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Abstract

We consider a variant of the usual model for crossover designs with carryover
effects. Instead of assuming that the carryover effect of a treatment is the
same regardless of the treatment in the next period, the model assumes that
the carryover effect of a treatment on itself is different from the carryover
effect on other treatments. For the traditional model optimal designs tend to
have pairs of consecutive identical treatments; for the model considered here
they tend to avoid such pairs. Practitioners have long expressed reservations
about designs that exhibit such pairs, resulting in reservations about the
traditional model. Our results provide support for these reservations if the
carryover effect of a treatment depends also on the treatment in the next
period.

Keywords: Balance for carryover effects; Balanced Block Design; Generalized

Latin Square; Optimal Design; Universal Optimality

1 Introduction

The traditional model for crossover designs, see e.g. Hedayat and Afsarinejad
(1978), assumes that each treatment has a carryover effect which does not
interact with the direct effect of the treatment in the following period. This
has often been criticized as a weakness of the model, see for instance Kunert

(1987). To cope with this problem Sen and Mukerjee (1987) introduced a
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model with interactions between direct and carryover effects, such that each
treatment has a different carryover effect for every treatment in the next
period. However, this model contains too many parameters to be practically
useful. A compromise was proposed by Hedayat and Afsarinejad (2000) who
assume that each treatment A has two different carryover effects, one that is
valid if treatment A is followed by A itself, and one that is valid if it is followed
by any other treatment. Following their terminology, we will call these effects
self and mixed carryover effects, respectively. In the case where the number
of treatments equals the number of periods, we show that neighbor balanced
generalized Latin squares are universally optimal in this model, even for large
numbers of subjects. Note that in the traditional model, this is only true
for small numbers of subjects (Kunert, 1984). If the number of periods is
smaller than the number of treatments, then generalized Youden designs with
neighbor balance are universally optimal over all designs. This again does
not hold in the traditional model, see Stufken (1991) and Kushner (1998).
Even if the number of periods gets larger than the number of treatments,
the optimal designs in the model with mixed and self carryover effects do
not have pairs of consecutive identical treatments. The strongly balanced
generalized Latin squares introduced by Cheng and Wu (1980) are no longer
optimal. This is different from the model with full interaction, see Sen and
Mukerjee (1987).

The optimality proofs of this paper are done with the help of Kunert and
Martin’s (2000) generalization of the method introduced by Kushner (1997).



2 The model and a tool for finding optimal
designs

One important application of crossover designs is in sensory trials, when
assessors examine several products, one after the other. If, for instance, there
is one product which is very bitter, then experience shows that assessors tend
to rate the next product that they assess after the extremely bitter one with
a lower than normal value of bitterness. Therefore the bitter product has
a carryover effect. If, however, an assessor gets this bitter product twice in
a row, then he/she usually gives about the same rating again. Thus, the
carryover effect of the product is different when there is another product
in the next period. A similar effect can be observed in other examples of
crossover designs. A mathematical derivation which shows why the carryover
effect should be different if a treatment is followed by itself can be found in
section 10.3.2 of Senn (1993).

Therefore, we consider the following model. We assume that the response

Yu,r Of subject u at period r, 1 <u <n, 1 <r < p can be written as

Yu,r = Oy +/87" +Td(u,r) +pd(u,r71) (]- - 6d(u,r),d(u,r71)) +Xd(u,r71)5d(u,r),d(u,r71) +€u,ra
(1)
where

d(u,r) is the treatment assigned to subject u in period r (with d(u,0) = 0),
o, is the effect of subject u,

0, is the effect of period r,

7; is the direct effect of treatment i,

pj is the mixed carryover effect of treatment j (with py = 0),

X; is the self carryover effect of treatment j (with xo = 0),
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0;jis 1ifi =7, and 0if ¢ # 5

and
eur, 1 <u < mn, 1 <r < pare independent identically distributed errors

with expectation 0 and unknown variance o?.

The set of all designs for ¢ treatments, n subjects and p periods is called
Q4np- In what follows, we restrict attention to the case p > 2 and ¢ > 2. The
case p = 2 is studied by Hedayat and Afsarinejad (2000). The case ¢ = 2 will
be reported elsewhere.

