= o (1) , (A.31)

which yields

E
[( 1

n

n∑
i=1

σ(Xi)εi

[
E(Z(1)

in | Xi) − (∆f)(Xi)
])2]

≤ n−1E
[

sup
1≤i≤n

(σ2(Xi) [E(Z(1)
in | Xi) − (∆f)(Xi)]2)

]
= o(n−1). (A.32)

The conditional variance of Z
(1)
in given Xi is estimated as follows

sup
1≤i≤n

E

[(
Z

(1)
in − E

(
Z

(1)
in | Xi

))2 | Xi

]
= sup

1≤i≤n

1
(n − 1)2

n∑
j=1, j �=i

[ E
(
L2

g (Xi − Xj) ∆2 (Xj) | Xj

)
−E (Lg (Xi − Xj) ∆ (Xj) | Xi)

2 ] = O(n−1g−d) = o (1) ,

and we obtain by the same arguments

E
[( 1

n

n∑
i=1

σ (Xi) εi

[
Z

(1)
in − E

(
Z

(1)
in | Xi

)])2]

=
1
n2

n∑
i=1

E[σ2 (Xi) E(
[
Z

(1)
in − E

(
Z

(1)
in | Xi

)]2 | Xi)] = o
(
n−1

)
. (A.33)

A combination of (A.30), (A.32) and (A.33) gives the equation (A.26 ) and proves assertion (a).

Proof of (b): We introduce a similar decomposition as used for V2n in the first part of the proof:

V5n =
d∑

α=1

V
(α)
5n − (d − 1) V

(0)
5n , (A.34)

where

V
(α)
5n =

1
n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) ∆ (Xj) δα (Xiα) , α = 1, . . . , d, (A.35)

V
(0)
5n =

1
n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) ∆ (Xj) δ0, (A.36)

and the functions δα (α = 0, . . . , d) are defined in (A.5). In the following we prove

V
(α)
5n − E(V (α)

5n ) =
1
n

n∑
i=1

{[
σ (Xi) εi + m(Xi)

]
f−1 (Xi) f−α (Xi,−α)

∫ (
∆f2

)
(Xiα, y−α) dy−α

+
∫ (

∆f2
)
(y) m (yα, Xi,−α) dy

−E
[
m (Xi) f−1 (Xi) f−α (Xi,−α)

∫ (
∆f2

)
(Xiα, y−α) dy−α

+
∫ (

∆f2
)
(y) m (yα, Xi,−α) dy

] }
+ oP (n− 1

2 ), (A.37)
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E(V ( )
5n ) = O(gr + hr) = o(n 2 ). (A.38)

Note that it is again sufficient to consider only the case α = 1. Further,

V
(0)
5n =

1
n

n∑
i=1

{
σ (Xi) εi + m (Xi) − E[m (Xi)]

} ∫
(∆f2)(y)dy + oP (n− 1

2 ) (A.39)

and

E(V (0)
5n ) = o(n− 1

2 ). (A.40)

The assertion (b) then follows by a combination of (A.34) - (A.40) and the definition of the functions
p and q4 in (3.13).

For the statistic V
(1)
5n we obtain the decomposition

V
(1)
5n = V

(1.1)
5n + V

(1.2)
5n + V

(1.3)
5n , (A.41)

where

V
(1.1)
5n =

1
n3 (n − 1)

n∑
i=1

∑
j �=i

n∑
k=1

n∑
l=1

Lg (Xi − Xj) ∆ (Xj)

×Kh (Xl1 − Xi1) Kh (Xl2 − Xk2) f̂−1(Xl)σ (Xl) εl,

V
(1.2)
5n =

1
n3 (n − 1)

n∑
i=1

∑
j �=i

n∑
k=1

n∑
l=1

Lg (Xi − Xj) ∆ (Xj)

×{Kh (Xl1 − Xi1) Kh (Xl2 − Xk2) f̂−1(Xl)m (Xl1, Xl2) − m (Xi1, Xk2)},

V
(1.3)
5n =

1
n (n − 1)

n∑
i=1

∑
j �=i

Lg (Xi − Xj) ∆ (Xj)

× { 1
n

n∑
k=1

m (Xi1, Xk2) −
∫

m (Xi1, y2) f2 (y2) dy2 }.