We define the matrices U =1, ®1,, P =1, ®I,, Ty, My and Sy as the
design-matrices of the subject, period, direct treatment, self carryover and
mixed carryover effects, respectively. Then the information matrix for the

estimation of direct treatment effects can be written as
Cs = TTw ([P, U, My, S4)) Ty,

where for a matrix F the expression w*(F) = I — F(FTF) FT is the projec-
tion on the space of all vectors which are orthogonal to FT, the transpose of
F.

We are interested in optimal designs for the estimation of the direct treat-
ment effects. It follows from Kiefer’s (1975) Proposition 1 that a design d*
for which the information matrix Cy is completely symmetric and which
maximizes the trace of C4 over all d € €2;,,, is optimal under all practically
useful optimality criteria - it is universally optimal. Complete symmetry of
a matrix F means that it can be written as F = aI 4+ 0117, where @ and b
are real numbers.

As in Kunert (1983) we have

Cy < Thw([U, My, S4)) Ty



in the Loewner-sense, with equality if and only if
T w([U, My, S4))P =0 (2)

It can be shown easily that equation (2) holds if in each period (a) all treat-
ments appear equally often, (b) the mixed carryover effects of all treatments
appear equally often and (c¢) the self carryover effects of all treatments appear
equally often.

As in Kunert and Martin (2000) we can write

TTw([U, My, Sq)) Ty = Cau1 — Ca12C25C1 —

(Cars — Ca12C 135Ca23) (Casz — ngg,cdizzcd%)i(cdl?) - CdlZCdEQCdZ?,)T,

where
Cot = TTT, — LTTUUTT,, Cap = TTM, — 2TTUUTM
dll — 4gq d_;,_, d d» dl2 — 44 d_1_7 d d>
1
Cdlg — T?;Sd — %TgUUTSd, Cd22 — MgMd — EMEUUTMd,
1
Cd23 = Mng - %MgUUTSd, and Cd33 = Sng - ]—jngUTSd
For the standard model, where the self and mixed carryover effects are

assumed identical, the following properties of designs have proved to be useful

for optimality.

Definition 1
A design d € €, ,, is called

(i) a balanced block design for the direct treatment effects (with subjects as
blocks), if every treatment appears equally often in the design, if every
treatment appears for each subject either [p/t] or [p/t]+1 times, and if
the number of subjects where treatments ¢ and j both appear [p/t] +1

times is the same for every i # j. Here [p/t] denotes the largest integer
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not larger than p/t. If p/t is an integer, then for a balanced block
design d each treatment must appear for each subject p/t times, and d

is called uniform on the subjects.

(ii) a balanced block design in the carryover effects (with subjects as blocks),
if the first p — 1 periods of d are a balanced block design for the direct

treatments effects in €2;,, 1.

(iii) wniform on the periods, if every treatment appears in every period

exactly n/t times.

(iv) a generalized Youden design, if d is a balanced block design for the
direct treatment effects with subjects as blocks and uniform on the
periods. If d € €, ,,, is a generalized Youden design and p is divisible

by t then d is called a generalized Latin square.

(v) balanced for carryover effects, if every treatment is immediately pre-

ceded by every other treatment equally often, but never by itself.

(vi) strongly balanced for carryover effects, if every treatment is immediately

preceded by every treatment (including itself) equally often.

It is clear that if a design d is balanced for carryover effects, the self
carryover effects never appear. Consequently, S; is a matrix of zeroes, and

our model coincides with the traditional model. For such a design we further

have that ) 3
0 1 1
np—1) |1 0
TIM, = (p—1) (3)
t(t—1) 1
I 1 1 0 |




If d is a balanced block design for the direct treatment effects, then we have
that C411 is completely symmetric. Cgoo is completely symmetric if d is a
balanced block design for the carryover effects that has no pairs of consecutive
identical treatments. Any design that has no identical pairs of consecutive
treatments has Cg13, Cg23 and Cy33 completely symmetric, because they are
matrices of zeroes.

Therefore, if a design d* is a balanced block design for direct and carryover
effects and is balanced for carryover effects, then Cg«11, C4+13, Cg22, Cg+23, and
Cy33 are completely symmetric. If, additionally, T2 UUTM,- is completely

symmetric, it follows from (3) that Cy4-1o is also completely symmetric.
Definition 2
A design d* € (4, is called totally balanced if

(i) d* is a generalized Youden design,
(ii) d* is a balanced block design for the carryover effects,
(iii) d* is balanced for carryover effects, and

(iv) the number of subjects where both treatments i and j appear [p/t] + 1
times and treatment j does not appear in the last period is the same

for every pair i # j.

We will now argue that C41o is completely symmetric for a totally bal-
anced design d*. If p is not divisible by ¢, then [(p —1)/¢] = [p/t]. Therefore,
in the totally balanced design d* the mixed carryover effect of each treatment
appears in each subject either [p/t] or [p/t] + 1 times. This implies that a
treatment does not appear for the last period of any subject where it appears

only [p/t] times. Then the (i, j)-th element of T2 UUTMy-, i # j equals
(n— a1 — x5 — x3)[p/1]* + (22 + 23)[p/t]([p/t] + 1) + 21 ([p/t] + 1)*.
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Here z; is the number of subjects where both treatment ¢+ and j appear
[p/t] + 1 times and treatment j does not appear in the last period, xs is
the number of subjects where treatment i appears [p/t] + 1 times and the
mixed carryover effect of treatment j appears [p/t] times, x3 is the number
of subjects where treatment i appears [p/t] times and the mixed carryover
effect of treatment j appears [p/t] + 1 times.

Condition (iv) says that x; is the same for all ¢ # j. For d* the number of
subjects where treatment 7 appears [p/t]+1 times does not depend on i and it
equals 1 +x5. Consequently, x5 does also not depend on ¢ or 5. Similarly, the
number of subjects where the mixed carryover effect of treatment j appears
[p/t] + 1 times does not depend on j and it equals z1 + x3. It follows that x3
also does not depend on i or j and all off-diagonal elements of TT. UUT M-
are the same. This implies that all off-diagonal elements of Cy-15 are equal.
Since 17C45 = 07 for any design d, it follows that all diagonal elements of
Cq+12 are equal and that C4«19 is completely symmetric.

If p is divisible by ¢, then treatment i appears p/t times for every sub-
ject and, therefore, condition (iv) trivially holds for every generalized Latin
square. Further, the (4, j)-th entry of TL.UU"My- equals (n —n/t)(p/t)* +
np(p/t — 1)/t?, because the mixed carryover effect of treatment j appears
p/t — 1 times for those n/t subjects where treatment j appears in the last
period and p/t times for all other subjects. Therefore, TL.UU M- is a
multiple of 1,17 and is completely symmetric.

In all, we have for a totally balanced design d* that all matrices Cg«;j,

1 <1 <5 <3, are completely symmetric.

We define Bt = It — %]-t]-? and Cdij = tr (BthijBt) for 1 S ? S j S 3.

Then we can literally translate the proof of Proposition 2 of Kunert and



Martin (2000) and for every design d € €, , we get
r (Thw([U, My, S4)Ty) < g, (4)
where ¢} is defined by the following four cases:

(1) If caoacazs — Cog3 > 0, then

C219Ca33 — 2Cq12Ca13Ca3 + Cd130d22

3
qq = Cd11 —
Cd22Cd33 — Cd23

(11) If Cq22Cqd33 — 0323 =0 and Cqo2 > 0, then q; = Cq11 — 0312/0,122.
(111) If cgo2 = 0 and cg33 > 0, then q:l = Cq11 — 0313/0,133.
(IV) If Cd22 = C433 = 0, then q; = Cq11-

In equation (4) we have equality if all Cg;;, 1 <@ < j < 3, are completely
symmetric.

In all, it follows that

trCq = qp, (5)
if equation (2) holds and if all C4j, 1 < i < j < 3, are completely symmetric.
Our aim is to find a design d for which (5) holds for the maximum possible
value of 4.

Let Ty, My, and Sy, be the design matrix of the direct treatment effects,
mixed carryover effects and self carryover effects in block u, 1 < u < n. By
Writing

(T T4y — T w1 1TTdu),
(T§May — gTdu ply May),
Cd13 tr(TguSdu - leTulpl,?Sdu),
Cd22 tr(B, (Mg, May — %MgulplgMdu))a
Cd23 = tr(B:(M Sdu - %Mgulplgsdu))a



clih = tr(By(ST,Su — 187,1,17S4,)),
we get that cg; = Y0, CE;;])., for 1 <i < j <3. The c(%). are determined
by the sequence of the treatments applied to subject u. We say that two
sequences are equivalent, if one is derived from the other by relabelling of

treatments. It is obvious that two subjects with equivalent sequences have

(u)

the same cg,;.