Remember that we consider the case d = 2. At first we discuss the statistic V
(1.1)
5n following the

arguments given in the proof of part (a). Obviously, we have E(V (1.1)
5n ) = 0. With the notation

Z
(2)
l n =

1
n2 (n − 1)

n∑
i=1

∑
j �=i

n∑
k=1

Lg (Xi − Xj) ∆ (Xj) Kh (Xl1 − Xi1) Kh (Xl2 − Xk2) f̂−1(Xl)

we obtain

V
(1.1)
5n =

1
n

n∑
l=1

σ (Xl) εl Z
(2)
l n .

For the conditional expectation of Z
(2)
l n given Xl we have

E(Z(2)
l n | Xl) = E(Lg (Xi − Xj) ∆ (Xj) Kh (Xl1 − Xi1) Kh (Xl2 − Xk2) f̂−1 (Xl) | Xl)

= f−1 (Xl) f2 (Xl2)
∫ (

∆f2
)
(Xl1, y2) dy2 (1 + o (1))

(uniformly with respect to l). A similar argument shows

E[(Z(2)
l n − E(Z(2)

l n | Xl))2 | Xl] = o(1)
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(uniformly with respect to l), which yields (using similar arguments as in the proof of part (a))

V
(1.1)
5n =

1
n

n∑
l=1

σ (Xl) εl f
−1 (Xl) f2 (Xl2)

∫ (
∆f2

)
(Xl1, y2) dy2 + oP (n− 1

2 ). (A.42)

For the estimation of the term V
(1.2)
5n we introduce the notation

Ĝ4 (Xi, Xj , Xk, Xl) := Lg (Xi − Xj) ∆ (Xj)

×{Kh (Xl1 − Xi1) Kh (Xl2 − Xk2) f̂−1 (Xl) m (Xl1, Xl2) − m (Xi1, Xk2)}.

and obtain the representation

V
(1.2)
5n =

1
n3 (n − 1)

n∑
i=1

∑
j �=i

n∑
k=1

n∑
l=1

Ĝ4 (Xi, Xj , Xk, Xl)

=
1

n3 (n − 1)

n∑
l=1

∑
i�=l

∑
j �=i,l

∑
k �=i,j,l

Ĝ4 (Xi, Xj , Xk, Xl) + oL1(P )(n
− 1

2 ).

Moreover, a straightforward calculation of the variance shows

1
n3 (n − 1)

n∑
l=1

∑
i�=l

∑
j �=i,l

∑
k �=i,j,l

{ Ĝ4 (Xi, Xj , Xk, Xl) − E(Ĝ4 (Xi, Xj , Xk, Xl) |Xl) } = oL2(P )(
1
n

), (A.43)

which yields

V
(1.2)
5n =

1
n

n∑
l=1

E(Ĝ4 (Xi, Xj , Xk, Xl) |Xl) + oL1(P )(n
− 1

2 ) + oL2(P )(n
−1). (A.44)

The calculation of the conditional expectation gives

E(Ĝ4(Xi, Xj , Xk, Xl) | Xl)

= E(Lg (Xi − Xj) ∆ (Xj) f̂−1 (Xl) Kh (Xl1 − Xi1) Kh (Xl2 − Xk2) |Xl) m (Xl)

−E(Lg (Xi − Xj) ∆ (Xj) m (Xi1, Xk2))

= {m (Xl) f−1(Xl)f2(X2l)
∫

(∆f2) (Xl1, y2) dy2

−
∫

(∆f2) (x) m (x1, y2) f2(y2)dxdy2} (1 + O(hr + gr))

and (A.44) implies

E(V (1.2)
5n ) = O(hr + gr) + o(n− 1

2 ) = o(n− 1
2 ) (A.45)

as well as

V
(1.2)
5n − E(V (1.2)

5n ) =
1
n

n∑
l=1

{m (Xl) f−1(Xl)f2(X2l)
∫

(∆f2) (Xl1, y2) dy2 (A.46)

−E[m (Xl) f−1(Xl)f2(X2l)
∫

(∆f2) (Xl1, y2) dy2] } + oP (n− 1
2 ).
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We now consider the random variable V
( 3)
5n and introduce the notation