Therefore we can define equivalence classes of sequences, such that cg;])- is
the same for all u in a given class. For given p and t there are K, say, possible
classes and we denote the proportion of sequences from the /-th class in a

(ue)

given design d € €, by mq. We also define ¢;;(€) = cg;’, where uy is any

one sequence in the /-th class. Then we get

K

Caij = n(z TdeCiyj (Z))

(=1

for 1 < ¢ < j < 3. Therefore, the 74 determine ¢;. However, ¢ is a
nonlinear function of the mg. This makes maximization of ¢ through the
determination of optimal weights w4 difficult. The problem is linearized by

introducing the function
qa(x,y) = can + 2xca12 + ¥ caze + 2yCars + Y cass + 2TYCas

Note that g4(z,y) > ¢ and there is at least one point (z*,y*), say, such
that g4(z*, y*) = ¢j. This follows from Proposition 3 of Kunert and Martin
(2000).

For the /-th equivalence class, 1 < ¢ < K, we define

he(z,y) = c11(€) + 2zc12(0) + 2% e () + 2yci3(£) + yPess(f) + 2xycos(€)

and get that qq(z,y) = n 5 myhe(z,y). Therefore, gq(z,y) is a linear
combination of the h,(z,y).

We then can use
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Proposition 1

For a design d* € Qup, consider a point (Tg«,ya=), for which qg- (T4, yq+) =
G If nhy(zge,yar) < qa= (g, yar) = ¢« for every 1 < € < K, then for every
f € Qpp we have trCr < q..

Proof

See Kunert and Martin (2000), Proposition 4. O

We have qg (24, ya-)/n = maxy hy(xg, yq+) for the design d* of Proposi-

tion 1 and therefore
G+ (Ta+s Ya-) = wingg- (v, y) = n minmax he(z, y).

It follows that n min,, max,he(x,y) is an upper bound for trC, for any

d € Qny.

3  Determination of min, , max, h(z,y).

In order to calculate h, for the /-th equivalence class, we have to calculate
the ¢;;(¢). Therefore, we take any sequence wu, from the (-th class and define
the quantities

n;(¢) is the number of appearances of treatment j in u,,

nj(¢) is the number of appearances of the mixed carryover effect of j in
ug, i.e. the number of appearances of treatment j followed by any other
treatment,

tp;(¢) is the number of appearances of treatment j in the last period of
the sequence wuy.

It is clear that there is exactly one j such that t,;(¢) = 1, all other t,;(¢)
are 0. Further, the number of times that treatment j is immediately followed

by itself is n;(£) — 7;(€) — t,;(¢).
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With these definitions it is easy to derive that
1 2
cull) = p—-— an(g)
P
1 _
co(l) = —= Z n; ()7 (€)

en(l) = Ezn] —;ﬁ§(e)+]%(;ﬁj(z))2
cs(l) = —1—2% —lzjjnj(e)(nj(e)—ﬁj(e)—t,,j(z))
en(l) = —%;ﬁj(f)(”j(f)—ﬁj(f)—tpj(f))
o (Z0)(p 1= (0)
(D) = %(p—l—;w) —é;(nj(@—m(e)—tm(e)f

Note that although the n;(¢), n;(¢) and t,;(¢) depend on the choice of the
representative sequence uy, the ¢;;(¢) do not depend on u, but are the same
for all u, in a given equivalence class.

Inserting this into hy(z,y), we find that hy(x,y) for y = —1 simplifies to

mle,-1) = (= 1(-1)
+(Zﬁj(€))(p(t —1)+2-2(p -z +p(t—1)2?)
Zn t(1 + z)? (6)
an t )
Zn] 0)2t(1 + 1)).

It is interesting to note that h(z, —1) does not depend on the n;(¢).

We start with a technical proposition
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Proposition 2
Restrict attention tot > 3 and 3 < p < 2t, i.e. there are numbers a* € {0,1}
and b* € {0,1,...,t — 1}, such that p — 1 = a*t + b*. Further let 0 < z < 1

and y = —1. Then hy(x,—1) is mazimal if the sequence class ¢ is such that
(i) 3;ni(0) = a*t + b*,
(it) all 7;(¢) € {a*,a* + 1}, and

(1) 32575 (0)tp; (£) = a.

Proof

The maximization is done in two steps. Firstly, we keep 3=, 7;(¢) fixed and
. It can be

0)t,;(0) are

try to maximize hy(x, —1) by varying 3, 73(¢) and 3, 7;(£)t,;(¢)
seen in (6) that hy(x, —1) is maximal if both }-; 75 (¢) and 3; 7;(
as small as possible.

Note that };7;(¢) < p—1 < 2t. Therefore there are numbers a(f) €
{0,1} and b(¢) € {0,1,...,t — 1}, such that Y;n;(¢) = a(f)t + b(£). It is
obvious then, that >;775(¢) is minimal if b(¢) of the n;(¢) equal a(¢) + 1
and t — b(¢) of them are a(f). Also, >, 7;({)t,;(¢) = n.(¢), where r is the
treatment appearing in the last period of the representative sequence uy.
Clearly, this is minimized if n,.(¢) = 0.

So simultaneous minimization of 3-; 75(¢) and 3; 7;(€)t,;(€) is not always
possible. We therefore have to consider two cases.

Case 1: 3o, n;(0) <t —1,1ie. a(f) =0.

In this case we can simultaneously minimize 3-; 73(£) and 3; 7;(€)t;(€).

We get 3,75 (0) > 2, 7;(0) = b(£), and 3 72(£)t,;(¢) > 0. Inserting these

values we get
he(w,~1) < =(p-1(t-1)
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+b(0) (pt —p—t+2—2(p+1t— Dz + (pt — p — t)2?)

2 (O(1 + 2)%) = &(0),

say. This bound is maximal if b(¢) is as large as possible, i.e. if b(f) =
min{p — 1, t — 1} = ¢, say.

To see this, we rewrite

pt—p—1t+2 — 2(p+t—1Da+ (pt—p—t)z?
= (pt—p—t)(1—2)>+2+2(pt —2p—2t + 1)z

> 24 2(pt —2p— 2t + 1)z.

If p >4, then pt —2p —2t+1 > 2t —7 > —1 as t > 3 and therefore
24+2(pt—2p—2t+1)x >2—22>0,as 0 < x < 1. Similarly, if ¢ > 4, then
pt—2p—2t+1>2p—7> —1 asp > 3 and, again, 2+2(pt —2p—2t+1)x > 0.
For t > 4 or p > 4, it hence follows that & (¢) is increasing in b().

If, however, p =t = 3, then

£(0) = %(4 FB(0)(5 — 10z + 322) + B(O)(1 + 2)?).

Some algebra shows that then & (¢) is maximal if b(¢) = 2 = ¢.
Therefore, whenever -, 7;(¢) <t — 1 we have

hew,~1) < —((p=1)—1)

pt
+q1 (pt—p—t+2—2(p+t— 1)x—|—(pt—p—t)a:2) (7)
+4}(1+2)?)
= &,
say.
If p <t the problem is solved and formula (7) gives an upper bound for
he(z, —1), which is attained if ¢ fulfills the conditions (i), (ii) and (iii) of the

proposition.
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If, however, p > ¢, then it is possible to have }7;n; > £. Does this lead

to a larger upper bound for hy(z, —1)?

Case 2: a(f) = 1,i.e. 3 7 =t 4 b(l).
In this case the two tasks, minimizing 3°; 73 (¢) and minimizing Y=, 72 (£)t,,(¢),
are conflicting. Therefore we have two possibilities to derive an upper bound.
First possibility: Minimize 3-; 723(¢) by choosing b(¢) of the 71;(¢) equal
to 2 and t — b(f) equal to 1. Tt follows that >;n3(¢) > t + 3b(f) and
> 1 (0)t,;(¢) > 1. Therefore,
mle-1) < (=11
+H(t+b(0)(p(t — 1) +2 = 2(p — )z +p(t — 1)2%)

—(t 4+ 3b(O))t(1 + x)?