G5 (Xi, Xj , Xk) := Lg (Xi − Xj) ∆ (Xj) { m (Xi1, Xk2) −
∫

m (Xi1, y2) f2 (y2) dy2 } ,

which yields the representation

V
(1.3)
5n =

1
n2 (n − 1)

n∑
k=1

E (G5 (Xi, Xj , Xk) | Xk) + oL1(P )(n
− 1

2 ) + oL2(P )(n
−1). (A.47)

Observing (A.47) and

E (G5 (Xi, Xj , Xk) | Xk) = E(Lg (Xi − Xj) ∆ (Xj) {m (Xi1, Xk2) −
∫

m (Xi1, y2) f2 (y2) dy2 } | Xk)

=
∫ (

∆f2
)
(x) {m (x1, Xk2) −

∫
m (x1, y2) f2 (y2) dy2 }dx (1 + O (gr))

when i, j, k are pairwise different, it follows that

V
(1.3)
5n =

1
n

n∑
k=1

∫ (
∆f2

)
(x) {m (x1, Xk2) −

∫
m (x1, y2) f2 (y2) dy2 } dx

+oL1(P )(n
− 1

2 ) + oL2(P )(n
−1). (A.48)

Note that

E(V (1.3)
5n ) = o(n− 1

2 ), (A.49)

then a combination of (A.41) - (A.42), (A.45) - (A.46) and (A.48) - (A.49) (for different indices) yields

V
(1)
5n − E(V (1)

5n ) =
1
n

n∑
i=1

{[σ (Xi) εi + m(Xi)]f−1 (Xi) f2 (Xi2)
∫ (

∆f2
)
(Xi1, y2) dy2

+
∫ (

∆f2
)
(x) m (x1, Xi2) dx − E[m(Xi)f−1 (Xi) f2 (Xi2)

∫ (
∆f2

)
(Xi1, y2) dy2

+
∫ (

∆f2
)
(x) m (x1, Xi2) dx] } + oP (n− 1

2 ) (A.50)

and

E(V (1)
5n ) = O (hr + gr) = o(n− 1

2 ), (A.51)

which proves (A.37) and (A.38) in the case α = 1 and d = 2.

Finally, the remaining term V
(0)
5n is calculated as follows:

V
(0)
5n =

1
n

n∑
k=1

(Yk − E (m (Xk))) { 1
n (n − 1)

∑
i

∑
j �=i

Lg (Xi − Xj) ∆ (Xj) }

=
1
n

n∑
k=1

{
σ (Xk) εk + m (Xk) −

∫
(mf)(y)dy

} ∫
(∆f2)(x)dx

+oL1(P )(n
− 1

2 ) + oL2(P )(n
−1),

which implies (A.40) and completes the proof of part (b).
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Proof of (c): The random variable

V6n =
1

n (n − 1)

n∑
i=1

∑
j �=i

Lg

(
Xi − Xj

)
∆

(
Xi

)
∆

(
Xj

)
is a U-statistic with symmetric kernel G6 (x, y) := Lg (x − y) ∆ (x) ∆ (y) . A straightforward calculation
gives E

(
G2

6

(
Xi, Xj

))
= O(g−d) = o (n) and it follows from Lemma 3.1 in Zheng (1996)

V6n − E (V6n) =
2
n

n∑
i=1

E (G6 (Xi, Xj) | Xi) − E (G6 (Xi, Xj)) + oP (n− 1
2 ). (A.52)

A Taylor expansion gives

E
(
G6

(
Xi, Xj

) | Xi
)

=
(
∆2f

) (
Xi

)
+ O (gr) (A.53)

(uniformly with respect to i) and

E
(
G6

(
Xi, Xj

))
=

∫
(∆f)2 (x) dx + O (gr) . (A.54)

A combination of (A.52) - (A.54) yields both assertions in (c) and completes the proof of the second
part of Theorem 1 (for the statistic T4n). �
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Fan, J., W.Härdle and E.Mammen (1998) Direct estimation of low dimensional components in
additive models. Ann. Statist. 26: 943 - 971.

Fan, J. and Q. Li (1996) Consistent model specification test: Omitted variables and semiparametric
forms. Econometrica 64: 865-890.

Fan, J. and Q. Li (1999) Central limit theorem for degenerate U-Statistics of absolutely regular
processes with applications to model specification testing. Nonparametric Statistics 10: 245-271.
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