+(t +b(0)*(1 + z)?
—2t(1 + z))
= 52(5),

say.

Second possibility: Choose one of the 7;(¢) = 0, b(¢) + 1 of them equal
to 2 and ¢ — b(¢) — 2 of them equal to 1. Then 3; 723(¢) > t + 3b(¢) 4 2 and
> 1 (0)t,;(€) > 0. Therefore,

+(t+0(0)(p(t —1) +2 —2(p — Da + p(t — 1)z?)

say. Since z > 0 it holds that (1 + z)? > (1 + x) and, hence, &(¢) > &(¢).

15



Therefore, &(¢) is an upper bound for h,(z, —1) for every fixed 3°; n;(£) >

t. To continue, we rewrite

&(0) zgﬂw—nu—n+m@—n
—22tp + 2°pt(t — 1)
+b(0)(pt —p—t+2—2(p+t— 1)z + (pt —p —t)2?)

+2 () (1 + 2)?).

Note that case 2 is possible only if p > ¢+ 1 > 4. We find from case 1, that
& (¢) is increasing in b(¢). Therefore, £ (¢) is maximal if b(¢) is as large as
possible, that is if b(¢) =p—1 —¢.

Therefore, whenever 3°;n; > t we have

ho(z, —1) < %«p_n@—my+m@—n
—22tp + 2pt(t — 1)
+p—1—-t)(pt—p—t+2—-2(p+t—L)x+ (pt —p—t)z°)
+Hp—1-1)*(1+2))

= &,
say.
[t remains to consider whether in the case p > t it is best to have }°; n; =
t —1, or to have 3°;n; = p — 1, that is, we have to compare £} and &3.

Because ¢; =t — 1 in (7) and because p — 1 — t > 0, we have

G-& = ~((p-Dt—1)+pit—1)

pt
—x2tp + 2’pt(t — 1)
—(p—1(t—-1)

~(t-1)(pt—p—t+2-2p+t— 1z + (pt —p—t)a’)
—(t—1)*(1 +2)?)
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- pit((p— 1)(t—1) = 2pr + (p+ 1)(t — 1)2?)

1 2
> 2Tt((p— 1)(t— 1) — 2px + 2pa”)
1 1 P
= —(p=1Dt-1)+2pz—=-2="L
pt((p )t =1) +2p(z — 3) 2)
0.
Observe that conditions (i), (ii) and (iii) give he(z, —1) = & if p > t. This

completes the proof.0

The sequences that satisfy conditions (i), (ii) and (iii) of Proposition 2

are those that possess the following three properties:

(a) for any 2 treatments, the numbers of times that they appear in the

sequence differ at most by 1;

(b) for any 2 consecutive periods, the treatments assigned to the periods

are different; and
(c) the treatment in the last period appears the maximum number of times.

If p < t, the only sequences that satisfy these conditions are those that
are equivalent to [1, 2, ..., p]. If p > ¢, there is more than one equiva-
lence class with sequences that satisfy these conditions. For example, both
(1,2, ., t, 1,2 .., p—t]land [1, 2, ..., ¢, t =1, t =2, ..., 2t — p]| are

fine if p < 2¢. They are clearly not equivalent.

Proposition 3

Assume t > 3 and 3 < p < 2t. If the (*-th sequence class is such that
conditions (i), (ii) and (iii) of Proposition 2 hold, then for all x and y we
have

h’ﬂ* (-'L',y) Z h/ﬂ* (.'L'*, _1)7
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where

¢
. ) o forp <t

tp+2t(p—1—t)
pt(t—1)+(pt—2t—1)(p—1-t)

forp >t

Proof
Case 1: p <t

As seen just before Proposition 3, /* must consist of p distinct treatments,
so that n;(¢*) — n;(¢*) — t,;(¢*) = 0 for all j. Hence, conditions (i), (ii) and

(iii) imply that

ci(l) =p—1
cro(0*) = —pTTI
co(0*) = (;;4)(;;;471)
and
c13(0F) = co3(0*) = c33(0*) = 0.
Therefore,

h[*(l',y) = hg*(l',—l)
-1 -1 —t—1
:p—1—2p x+(p )(tp —t )x2
D pt

and hy(x, —1) is minimal if z = =z

tpfttfl
Case 2: p > t.

Condition (i) implies that there are no pairs of consecutive identical treat-
ments in the sequence. Hence, all but one of the n;(¢*) must be equal to
nj(¢*). Condition (iii) implies that the one j for which n;(¢*) = n;(¢*) + 1
has n;(¢*) = a* + 1 = 2. Then, condition (ii) implies that all n;(¢*) € {1, 2},
that 35, n7(0*) = 4(p — t) + 1(2t — p) and that 3, n;(€*)n;(¢*) = 4(p — 1 —
t)+ 2+ 1(2t — p).

Therefore
1
en(l) = p— ];(4(29 —t) + (2t — p))
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p? —3p + 2t

p
cz(l’) = _%(4(p—t—1)+2+(2t—p))
. _p+2(p—1—t)
N p
ex(l’) = %(p—l)—%(4(p—1—t)+1+(2t—p))+(p;tl)
ptt—1)+ (pt—2t —1)(p—1—1)

pt

while
013(6*) = 023(6*) = 033(6*) =0.

It follows that

hl*(xay) = hl*(xa_l)
p? —3p+ 2t _2p+2(p—1—t)x

p p
tt —1 o 1(p—1-—
=)+ pt=2t-1)p—1-1) ,
pt
and hy«(x, —1) is minimal if
t 2t(p—1—1t
T = P+ 2t(p ) =z*.0

ptt—1)+ (pt =2t —1)(p—1 —1t)

Proposition 4

Assume t > 3 and 3 < p < 2t. If the £*-th sequence class is such that
conditions (i), (ii) and (iii) of Proposition 2 hold, then

minmegxhg(x,y) = hp (2%, —1),

Y

where x* s as in Proposition 3.
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Proof
Case 1: p<t

Here, z* = t/(tp — t — 1) and, therefore, 0 < z* < 1. From Proposition 2
it follows that

he (2%, —1) = max he(z*,—1) > rguyn max he(z,y).

Conversely, for all z,y we have that
m?Xhl(xa y) Z hl* (37, y) Z hl* (x*7 _1)7

where the last inequality follows from Proposition 3.
Case 2: p >t

Then
. tp+2t(p—1—1)
xr = .
ptt—1)+ (pt =2t —1)(p— 1 — 1)
Asp—1—1t>0 it follows that z* > 0.

We also have that
ptt—1)+(pt—2t—1)(p—1—t)—tp—2t(p—1—1)
= p°t — 6pt — 2p + 26> + Tt + 3.
As the right hand side is increasing in p and p > t it follows that
ptt—1) + (pt—2t—-1)(p—1—1t)—tp—2t(p—1—1)
> 3 —6t2 -2+ 22 + 7t +3
= t(t—2)+t+3>0.

Therefore x* < 1. The rest of the proof works as in Case 1. O

4 Optimal designs

If we want to determine a universally optimal design d*, then we have to

ensure that Cy4- is completely symmetric, that d* maximizes the upper bound

20



q; of the trace of C4, and that ¢j. = trCyq-. The results of Section 3 give
conditions on how to maximize ¢j;. In the following theorem we give a set of

designs which also fulfill the other two conditions.

Theorem 1

Fort >3 and 3 < p < 2t, if a totally balanced design d* € S, , ewxists, then
d* is universally optimal over (.

Proof

For a design that is balanced for carryover effects we have that there are
no pairs of consecutive identical treatments and therefore no self carryover
effects in the design. Furthermore, in d* each treatment appears exactly n/t
times in each period. This implies that the direct effects of all treatments
appear equally often in each period. Additionally, the mixed carryover effects
of all treatments appear 0 times in period 1 and exactly n/t times in periods

2 to p. Therefore, equation (2) holds and
Cd* = Td];(,dl([U, Md*, Sd*])Td*.

To ensure that trCq- = ¢j., it therefore suffices to show that all C4-;; are
completely symmetric. Following Definition 2 we have already shown that
this holds for the design d*.

The complete symmetry of all Cy;;, 1 < 7 < j < 3 also implies that

ij>
TT.wt ([U, My, S¢-]) T4~ is completely symmetric and, therefore, that Cy- is
completely symmetric.

To complete the proof it suffices to show that the design d* maximizes
q; over €, ,. This, however, is done by applying Propositions 1, 3 and
4, if we note that with d* all subjects receive a treatment sequence that
is either equivalent to [1, 2, ..., p] (if p < t), or has the same c((;f)- as

(1,2, ., t, 1,2, .., p—t] (ifp>1t). O
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Corollary 1

If p =1 or p = 2t and a generalized Latin square d* exists in Sy, which is
balanced for carryover effects, then d* is universally optimal.

Proof

The Corollary follows from the fact that d* is a totally balanced design. For

condition (iv) of Definition 2 see the discussion after Definition 2. O

The optimal designs derived by Theorem 1 all have no pairs of consecutive
identical treatments. This is a large difference to the usual model where
mixed and self carryover effects are assumed to be equal. In that model,
almost all optimal designs derived in the literature need pairs of consecutive
identical treatments. In what follows, we give some examples of designs
which are optimal for the model (1) with mixed and self carryover effects. In

all examples, rows indicate periods and columns indicate subjects.

Example 1
If t =4 and p = 3, we have a totally balanced design d* € €14 19 3, namely

132412143423
d=1213 2 413143 42
321124431234

If we have many more subjects, with n divisible by 12, an optimal design
consists of multiples of d*. It was shown by Stufken (1991) and Kushner
(1998) that in the traditional model the optimal design would have some

subjects receiving sequences which are equivalent to [1, 2, 2].

Example 2
If t =4 and p = 4 we have a totally balanced design d* € €24 44, namely the
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carryover balanced Latin square

d*

This is also optimal in the traditional model (Kunert, 1984). It was shown by
Kunert (1984) that in the traditional model, if the number n of subjects gets
large, the optimal design in €24, 4 will have some subjects with a treatment
sequence equivalent to [1, 2, 3, 3], while Corollary 1 shows that in the model

with mixed and self carryover whenever n is divisible by 4 a design consisting

of multiples of d* is optimal.

Example 3

Ift =3, p=4 and n = 6, then the so-called extra-period design

w W N =

is universally optimal in the traditional model (Cheng and Wu, 1980). The
design f fulfills all conditions of a totally balanced design, except for the
balance for carryover effects. Instead, it is strongly balanced for carryover.

Therefore, in model (1) with self and mixed carryover the totally balanced

design

d* =

= W N

1

3

NN =W

(12 3
2 3 1
31 2
123

23

N = =W

1

w =N W

N W e

!

NN W =

w W =N

J




performs better than f and is universally optimal.

Example 4
If t =3 and p = 6, we have a totally balanced design for n = 6, namely

(12331 2]

231123

312231
& =

23131 2

123231

(312123

This performs better than the so-called nearly strongly balanced generalized

Latin square

123123
231123
312231
f= ,
312312
231312
123231

which was shown by Kunert (1983

~—

to be universally optimal over €234 in

the traditional model.

5 Discussion

The paper shows that in the model with mixed and self carryover effects
the optimal designs in general do not contain pairs of consecutive identical
treatments. Instead it is shown that special designs with balance for carryover

effects are optimal.
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This gives another theoretical justification for the use of designs that are
balanced for carryover effects, which are very popular in practice. There are
other theoretical arguments for the use of these designs. One example is the
minimization of the bias if the carryover effect is neglected in the analysis
(see Azais and Druilhet, 1997, and Kunert, 1998). Another example of a
theoretical argument in favour of balanced designs is the possibility to get a
conservative estimate of the variance, even if correlations between the errors
are suspected to be present (see Kunert and Utzig, 1991).

We end the paper with two technical remarks.

Firstly, in the optimal designs derived by Theorem 1, the self carryover
never appears. Therefore, it might look easier to show optimality of the de-
sign d* in the simpler model where the self carryover effects are assumed to be
zero, and then to use Kunert’s (1983) strategy 1 to extend to model (1) with
mixed and self carryover effects. This, however, is not possible in general.
For instance, the design f from Example 3 performs better than d* in the
simpler model where self carryover effects are assumed zero. Therefore, the
optimality proof for d* has to use the two-dimensional polynomial g4(z,y).

Secondly, it should be pointed out that the optimality results of the paper
could be extended to the case that p > 2t. This would, however, take some
extra technicalities. We did not do it because the case p > 2t is of less

interest from a practical viewpoint.
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